基于恢复地震数据获取震级、震源机制及破裂过程的评价——以2013年四川芦山MW6.6地震为例

张小艳, 郝金来, 高星, 王伟. 2020. 基于恢复地震数据获取震级、震源机制及破裂过程的评价——以2013年四川芦山MW6.6地震为例. 地球物理学报, 63(6): 2262-2273, doi: 10.6038/cjg2020N0402
引用本文: 张小艳, 郝金来, 高星, 王伟. 2020. 基于恢复地震数据获取震级、震源机制及破裂过程的评价——以2013年四川芦山MW6.6地震为例. 地球物理学报, 63(6): 2262-2273, doi: 10.6038/cjg2020N0402
ZHANG XiaoYan, HAO JinLai, GAO Xing, WANG Wei. 2020. Evaluation of investigating magnitude, source mechanism and rupture process based on restored seismic data——Taking the 2013 Lushan MW6.6 earthquake in Sichuan as an example. Chinese Journal of Geophysics (in Chinese), 63(6): 2262-2273, doi: 10.6038/cjg2020N0402
Citation: ZHANG XiaoYan, HAO JinLai, GAO Xing, WANG Wei. 2020. Evaluation of investigating magnitude, source mechanism and rupture process based on restored seismic data——Taking the 2013 Lushan MW6.6 earthquake in Sichuan as an example. Chinese Journal of Geophysics (in Chinese), 63(6): 2262-2273, doi: 10.6038/cjg2020N0402

基于恢复地震数据获取震级、震源机制及破裂过程的评价——以2013年四川芦山MW6.6地震为例

  • 基金项目:

    国家自然科学基金面上项目(41574058)和国家重点研发计划政府间国际创新合作专项(2018YFE0100100)资助

详细信息
    作者简介:

    张小艳, 女, 1986年生, 博士后, 主要从事滑坡以及地震学等研究工作.E-mail:zhangxyan@igsnrr.ac.cn

    通讯作者: 高星, 男, 1966年生, 研究员, 主要从事地震波传播理论及应用研究.E-mail:gxing@igsnrr.ac.cn
  • 中图分类号: P315

Evaluation of investigating magnitude, source mechanism and rupture process based on restored seismic data——Taking the 2013 Lushan MW6.6 earthquake in Sichuan as an example

More Information
  • 区域地震波形对于震源研究非常重要,但限幅问题限制了区域地震台网数据的运用,并影响到震源参数测定的准确度.本文利用恢复后的芦山地震区域地震波形,研究了芦山地震的震级、点源机制解以及破裂过程.基于震中距99~300 km恢复前与恢复后地震数据获取的面波震级分别为7.01与7.06级.分别利用7个震中距150~250 km宽频带台站的恢复前和恢复后的数据反演点源机制解,与参考机制解相比,滑动角偏差自13°减小到了4°.基于7个震中距81~134 km的区域地震波形联合远场数据获得的震源破裂过程结果,其主要参数(如滑动分布、破裂速度等)与强地面运动波形联合远场数据得到的结果具有很好的一致性.研究结果表明,本文所采用的数据恢复方法具有较高的可靠性,有效提高了震源参数测定的准确度.

  • 加载中
  • 图 1 

    用于计算震级的台站分布以及震级差异.(a)台站分布图,五角星和三角形分别表示震中位置以及台站分布; (b)由恢复前和恢复后数据所获取的震级之差随震中距的变化图

    Figure 1. 

    The distribution of stations used to investigate the magnitude and the difference of magnitudes.(a)The distribution of stations. The star and triangles show the location of epicenter and the stations, respectively; (b) The difference between the magnitudes based on clipped data and that based on restored data with epicentral distances

    图 2 

    台站分布与点源机制解比较.(a)台站分布图;红色五角星表示了震中位置,黑色三角形以及黑色台站名表示用来获取参考机制解的台站分布,红色三角形以及红色台站名表示使用到的含有限幅数据的台站分布.(b)基于恢复前和恢复后数据,震源机制与误差函数随深度的变化;红色的沙滩球表示恢复后数据的结果,蓝色的沙滩球表示恢复前数据的结果;未填充颜色的大沙滩球中的黑线、蓝线和红线分别表示参考机制解、恢复前机制解和恢复后机制解的一个节面

    Figure 2. 

