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INTRODUCTION

lo Let M be a metric space of points a
s
b

9
«°°

,
with the dis-

tance from a to b denoted by abo Let A be a given subset of M„ If

p and p® are points of M such that

(1) px > p
9x

,
for every point x A A

^

we say that p
9 is point-wise closer than p to the set A, We say

that p is a point-wise closest point to the set A if no point p

'

exists which is point“Wise closer than p to A„ For brevity we shall

also refer to a point-wise closest point to the set A as a minimal

point of the set A„ The set of minimal points of A will be called

the Fejer se_t of A and denoted by F(A) C This set is never void

since F(A) o A. F(A) is a monotone set function since

(2) A
1

C A. implies l{\) £ nK) .

Let p a p
9 be distinct points of M 0 The set of points x such

that

px i p
9 x

is called a half-space of M and denoted by the symbol H - HCp^p*)!

p s
p

*

are its defining points or foci , p being exterior to H
s p

9

interior o The convex hull K(A) of a given set A is defined as

follows: If A is not contained in any half-space
9
we set K(A) -M.

If there exist half-spaces containing A
s
then K(A) is defined as

the intersection of all such half-spaces:

( 3 ) K(A) -OH.
H 3A





" 2"

Notice that K(A) is always closed and A g K(A). A further general

inclusion is

Indeed,, if p £ F(A ) 9
then a point p* exists such that (1) holds 0

This implies A £ H - H(p
sp

!

) while evidently p l H„ By ( 3 ) p e K(A)

and (i|) is established.

2 o In 1922 Fej er [ lsj s
noticed the interesting fact that in

the euclidean plane M " E,, we have

One half of Fejer’s own argument has just been used to establish

(It) for any metric space „ The other half of Ms proof in E0 is as

follows « Let us show that F(A) c K(a)

,

Indeed
s
if p e K(A)

S
then

there exists a half“plane H c E.
;

such that p €. H
}
A c H„ If p

5 is

the point of H which is nearest to then (l) evidently holds

showing that p £ F(A)

.

The last paragraph allows of a wider setting „ Let M be a

real inner“product space 0 By this we mean that M is a real, linear

space whose norm springs from an inner product (a
s
b) and that M is

complete with respect to the metric just describedo Under these

assumptions the convex hull K(A) is found to be identical with the

least closed and linearly connected set containing A 0 Fejer 3 s ar-

gument applies unchanged to prove the following

(W K(A) C . F(A) .

(*> F(A) - K(A) ,

then

(6) F(A) - K(A) .



'
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3c In Parts I and II "we investigate the Fejer sets of finite

sets of points in Banach spaces. The notion of the global distribu-

tion of points on spheres is introduced (Definition 1) and Fejer sets

are described in terms of this concept (Theorem 50° Fejer 9 s result

is shown to hold in rather arbitrary 2-dimensional Banach spaces

(Theorem 6), The situation is quite different for dimensions exceed-

ing twOo A very weak form (2d) of Fejer 9 s result is shown to imply

that the Banach space is an inner-product space 0 In Part III we de-

termine the Fejer set of a subset of spherical space.

I. ON FEJER SETS OF FINITE SETS OF

POINTS IN BANACH SPACES

in An application of Kelly 9 s theorem . Let B be a Banach space

to be also denoted by B.,. in case its dimension n happens to be fi-

nite. The Fejer set FCa^b) of two points is described by

THEOREM 2, In any space B we have that

(Id) F(a,b) - E(x| |ja-xjj + ||x-b|| - ||a~b||) .

Proofs Indeed^ a point x of E is clearly minimal for the set

|
a

s
b 'because the existence of a point x 9 point-wise closer than x

to (a
s
bj would violate the triangle inequality. On the other hand,

if i|a-xf + ||x~b|| > Jja-bf 8
we can find a point x 9 on the segment

joining a to b such that jja-xll > j{a”X !

|j 9
||b-x(j > ||b-x 9

|jo This

proves (ld)o

THEOREM 3o Let A be a finite set of points of B (n finite )

and let us assume that A contains at least n+1 points . Then

(1°2) F(A) - UF(poS Pl , (P1 ^ A),os>o P )9 »





where the elements of the union are formed for erery combination

of n+1 distinct points of A„

Proof ; Let 6(A) denote the set on the right-hand side of

(1,2). By (2) we have

(1»3) 6(A) c F(A) .

