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We present a short review of how the effec-
tive action formalism, well known in
relativistic quantum field theory, can be
used to discuss Bose-Einstein conden-
sation of non-relativistic gases. This method
lends itself very naturally to an inter-
pretation of Bose-Einstein condensation in
terms of symmetry breaking. It also
allows for the definition of a very elegant
regularization technique involving
generalizedz -functions. We show how this
method can be used to recover the well
known results for the free boson gas, as
well as the charged boson gas in a
constant magnetic field. A general criterion
for interpreting Bose-Einstein conden-
sation in terms of a phase transition with

symmetry breaking is given. Finally we
present an analysis of Bose-Einstein
condensation in a harmonic oscillator
confining potential trap, and show how the
results of this simple model are in excel-
lent agreement with experiment.
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1. Introduction

It is now well over seventy years since the phe-
nomenon referred to as Bose-Einstein condensation
(BEC) was first predicted [1,2]. For s system of non-
relativistic spin-0 bosons in three spatial dimensions, a
discussion of BEC is now part of any undergraduate
course in statistical mechanics. Until recently the best
experimental evidence that BEC could occur in a real
physical system was liquid helium, as suggested origi-
nally by London [3]. However although the behavior of
liquid helium at low temperatures can be qualitatively
described by the free boson gas model, the detailed
behavior deviates substantially from this simple model.
Physically this is of course because the effects of inter-
actions which are neglected in the free boson gas model

1 e-mail: kirsten@tph100.physik.uni-leipzig.de.
2 e-mail: d.j.toms@newcastle.ac.uk.

are important in liquid helium. More recently it was
suggested [4,5] that BEC could occur for excitons in
certain types of non-metallic crystals (such as CuCl for
example). There is now good evidence for this in a
number of experiments [6].

The most exciting experimental evidence for BEC has
come from the recent observations of very cold alkali
gases. BEC has now been observed to occur in gases of
rubidium [7], lithium [8], and sodium [9]. These sys-
tems are very dilute and as a first approximation are well
described by a boson gas model with no interactions
among the atoms. The atoms are confined in a magnetic
trap which can be modelled by a harmonic oscillator
potential. We have recently discussed [10,11] how the
occurrence of BEC is to be interpreted in such a system,
and given the details of the harmonic oscillator potential
trap, are able to calculate a characteristic temperature
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which is in excellent agreement with the values found in
the experiments. This work will be reviewed briefly in
Sec. 6.

The main purpose of our review is to show how the
effective action formalism may be used in a straight-
forward and natural way to discuss BEC. The general
formalism is presented in Sec. 2. In Sec. 3 we introduce
a particularly useful method for defining the effective
action, and show how the usual thermodynamic poten-
tial may be recovered. The interpretation of BEC as
symmetry breaking is given in Sec. 4, and used to study
two models: the free boson gas, and a charged boson
gas in a constant, externally applied magnetic field. A
general criterion for deciding if BEC will occur as a
phase transition with symmetry breaking is presented in
Sec. 5. In Sec. 6 BEC in a harmonic oscillator confining
potential is discussed, and we describe how this model
compares favourably with the experimental results on
alkali gases.

2. General Effective Action Formalism

In this section we wish to discuss briefly the effective
action approach to quantum field theory at finite tem-
perature and density. We will then use this formalism to
see how BEC may be understood in terms of symmetry
breaking, since this interpretation arises in a very
straightforward manner within the effective action
framework. One advantage of adopting the effective
action approach is that it may be applied to situations of
great generality, such as curved configuration spaces of
arbitrary dimension, spaces with boundaries or with
complicated topologies, orsituations where background
gravitational or electromagnetic fields are present.
Furthermore, as we will discuss in the next section, the
effective action formalism allows for a very elegant
mathematical regularization procedure to be used.
Finally, the extension of the method from noninteracting
to interacting gases may be performed in a systematic
way.