    The distribution of stations and comparison of focal mechanisms. (a) The distribution of stations. The red star and black triangles show the location of epicenter and the stations used to get the reference mechanism, respectively. The red triangles indicate the used stations with clipped data. (b) The focal mechanisms and misfits in different depths based on the clipped and restored data. The beach balls connected by the red and blue line represent the results of restored data and clipped data, respectively. The black, blue and red line in the large beach ball represent a nodal plane of the reference mechanism, clipped mechanism and restored mechanism, respectively

    图 3 

    参考机制解的波形比较.细线和粗虚线分别表示实际记录和理论波形,每道数据左边为台站名,N、E和Z分别表示北向、东向和垂向分量,左边数字上下分别表示方位角和震中距(单位km),右边的数字表示实际记录的峰值(单位cm·s-1),波形使用实际记录的峰值进行了归一化

    Figure 3. 

    Comparison of waveforms predicted using reference mechanism. Comparison of three-component velocity records (thin solid line) and synthetic seismograms (thick dashed line) predicted using reference mechanism. The station name is indicated at the left side of each seismogram. N, E and Z indicate the North-south component, East-west component and Vertical component, respectively. The value above the beginning of each trace is the source azimuth in degrees, and below is the epicentral distance in kilometers. The peak velocity of the observation in cm/s is indicated above the end of each trace, which is used to normalize both data and the corresponding synthetic seismogram

    图 4 

    恢复后数据在最佳机制解下的波形比较.细线和粗虚线分别表示实际记录和理论波形,每道数据左边为台站名,N、E和Z分别表示北向、东向和垂向分量,左边数字上下分别表示方位角和震中距(单位km),右边的数字表示实际记录的峰值(单位cm·s-1),波形使用实际记录的峰值进行了归一化

    Figure 4. 

    Comparison of waveforms predicted by preferred mechanism based on restored data. Comparison of three-component velocity records (thin solid line) and synthetic seismograms (thick dashed line) predicted using reference mechanism. The station name is indicated at the left side of each seismogram. N, E and Z indicate the North-south component, East-west component and Vertical component, respectively. The value above the beginning of each trace is the source azimuth in degrees, and below is the epicentral distance in kilometers. The peak velocity of the observation in cm·s-1 is indicated above the end of each trace, which is used to normalize both data and the corresponding synthetic seismogram

    图 5 

    恢复前数据在最佳机制解下的波形比较.细线和粗虚线分别表示实际记录和理论波形,每道数据左边为台站名,N、E和Z分别表示北向、东向和垂向分量,左边数字上下分别表示方位角和震中距(单位km),右边的数字表示实际记录的峰值(单位cm·s-1),波形使用实际记录的峰值进行了归一化

    Figure 5. 

    Comparison of waveforms predicted by preferred mechanism based on clipped data. Comparison of three-component velocity records (thin solid line) and synthetic seismograms (thick dashed line) predicted using reference mechanism. The station name is indicated at the left side of each seismogram. N, E and Z indicate the North-south component, East-west component and Vertical component, respectively. The value above the beginning of each trace is the source azimuth in degrees, and below is the epicentral distance in kilometers. The peak velocity of the observation in cm·s-1 is indicated above the end of each trace, which is used to normalize both data and the corresponding synthetic seismogram

    图 6 

    破裂过程、台站分布与地震矩释放率.(a)强地面运动加远场波形数据获取的破裂过程(Hao et al., 2013), 颜色、箭头和等值线分别表示滑动量的大小、滑动方向以及破裂传播时间.(b)恢复后的区域宽频带数据加远场数据获取的破裂过程.(c)恢复前的区域宽频带数据加远场数据获取的破裂过程.(d)台站分布图.红色五角星表示了震中位置,黑色三角形表示台站分布,黑色矩形框为断层在地表的投影.(e)地震矩释放率随时间变化的比较

    Figure 6. 