Assume now that

(loh) p £ 6(A)

and let us show that p
“ F(A), i.e.

a
that p is not minimal . For

every point a t A we consider the open sphere

(lo^) S
a :

|x~a|| < ||p-a| .

Let pQS p be any distinct points of A, By (i 0 ii)

P £ *(P0 ,
a ”,Pn)* This means that a point-wise closer point exists

for the set ; d p or
c s 9 i n 5

(1 , 6 ) s n s n
Pi p.

The spheres S are convex sets, finite iri number
9
every n+1 of which

have a common point
,
in view of (1,6). By Helly’s theorem (see [ 5] )

n
a e A

Sa f 0 o
a

If p
J % H S then p

9 t S for every a, or |p°a.j! > |jp*=&!| for

every a £ A. Hence p I F(A) 0 Thus 6(A) 3 F(A) . In view of (l 0 3) s

the identity (l 0 2) is established.

An example o Let ~ be the Minkowski space of points

x " (x.
,

000
s

3^) with the ncubical” norm ||x|[ = max|x<,jo In thisA
i 1

particular case the resul Theorem 2 maybe improved as follows?





=
5
“

If A is a finite set of points in M._. then

(1 . 7 ) 7(a) - u y(p
o , Pl > ,

where the union is formed for all pairs of distinct points of A 0

Indeed, in this special case the spheres (l 0 £) are open cubes

with edges parallel to the axes of coordinates . On repeating the

argument used in proving Theorem 3 we find that every two among

the cubes have a common point,, If follows that the projections of

the cubes on each coordinate axis have a common point and that

therefore also all cubes have a common point

„

Let n = 3 and let A - fa s
b

3
c], where

(108) a - (2, 0, 0), b - (0, 2, 0), c - (0, 0
3 2) .

By (lc7) we have

F(a
s
h

g
c) - T(a, h) + F(a

9
c) + F(b

s
c) .

The inspection of a diagram will show that the three right-hand

side sets are lozenges: F(a
9
b) is the lozenge of consecutive ver-

tices (2 S 0 g 0), (l, 1, l)
s (0, 2

S 0), (l, 1, “1). Notice in par-

ticular the curious fact that the centroid (2/3, 2/3, 2/3) of the

triangle A(a
s
b

9
c) is not a point of the Fejer set F(a

s
b

s
c)

.

However the point p ~ (l, 1, 1) does belong to T(a
s
b

3
c). We

shall say that a
9
b,c are globally distributed on the sphere fx-pj!"!

and investigate the general concept in our next section.

On points globally distributed on spheres and their char-

acterization . DEFINITION 1. Let B be a Banach space and let

(109) S : ||x=c|| s r
,





be the surface of the sphere of radius r and center at c„ Let

, Pk k® k of S. We shall say that the point

Fl 9

( 1 . 10 )

are globally distributed on S

c e F(p
, p.

• V •

In other words ; There is no solid sphere ||x-c 3 6 of a smaller

radius r* < r a which covers all Pn k*

In what follows we denote by [a,b) the half-open segment of

points a(l-t) + bt (0 - t < 1), joining a with b
s
and use similar

notations [a
#
b], (a

s
b)

s
for closed or open segments.

DEFINITION 2 . Let p^ ,

°
'

3
be k points on the sphere

(1.9) of Definition 1. We say that the points p^ ,
• •

•

9 p^ are well

visible provided there exists a point q outside S,
j]

q—c
||

> r
f
such

that the segments [q 9 p/) contain only points exterior to S and that

there are points s^
s
such that p

1
e (q s

s^) and that the segments

(p^ 9
s^] have only points interior to S.