Our attention will be on a system described by
a nonrelativistic Schro¨dinger fieldC with action func-
tional

S[C , C †] = Edt E
S

dsx H i
2

(C †Ċ– Ċ†C )

–
1

2m
uD Cu2 – U1(x )uC u2J . (1)

(We have adopted units for which" = 1.) HereS repre-
sents the spatial configuration space. It can be any
Riemannian manifold, with or without boundary;
however, as our applications will be confined to flat
Euclidean space5 D, S may be thought of as a finite box
in 5 D with periodic boundary conditions imposed on

the sides of the box. The infinite box limit will be
understood. dsx represents the invariant volume element
on S , which forS = 5 D is simply given by dsx = dDx.
D is the dimension of the space which we keep arbitrary.
U1(x ) represents any potential, which is assumed to be
time independent.D = =–ieA is the gauge covariant
derivative, withA the vector potential describing any
background electromagnetic field which might be
present. We adopt the gauge choice

A0 = 0, = ? A = 0 . (2)

It is possible to add a self-interaction term for the
Schrödinger field to Eq. (1), or generalize in other ways
by considering a number of different fields. The general
formalism of this subsection does not depend in any
significant way on the precise form of the action Eq. (1).

In addition to the action describing the Schro¨dinger
field, we must include the action functional for any
background gravitational or electromagnetic fields
which are present. In this review we will only consider
the case of time independent background magnetic
fields. The action for the magnetic field will be taken as

Sem = Edt E
S

dsx H1
4

Fij F ij – J i
extAiJ . (3)

HereA i are the components ofA , andFij = =iAj–=jAi

is the field strength tensor.J i
ext represents the compo-

nents of the currentJ i
ext responsible for setting up the

background magnetic field. If we haveD = 3, then the
magnetic field vectorB with componentsBi may be
defined byFij = e ijkBk, where e ijk is the antisymmetric
Levi-Civita tensor. However if we keep the spatial di-
mensionD general, the magnetic field is not described
by a vector and we must deal with the antisymmetric
tensorFij .

The Schro¨dinger field action Eq. (1) is invariant under
the local gauge transformation

C (t , x ) → eieu(x)C (t , x ) , (4)

A (x ) → A (x ) + =u (x ) , (5)

whereu (x ) is an arbitrary function of the spatial coordi-
natesx on S . Associated with any local gauge symme-
try is a conserved current (defined via Noether’s theo-
rem). In the case of Eqs. (1), (4), (5), the conserved
current is

J =
ie
2m

(=C † C –C †=C )–
e2

m
A uC u2 . (6)
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The conserved charge associated with this current is

Q = eE
S

dsx uC u2 . (7)

Apart from a factor ofe, Eqs. (6) and (7) may be seen
to be the probability current, and probability of wave
mechanics. Provided that we restrict the background
electromagnetic field to sufficiently small values to
prohibit pair production, we will have a conserved parti-
cle number

N = Q /e= E
S

dsx uC u2 . (8)

In the case of neutral systems, such as atoms confined
by a magnetic trap, it is the number of particles which
is conserved. We will therefore considerN, rather than
Q, to be conserved in what follows.

The thermodynamics is described by the grand parti-
tion function] . In order to incorporate the conserved
particle numberN it is customary to introduce a
Lagrange multiplierm called the chemical potential.
Then we may write

] = tr exp(–b (Ĥ – mN̂ )) . (9)

Here Ĥ is the Hamiltonian operator for the theory Eq.
(1), andN̂ is the number operator which is obtained from
Eq. (1) by regardingC andC † as field operators.