    Rupture process, distribution of stations and moment rate. (a) Cross sections of slip distributions of the model constrained by the strong motion and teleseismic data. The red star indicates the hypocenter. The color and the white arrows denote the slip amplitude and direction, respectively. The contours show the rupture initiation time. (b) Cross sections of slip distributions of the model constrained by the restored regional broadband waveforms and teleseismic data. (c) Cross sections of slip distributions of the model constrained by the clipped regional broadband waveforms and teleseismic data. (d) The distribution of stations. The red star and black triangles show the location of epicenter and the used stations, respectively. The black box shows the surface projection of the fault plane used in this study. (e) Comparison of moment rate functions

    图 7 

    远场体波波形比较.细线和粗虚线分别表示实际记录和理论波形,每道数据左边为台站名,P和SH分别表示垂向P波速度记录和切向S波位移记录,左边数字上下分别表示方位角和震中距(单位°),右边数字表示实际记录的峰值(单位为cm·s-1或cm),波形使用实际记录的峰值进行了归一化

    Figure 7. 

    Comparison of teleseismic body waveforms. Comparison of teleseimic body waveforms (thin solid line) and synthetic seismograms (thick dashed line). The station name is indicated at the left side of each seismogram. P and SH indicate the Vertical P wave component and Tangential SH component, respectively. The value above the beginning of each trace is the source azimuth in degrees, and below is the epicentral distance in degrees. The peak velocity of the observation in cm·s-1 is indicated above the end of each trace, which is used to normalize both data and the corresponding synthetic seismogram

    图 8 

    远场面波波形比较.细线和粗虚线分别表示实际记录和理论波形,每道数据左边为台站名,UD和SH分别表示垂向记录和切向记录,左边数字上下分别表示方位角和震中距(单位°),右边的数字表示实际记录的峰值(单位mm),波形使用实际记录的峰值进行了归一化

    Figure 8. 

    Comparison of teleseismic surface waveforms. Comparison of teleseimic surface waveforms (thin solid line) and synthetic seismograms (thick dashed line). The station name is indicated at the left side of each seismogram. UD and SH indicate the Vertical component and Tangential component, respectively. The value above the beginning of each trace is the source azimuth in degrees, and below is the epicentral distance in degrees. The peak velocity of the observation in mm is indicated above the end of each trace, which is used to normalize both data and the corresponding synthetic seismogram

    图 9 

    区域宽频带波形记录比较.细线和粗虚线分别表示实际记录和理论波形,每一道数据左边为台站名,N、E和Z分别表示北向、东向和垂向分量,左边数字上下分别表示方位角和震中距(单位°),右边的数字表示实际记录的峰值(单位为cm·s-1),波形使用实际记录的峰值进行了归一化

    Figure 9. 

    Comparison of regional broadband waveforms. Comparison of three-component velocity records (thin solid line) and synthetic seismograms (thick dashed line). The station name is indicated at the left side of each seismogram. N, E and Z indicate the North-south component, East-west component and Vertical component, respectively. The value above the beginning of each trace is the source azimuth in degrees, and below is the epicentral distance in kilometers. The peak velocity of the observation in cm·s-1 is indicated above the end of each trace, which is used to normalize both data and the corresponding synthetic seismogram

    表 1 

    基于恢复前和恢复后数据的震级

    Table 1. 