Example . In E0 k points on a circle ||x=c|| = r are well visible

if and only if they are contained in an open half“circle. The gen-

eral relation between Definitions 1 and 2 is shown by the following

dis-THEOREM ho The points pn 9 p9 ,
° »

° 9 p,. on S are globaj
I s ^2 > s

tributed on S if and only if they are not well visible .

Proof ; a. The condition is necessary . Indeed, suppose

that our condition is not satisfied and, on the contrary, the points

p^ are well visible from the outside point q. By Definition 2 we

can extend the segment [q 9 p ] by a segment (p^,s,] all points of

which are interior to S. Let us now "shrink” S from the center of

similitude q in the ratio 1:A(0<A<1), obtaining a new sphere





-
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~

S' of radius r* = rX < r. Let the segment (p^, s^) be transformed

into (p| s
s^) by this similitude transformation. Since (p. s

s^)

is interior to S (p! si) will be interior to S’. It is clear that
X X

pi
e (p

i*
s
i) »

(i “ 1, *•*
,
k ),

provided that A is sufficiently close to unity. But then all p^ are

inside S', showing that p^ s
•

•
•

a p^. are not globally distributed on

S.

b. The condition is sufficient . Indeed, let us as-

sume that p^ # p^ are not globally distributed on S and let us

conclude that they are well visible. Accordingly, let p^ be covered

by a sphere of radius r^ < r. Inflate S^ slightly from its cen-

ter into a larger sphere of radius r* < r. Now all points p^ are

interior to S. Let c* be the center of the sphere S’. Since the

p^ are on S and inside S’
s
we must have c’ f c. The spheres S and

S® are similar with respect to the (exterior) center of similitude

re'-r'c
r-r 1

We denote by p" = Tp the similitude transformation with center at

q and ratio r Let p. - Tp„ 0 Since p. is on S, p. is on S

But p is by construction inside S’. It follows that all po:

of (p^, p^] are inside S’. Let s. be such that

p. = Ts o

l

Now (p s^] goes over into (p^ s p^] by our transformation. Since

(p^s P^l was shown to be inside S®
s
it follows that (p^, s^] has

only points interior to S. We now claim that all points of [q, p^)
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are outside So For if any point of this segment were inside or on

S
s
the fact that s^ is inside S would imply that also p^ were in-

side S
s
which is not the case. We have just shown that [q p. ) is

i

outside S
s (p^, s^] is inside S

a
(i - l

s
*°°

9
k) 0 But this is pre-

cisely what we mean when we say that the points pi
are well visible

from q.

6. A description of Fe.j er sets in terms of global distribu-

tion .

THEOREM Let A =
j p^ s

•
•

•
$ p^j

be a finite set of points

of B. Let p £ A. Draw about p as center a sphere

S s ||x-p|| = r

and project p^ from p onto the surface S into q^ a Denote by F-^(A)

the set of those points p such that the points q^ , , q^. are

globally distributed on S. Then

(loll) F(A) - A + 7 (A) .

Proof ; We have to show that p F(A) if and only if the q^

are globally distributed on S or equivalently:

(1.12) p T F(A)

if and only if

(loll) q^ ? q^ are not globally distributed on S.

The size of the radius r > 0 is clearly immaterial.

a. Let us assume ( 1 . 13 ) and prove (1.12). Choose r such

r < min ||p-p
i ||

.

that
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The assumption (l»13) means that pCF(q^
s

»

•

•
3 q^). Therefore there

exists a point p* such that

lhL -p|| > Iki-P' II ,
(i - 1, •••

,

k).

But then

IIp^pII
=

llp^il + llq^-pl > + llq^p’ll - IIp^p ' II

or

IIp^pII > Ip^p'II .

which proves (l„12)„

bo We now assume that (l„12) holds and wish to prove

(I 0 I3 ). Choose r such that

r > max Ip-pJ .

i

By (l 0 12) there is a point p* such that

IIp-pJI > IIp'-pJI ,
for all i.