We will use the path integral method [12,13] to com-
pute] . To do this it is easiest if we adopt the imaginary
time formalism, where the path integral extends over all
fields which are periodic in imaginary time with period
b = 1/(kT). The grand partition function may be ex-
pressed as

] = E [dC † dC ]e–S̃ , (10)

where

S
,

= Sem+Eb

0

dt E
S

dsx H1
2

(C †Ċ– Ċ†C )

+
1

2m
uD Cu2 – m uC u2 + U1(x )uC u2

+ J †
sC + C †JsJ (11)

is obtained from Eq. (1) by performing the Wick
rotation t → –it to imaginary time, and including the
conserved particle number Eq. (8) with the Lagrange
multiplier m . A Schwinger [14] sourceJs and its com-
plex conjugateJ †

s have been introduced in order to

define the effective action in a way we will describe
later. These sources are also useful for obtaining the
Green functions of the theory. The periodic boundary
conditions imposed on the fields in the path integral
ensure that the Green functions obey the usual boundary
conditions for finite temperature field theory. (See Ref.
[15] for example.)

It is important to keep in mind what is being held
fixed when the path integral Eq. (10) is performed. The
path integral is computed with the temperatureT, vol-
ume and metric onS , chemical potentialm , background
gauge fieldA , and Schwinger sourcesJs and J †

s all
regarded as fixed. By performing Legendre transforma-
tions on the appropriate variables, it is possible to obtain
other functionals which hold different variables fixed. In
place of the chemical potentialm , we wish to keep the
particle number fixed. In place of the Schwinger
sourcesJs andJ †

s , it proves advantageous to introduce
background fieldsC̄ and C̄ †. Because we will only
consider the transformation from (m , Js J †

s ) to
(N, C̄, C̄†) we will not indicate the functional depen-
dence on any other variables which the partition func-
tion depends on.

We will define

W[m , Js J †
s ] = –ln ] [m , Js J †

s ] . (12)

In interacting quantum field theoryW is the generator
of connected Green functions. We will eliminate the
dependence on the Schwinger sourcesJs andJ †

s by
defining

C̄=
dW
dJ †

s

)
m,J s

, (13)

C̄ † =
dW
dJs

)
m,J †

s
, (14)

and then defining the Legendre transform

G [m ,C̄,C̄ †]= W[m ,JsJ †
s ]–Eb

0

dtE
S

dsx (J †
sC̄+C̄ †Js) .

(15)

G [m ,C̄,C̄ †] is called the effective action. In interacting
quantum field theoryG is the generator of one-particle
irreducible Green functions [16]. It is important to
realize that whenG is defined in this conventional way,
it corresponds to a fixed chemical potential rather than
a fixed particle number.
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The thermodynamical quantities might all be expressed
in terms of the effective action. We are not going to
present all of them but only the particle number,

N = kN̂ l =
1
]

tr[N̂ e–b(H
ˆ

–mN
ˆ

)]

= –
1
b

­
­m

W)
m,J †

s
, (16)

which is immediately seen to have the form

N = –
1
b

­G
­m

)
C
¯
,C

¯ †
. (17)

Furthermore, in the given formulation it can be shown
[17], that in thermal equilibriumG [m ,C̄,C̄ †] should be
a minimum. In particular

dG

dC̄ )
m,C̄ †

= 0 =
dG

dC̄ † )
m,C̄

. (18)

To summarize this section, if we have an expression for
the effective actionG , then the effective field equations
which determine the background field follow from
Eq. (18). The total number of particles may be com-
puted from Eq. (17). Although there may be easier ways
of obtaining the basic quantities of physical interest in
the case of free quantum field theory, the effective action
formalism has a systematic expansion which can be used
for interacting field theories [16]. In the next section we
will discuss a practical way for obtaining the effective
action.