    The magnitudes based on clipped data and restored data

    台站名 震中距
    (km)
    最大振幅周期(s) 恢复后震级
    MS_restored
    恢复前震级
    MS_clipped
    ΔMS
    XJI 99 25.0 7.5582 7.2694 0.2888
    CD2 99 25.0 7.3969 6.9481 0.4488
    JYA 106 25.0 7.3994 7.2707 0.1287
    YGD 107 25.0 7.5845 7.4078 0.1767
    SMI 135 23.0 7.1512 7.1392 0.0120
    JJS 167 13.0 6.9923 6.9799 0.0124
    MBI 170 17.0 6.9552 6.8947 0.0605
    MEK 193 17.0 7.0839 7.0936 -0.0097
    YJI 194 16.0 6.8597 6.8680 -0.0083
    AXI 202 19.0 7.0058 6.9728 0.0330
    JLO 204 23.0 6.9286 6.9470 -0.0184
    ZJG 230 16.0 6.9272 6.9393 -0.0121
    LBO 231 25.0 7.2607 7.2192 0.0415
    MNI 232 20.0 6.8479 6.8646 -0.0167
    HWS 249 15.0 7.0333 7.0397 -0.0064
    ROC 257 15.0 7.0599 7.0585 0.0014
    YAJ 270 25.0 7.0619 7.0675 -0.0056
    XSB 275 21.0 6.8928 6.8920 0.0008
    BYD 277 22.0 6.8436 6.8274 0.0162
    PWU 277 23.0 6.7735 6.7691 0.0044
    JLI 277 16.0 6.9233 6.9382 -0.0149
    YYC 281 21.0 6.8114 6.8102 0.0012
    LZH 282 12.0 7.0510 7.0617 -0.0107
    XCO 289 13.0 6.9893 6.9904 -0.0011
    RTA 291 21.0 7.0672 7.0649 0.0023
    下载: 导出CSV

    表 2 

    地壳模型

    Table 2. 

    Crust model

    P波速度VP
    (km·s-1)
    S波速度VS
    (km·s-1)
    密度ρ
    (g·cm-3)
    层厚度
    (km)
    2.50 1.20 2.10 1.0
    4.00 2.10 2.40 1.0
    6.10 3.50 2.75 20.0
    6.30 3.60 2.80 20.0
    7.20 4.00 3.10 4.0
    8.08 4.47 3.38
    下载: 导出CSV

    表 3 

    点源机制解反演比较

    Table 3. 

    Comparison of focal mechanisms

    走向
    (°)
    倾角
    (°)
    滑动角
    (°)
    深度
    (km)
    矩张量
    (N·m)
    恢复前结果 203 50 81 14 8.1×1019
    恢复后结果 210 45 90 14 8.3×1019
    参考机制解 213 45 94 15 7.5×1019
    下载: 导出CSV

    表 4 

    震源参数对比

    Table 4. 

    The comparison of source parameters

    参数 Hao等(2013) 本文
    标量地震矩 8.9×1018Nm 8.4×1018Nm
    矩心深度 12.5 km 13.6 km
    峰值滑动深度 15.1 km 13.8 km
    主要滑动范围 ~5-20 km ~6-21 km
    峰值滑动量 1.2 m 1.1 m
    平均滑动量 0.4 m 0.4 m
    破裂持续时间 10.3 s 9.6 s
    破裂速度 2.0 km·s-1 2.1 km·s-1
    下载: 导出CSV
  •  

    Chong J J, Ni S D, Zeng X F. 2010. sPL, an effective seismic phase for determining focal depth at near distance. Chinese Journal of Geophysics (in Chinese), 53(11):2620-2630, doi:10.3969/j.issn.0001-5733.2010.11.010.

     

    Fan N, Zhao L F, Xie X B, et al. 2013. Measurement of Rayleigh-wave magnitudes for North Korean nuclear tests. Chinese Journal of Geophysics (in Chinese), 56(3):906-915, doi:10.6038/cjg20130319.

     

    Han L B, Jiang C S. 2012. Focal mechanism inversion of 8 Jun 2011 MS5.3 earthquake. Acta Seismologica Sinica (in Chinese), 34(3):415-422. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhen201203014

     

    Hao J L, Yao Z X. 2012. Determination of regional earthquake source parameters in wavelet domain. Science China Earth Sciences, 55(2):296-305. http://cn.bing.com/academic/profile?id=6a811fac9ec8fafbfd511e8f484a8d09&encoded=0&v=paper_preview&mkt=zh-cn

     

    Hao J L, Ji C, Wang W M, et al. 2013. Rupture history of the 2013 MW6.6 Lushan earthquake constrained with local strong motion and teleseismic body and surface waves. Geophysical Research Letters, 40(20):5371-5376. doi: 10.1002/2013GL056876

     

    Hao J L, Ji C, Yao Z X. 2017. Slip history of the 2016 MW7.0 Kumamoto earthquake:Intraplate rupture in complex tectonic environment. Geophysical Research Letters, 44(2):743-750. doi: 10.1002/2016GL071543

     

    Liu C L, Zheng Y, Xie Z J, et al. 2015. Rupture process of the Gansu Dingxi earthquake on July 22, 2013. Progress in Geophysics (in Chinese), 30(1):99-105, doi:10.6038/pg20150115.