Hence

r - ||p-q
i l

- ||p"Pi !|

+
l|pi

“q
i l| > flp'-pjl

+
llPj-qJI

~
Ip'-qJI

or

Up’-qJI < r
,

for all i.

Setting

r ! = max fp’-q. ||
< r

i

we see that the smaller sphere ||x-p’|] - r' will cover all points q^,

which proves (I 0 I3 ).

7« £2 Fe
-i
/&v se^ s in B^o As an application of Theorem b we

wish to describe the Fejer sets of finite sets of points in a
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Minkowski plane B^. By Theorem 2 we conclude the following: The

Fejer set F(a,b) is identical with the segment [a,!*], for every pair

of points a,b, if and only if the norm of B^ has the property:

IIpII
+ h\\

=
l!p

+
ql! , p ? o

, q f o

(1.1U)
imply that p = aq

,
(a. > 0) .

It is known that (l 0 lb) holds if and only if the gauge- curve ||x||=l

contains no segment, in which case the curve ||x||-l may be described

as being "round .

"

We assume (l„lb) to hold and consider in B
?

a set A = jp^jP^jP^)

of three points. Let p£A and let be the points on the

gauge-curve S as described in Theorem h. By Theorem 5> p £ FCp^p^p^)

if and only if q^q^q., are not globally distributed on S B By

Theorem b this is the case if and only if q^q^q^ are well visible

(from a point q outside S)„ S being "round," this is evidently the

case if and only if p is outside the closed triangle A(q^
s q^)

or, equivalently, outside the triangle A(p^, p^, p^). Thus

F(p
1? P2 , P

3
)

= A(p
1 , p2 , p

3
) .

Applying Theorem 3 we obtain

THEOREM 6. Let be a Minkowski plane with the property

(l.lb). The Fej er set of a finite set of points is identical with

the closed convex polygon spanned by the set .

This result is a special property of 2-dimensional Banach

spaces as will be shown in Part II.
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II. A CHARACTERIZATION OE INNER-PRODUCT SPACES

8 . The main theorem . Let M be the inner-product space of

Theorem 1 and let the set A consist of three points
f p^ , p^, p^

distinct or not. Then K(A)
S
being identical with the least closed

and linearly connected set containing these points, is evidently

the triangle A(p
n 9 p„ 9 p.) having as vertices the points P-.jPnsP^*

By Theorem 1 we have

(2*1) ? (P1S P2 , P
3

)
s A(P1S P2s P

3
) •

Let now Pi be an arbitrary Banach space 0 By Theorem 6 we know

that (2d) again holds provided that B - B
?

is 2-dimensional and

that its metric has the property (l.lU). Which higher-dimensional

Banach spaces B enjoy the property (2„l)? An answer is given by

the following

THEOREM 7 o A space B of dimension - 3 has the property (2.1)

if and only if it is an inner-product space .

9. A few lemmas . Eor the proof of Theorem 7 we need a num-

ber of results concerning the 3“dimensional euclidean space E^.

LEMMA I. Let denote the surface of a sphere in E^ with

center at o. Let C be a simple closed curve on and let H^ and

and H^ be the two open components of the complementary part ;
=

C + H^ + Hg. Let K*(H^) and K*(H
2 ) denote the least convex sets

in containing H^ and E^
s
respectively . If

( 2 . 2 ) oeK*^) U k*(h
2

)

then C is necessarily a great circle .
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Proof ; By (2.2) o€.K*(H^). Therefore o is either outside

or on the boundary of the closed convex set

K* (H^) = K*^ + C) 0

We can therefore draw through o a plane TT which is a bounding

plane or a plane of support of K*(H^ + C) . Let P = fl IT and let

h^ and h^ denote the open half-spheres in which IT divides ;

^2 ” P + hp + ^
2

° our choice ^ and ^or a proper labelling

of the h„ we have
1

h + r $ h •

Passing to complements on the sphere we see that h^ C + C, and

since h^ is open on the sphere, we have

(2.3) h
2

C h
2 .

We now claim that

(2.U) n h
2

= 0 .

Indeed, if p eh^ fl H
2 ,

then K*(p, hg) would contain the point o and

by p a H
2

and (2 0 3 ) a fortiori

oeK*(H
2

) ,

in contradiction to (2.2). By (2.3) no point of C is in h
2

and by

(2.U) no point of C is in h-^„ Thus C c f and therefore C = P

showing that C is a great circle.

A seemingly more general version of Lemma 1 to be used below

is as follows.

LEMMA 2 . Let S be the surface of a convex body in E, having

the point o as center of symmetry . Let C be a simple closed curve
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on S and let H^H,, be the two ojoen cOTEone^ °£ iM SSS^S^ :

s = c + ^ + H
2

. Let K*(H
1
).K*(H

2 )
denote the least convex sets

in E containing E,_ and Hg, resEeotivels- If

otK*^) U K*(H
2

)

. , „ ^ q A e C is the intersection of S

then C is a "great circle of S, i ... 9

b£ a plane through o.

Proof ; Draw a sphere S
2
with center at o. Central pr

jection of S only S
2
with the center of projection at o reduces

Lemma 2 to Lemma 1«

We turn to our last le«na which is due to Blaschke. Let S

be the surface of a convex body in Ej. We assume that the sur-

face S contains no se^ent, a fact which we describe by saying

that S is "round." Let * he a fixed vector and let us illuminate

S by rays of light all parallel to * in direction and sense. Let

, , _ o +hat is the "boundary be-

C denote the light-shade boundary on S. that is,

. 4. e aTVa the part of S which is shaded,

tween the illuminated part of S and P

We claim that C is a sirffile closed curve. Indeed, let * be a

fixed plane normal to v. The orthogonal projection of S onto T is

a plane convex domain D whose boundary curve we den 7 P

Let p e T • The point p is the projection of a point q of S. Since

S contains no segment this point q is unique and is readily shown

t0 vary continuously as p varies continuously on P- As p de-

.

scribes P the point q describes our curve C which is clearly sim-

pie and closed.

LEMMA 3 (Blaschke). If S has the H£E2£iZ Sat &S 1^'

nfO*



V



shade boundary C is a plane curve for all possible directions of v

then S is necessarily an ellipsoid .

Blaschke proves this result ([l], pp 0 l£7=l£9) hy assuming

that S is an "Eiflache," by which he means that S is analytic and

regular at all its points and has everywhere non-vanishing curva-

ture ( [ 1 ] 3 p 0 llj.7). However
9
the reader will have no difficulty in

carrying through Blaschke "s proof on the basis of our simplified

assumption that S is "round 0
H

10° Proof of Theorem ?• We are to show that the property

( 2 o 1 ) implies that B is an inner-product space,, If p-, -
p^

then

(2d) implies that

F(P1S P
2

)
s tpls P2 1 .

The metric of B must therefore have the property (I0II4): The

gauge-surface

2 : ||x|| - 1

of B is "round

Let B^ be an arbitrary but fixed 3
=dimensional linear sub-

space of B 0 B^ is a 3"dimensional Banach space whose gauge-sur-

face is

s = b n 2 .

3

In terms of a coordinate system in B we can also think of B as
3 3

being a Minkowski space whose points are those of an E^ which is

metrized by means of the convex gauge- surface S. By a theorem of

Jordan and von Neumann [3], it suffices to show that S is an ellip-

soid.

We know already that S is "round" because 2 has this property





(S C Z and Z contains no segments). Let us illuminate S from a di-

rection parallel to v. Let C be the light- shade boundary on S and

let be the illuminated part of S, the shaded part, 3 = 0 + ]^+ H

We claim that

(2o 50 ofeK*^) .

Indeed, let us assume for the moment o to be a point of the

convex set K*(H^)„ being connected it follows, by a sharpened

. 1version of a theorem of Fenchel
,

that o is the centroid of some

three points of Pp s P2 * P
3

>
say. Thus

(

2

» 6 ) Pls P2 , P
3
eH

i »

(2-7) o e a(p13 p2 , p
3

) .