     

    Luo Y, Ni S D, Zeng X F, et al. 2010. A shallow aftershock sequence in the north-eastern end of the Wenchuan earthquake aftershock zone. Science China Earth Sciences, 53(11):1655-1664. doi: 10.1007/s11430-010-4026-8

     

    Ni S D. 2008. Progress in real-time seismology. Bulletin of the Chinese Academy of Sciences (in Chinese), 23(4):311-316.

     

    Russell D R. 2006. Development of a time-domain, variable-period surface-wave magnitude measurement procedure for application at regional and teleseismic distances, part I:Theory. Bulletin of the Seismological Society of America, 96(2):665-677. doi: 10.1785/0120050055

     

    Wang D, Mori J. 2012. The 2010 Qinghai, China, earthquake:A moderate earthquake with supershear rupture. Bulletin of the Seismological Society of America, 102(1):301-308. doi: 10.1785/0120110034

     

    Wang W M, Zhao L F, Li J, et al. 2008. Rupture process of the MS8.0 Wenchuan earthquake of Sichuan, China. Chinese Journal of Geophysics (in Chinese), 51(5):1403-1410. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ed200902001

     

    Xu L S, Chen Y T. 2004. Temporal and spatial rupture process of the great Kunlun Mountain Pass earthquake of November 14, 2001 from the GDSN long period waveform data. Science in China Series D:Earth Sciences, 48(1):112-122. http://cn.bing.com/academic/profile?id=460f534604d5cbc07507157272906b70&encoded=0&v=paper_preview&mkt=zh-cn

     

    Yao Z X, Harkrider D. 1983. A generalized reflection-transmission coefficient matrix and discrete wavenumber method for synthetic seismograms. Bulletin of the Seismological Society of America, 73(6A):1685-1699. http://cn.bing.com/academic/profile?id=0dbcab95a934b19de3833051441c4f53&encoded=0&v=paper_preview&mkt=zh-cn

     

    Yao Z X, Ji C. 1997. The inverse problem of finite fault study in time domain. Acta Geophysica Sinica (in Chinese), 40(5):691-701.

     

    Ye L L, Lay T, Kanamori H, et al. 2016. Rupture characteristics of major and great (MW ≥ 7.0) megathrust earthquakes from 1990 to 2015:1. Source parameter scaling relationships. Journal of Geophysical Research:Solid Earth, 121(2):826-844, doi:10.1002/2015jb012426.

     

    Yi G X, Long F, Liang M J, et al. 2019. Focal mechanism solutions and seismogenic structure of the 17 June 2019 MS6.0 Sichuan Changning earthquake sequence. Chinese Journal of Geophysics (in Chinese), 62(9):3432-3447, doi:10.6038/cjg2019N0297.

     

    Yue H, Lay T, Schwartz S Y, et al. 2013. The 5 September 2012 Nicoya, Costa Rica MW7.6 earthquake rupture process from joint inversion of high-rate GPS, strong-motion, and teleseismic P wave data and its relationship to adjacent plate boundary interface properties. Journal of Geophysical Research:Solid Earth, 118(10):5453-5466. doi: 10.1002/jgrb.50379

     

    Zhang J H, Hao J L, Zhao X, et al. 2016. Restoration of clipped seismic waveforms using projection onto convex sets method. Scientific Reports, 6:39056, doi:10.1038/srep39056

     

    Zhang L B, Yao Z X, Ji C, et al. 1997. Fast simulated annealing algorithm and its application. Oil Geophysical Prospecting (in Chinese), 32(5):654-660. http://d.old.wanfangdata.com.cn/Periodical/dqkx199904019

     

    Zhang Y, Feng W P, Xu L S, et al. 2009. Spatio-temporal rupture process of the 2008 great Wenchuan earthquake. Science in China Series D:Earth Sciences, 52(2):145-154. doi: 10.1007/s11430-008-0148-7

     

    Zhao C P, Chen Z L, Zhou L Q, et al. 2009. Rupture process of the 8.0 Wenchuan earthquake of Sichuan. China:The segmentation feature. Chinese Science Bulletin (in Chinese), 54(22):3475-3482, doi:10.1007/s11434-009-0425-7.