These conclusions, however, are contradictory with our previous

assumptions, for on the one hand the points p^, p^, p^ are well

I n^l

visible from a point at infinity in the direction -v. Prom this

it follows easily that they are well visible from a point q at fi-

note distance and sufficiently far out in the direction of -v. By

Theorem h we conclude that the points pn 9 p~, p are not globally
± z 3

distributed on the S of the B_

On the other hand by (2„7) and our basic assumption (2d) we

conclude that ofeP(p^, p2 , p^). Thus o is a minimal point of the

set A - [p p?J p ]
in the space B 0 It follows a fortiori that

i

The sharpened version of the theorem of Fenchel is as follows:

Let H be a connected subset of and let K* (H) be the least con-

vex set containing H.~~ Then every point of K*(H) is a centroid of

some n points of H. This result is due to L. N. H. Bunt. See [2]

for Bunt's proof (pages 5>89"5>90) and for references.
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that o is minimal point of A with respect to the subspace B . Thus

P2 * P
3

are globally distributed on S in B in direct contradic-

tion to the conclusion of our previous paragraph.

This proves (2 a 5) and we may similarly show that

olK*(H
2

) .

By Lemma 2 we conclude that C is a plane curve and by Blaschke’s

Lemma 3 we learn that S is an ellipsoid.

III. ON FEJER SETS IN SPHERICAL SPACES

11. Let M be the real inner-product space of section 2. We

are now confining our attention to the surface S of its unit sphere

||X|| = 1 o

By the distance xy of two points of S we mean the arc defined by

cos xy = (x,y)
,

o ^ xy ^ ir

If p and p’ are distinct points of S then the closed half-sphere

H(p, p>) may be defined by the inequality px - p
s x or equivalently

by (p s
x) - (p'

s
x) or (p'"p

s
x) - 0. A being a given subset of S

we may now define the convex hull K(A) as in section 1.

THEOREM 8. Let A be a subset of S. a. If there is no open

half- sphere containing A then

(3.1) F(A) = S .

b. If there is an open half- sphere H
q

such that A c HqJ

then

(3.2) E(A) = K(A)

,
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Proof: a. In order to prove (3°l) we have to show that

every point p e S is a minimal point of S„ This is clear
s
for other-

wise there would exist a point p® such that (l) holds. However (1)

implies that A is in the open half-sphere H (p s p®) which contra-

dicts our assumption,

b. Let us assume that

(3.3) A c H
o ,

where is an open half- sphere defined by

(3.U) H
o :

(x,b) > 0 ,

and let us prove (3.2). However, the inclusion

K(A) c F(A)
,

or (U), has already been established In section 1 for any metric

space. There remains to show that

(3.5) F(A) c K(A)
,

or that

(3o6) p£K(A)

implies

(3.7) p & f(a) .

Assuming (3° 6) means that there is a closed half-sphere H such that

(3.8) ptH
,

H D A 0

Let the half- sphere H be defined by

(3.9) H : (x s
a )

- 0 *

By the first relation ( 3 . 8 ) we know that (p,a) < 0. Choose e > 0
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so small as to make sure that

(3-10) (p,a) + e(p,b) < 0 0

Consider the open half- sphere

(3-11) H
q :

(x,a) + e(x
s
b) > 0 .

If xtA then xfe-H, by (3,8), and xfcH
Q ,

by (3.3)° The point x thus

satisfies the inequalities (3«h) s (3.9) and therefore also (3.11):

(3.12) ACH’ .

On the other hand (3.10) shows that

pen; .

But then clearly p is not a minimal point of A. Indeed let p* be

the symmetric of p with respect to the hyperplane

(x, a+fcb) = 0

which bounds H^„ Clearly - H
o (p s

p’)» By (3.12) we see that p*

is point-wise closer than p to A, This proves (3-7) and therefore

also our theorem. Notice that the dimensionality of the space M,

finite, denumerable or non-denumerable, does not affect our theorem.

August 28 9 195>2
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