     

    Zhao L S, Helmberger D V. 1994. Source estimation from broad-band regional seismograms. Bulletin of the Seismological Society of America, 84(1):91-104.

     

    Zhu L P, Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms. Bulletin of the Seismological Society of America, 86(5):1634-1641. http://cn.bing.com/academic/profile?id=b303f16dd343f999802dfd2d2577b5ae&encoded=0&v=paper_preview&mkt=zh-cn

     

    崇加军, 倪四道, 曾祥方. 2010. sPL, 一个近距离确定震源深度的震相.地球物理学报, 53(11):2620-2630, doi:10.3969/j.issn.0001-5733.2010.11.010. http://www.geophy.cn//CN/abstract/abstract3415.shtml

     

    范娜, 赵连锋, 谢小碧等. 2013.朝鲜核爆的Rayleigh波震级测量.地球物理学报, 56(3):906-915, doi:10.6038/cjg20130319. http://www.geophy.cn//CN/abstract/abstract9337.shtml

     

    韩立波, 蒋长胜. 2012. 2011年6月8日新疆托克逊MS5.3地震震源机制解反演.地震学报, 34(3):415-422. doi: 10.3969/j.issn.0253-3782.2012.03.014

     

    刘成利, 郑勇, 谢祖军等. 2015. 2013年7月22日甘肃定西地震的震源破裂过程.地球物理学进展, 30(1):99-105, doi:10.6038/pg20150115.

     

    罗艳, 倪四道, 曾祥方等. 2010.汶川地震余震区东北端一个余震序列的地震学研究.中国科学:地球科学, 40(6):677-687. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201006001

     

    倪四道. 2008.应急地震学的研究进展.中国科学院院刊, 23(4):311-316. doi: 10.3969/j.issn.1000-3045.2008.04.007

     

    王卫民, 赵连锋, 李娟等. 2008.四川汶川8.0级地震震源过程.地球物理学报, 51(5):1403-1410. doi: 10.3321/j.issn:0001-5733.2008.05.013 http://www.geophy.cn//CN/abstract/abstract1334.shtml

     

    许力生, 陈运泰. 2004.从全球长周期波形资料反演2001年11月14日昆仑山口地震时空破裂过程.中国科学D辑:地球科学, 34(3):256-264. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200403007

     

    姚振兴, 纪晨. 1997.时间域内有限地震断层的反演问题.地球物理学报, 40(5):691-701. doi: 10.3321/j.issn:0001-5733.1997.05.010 http://www.geophy.cn//CN/abstract/abstract4018.shtml

     

    易桂喜, 龙锋, 梁明剑等. 2019. 2019年6月17日四川长宁MS6.0地震序列震源机制解与发震构造分析.地球物理学报, 62(9):3432-3447, doi:10.6038/cjg2019N0297. http://www.geophy.cn//CN/abstract/abstract15157.shtml

     

    张霖斌, 姚振兴, 纪晨等. 1997.快速模拟退火算法及应用.石油地球物理勘探, 32(5):654-660. doi: 10.3321/j.issn:1000-7210.1997.05.002

     

    张勇, 冯万鹏, 许力生等. 2008. 2008年汶川大地震的时空破裂过程.中国科学D辑:地球科学, 38(10):1186-1194.

     

    赵翠萍, 陈章立, 周连庆等. 2009.汶川MW8.0级地震震源破裂过程研究:分段特征.科学通报, 54(22):3475-3482.

  • 加载中

(9)

(4)

计量
  • 文章访问数:  1745
  • PDF下载数:  296
  • 施引文献:  0
出版历程
收稿日期:  2019-11-11
修回日期:  2020-03-31
上线日期:  2020-06-05

目录