3. The Generalizedz -Function

The theory described by the action Eq. (11), which
does not involve any self-interactions, is the simplest to
deal with because the path integral Eq. (10) defining]
may be done exactly, since the integrand is just a
gaussian. As a result, the effective action is found to be

G = Sem+Eb

0

dt E
S

dsx C̄†F ­
­t

– m –

1
2m

D 2 + U1(x )GC̄+
,
G , (19)

where

,
G = ln det, F ­

­t
– m –

1
2m

D 2 + U1(x )G . (20)

The first two terms in Eq. (19) may be recognized as
the classical action for the background fieldC̄ with no
Schwinger source terms. The last term ofG , which we
have written as

,
G , contains the effects due to the quan-

tum fluctuationsC ' aroundC̄ , C = C̄+C ' .
We can now try to use our expression forG . The first

problem we encounter is that we must obtain a more
explicit result for

,
G by evaluating the determinant of a

differential operator. The most elegant method for doing
this makes use of generalizedz -functions [18,19], and is
motivated by analogy with the determinant of a matrix.
If M is any Hermitian matrix, we would define detM to
be the product of all of its eigenvalues. Ifmj where
j = 1, . . . ,n , are the eigenvalues, then

ln det (,M ) = ln Pn

j = 1

(,mj ) = On

j = 1

ln (,mj ) . (21)

Suppose that we define a functionz (s) by

z (s) = On

j = 1

(mj )–s . (22)

By analogy with the Riemannz -function, which is

zR(s) = S
`

n = 1
n –s for R (s) > 1, the function defined in

Eq. (22) is called a generalizedz -function. A simple
computation shows that

z (0) = n , z' (0) = –On

j = 1

ln mj . (23)

We can therefore write Eq. (21) in the form

ln det (,M ) = –z' (0) + z (0) ln , . (24)

While this does not offer any practical advantages for
ordinary finite dimensional matrices, it does suggest a
possible way to define ln det(,M ) whenM is a differ-
ential operator: namely, set up the eigenvalue problem
for the operator, work out the eigenvalues, and define a
generalizedz -function as in Eq. (22). Because the
eigenvalue spectrum of a differential operator such as
that occurring in Eq. (20) is not bounded, in general the
sum over all eigenvalues used to definez (s) will diverge
unless we restricts to some region of the complex plane.
This is the same as occurs for the sum used to define the

Riemann z -function zR(s) = S
`

n = 1
n –s which only con-

verges forR (s) > 1; however, the Riemannz -function
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may be defined by analytic continuation throughout the
entire complexs-plane. (See Ref. [20] for example.) For
the generalizedz -function we can try to definez (0) and
z' (0) by analytic continuation from the region of the
complex plane where the sum over all eigenvalues con-
verges.

For the operator in Eq. (20) we can set up the eigen-
value problem as follows. Letfn (x ) satisfy

F–
1

2m
D 2 + U1(x )G fn (x ) = En fn (x ) . (25)

Assume thatU1(x ) $ 0 so thatEn $ 0. The eigenvalues
denoted byEn in Eq. (25) may be recognized as the
energy levels for the time independent Schro¨dinger
equation. We will assume that {fn (x )} forms a complete
set of solutions to Eq. (25) which satisfies the boundary
conditions relevant to the problem, and which are nor-
malized by

E
S

dsx f *
n (x )fn' (x ) = dn n' . (26)

Because the integration over the fieldsC involved only
those fields which were periodic in imaginary time with
periodb , the eigenfunctions of the differential operator
­
­t

–m –
1

2m
D 2+U1(x ) take the formfn (x )exp(2pjit/ b ),

and the eigenvalues of this differential operator are

l jn =
2pij

b
– m + En , (27)

wherej = 0, 6 1, 6 2, . . .. The generalizedz -function
is defined to be

z (s) = O`
j = – `

O
n

(l jn )–s (28)

in direct analogy with Eq. (22). We will define

,
G = –z' (0) + z (0) ln , (29)

again by analogy with Eq. (24).
Before proceeding, it is helpful to show how this

definition of the effective action makes contact with the
standard thermodynamic results. The usual way of
studying a system involves calculating the thermody-
namic potentialV defined by [21]

bV = O
n

lnF1–e–b(En –m)G . (30)

Suppose that we define

F (s, a) = O`
j = – `

(i vj + a)–s (31)

wherev j = 2pj/b. It was shown in Ref. [22] that

F (s, a) = a–s +
b s

G (s) O
`

n = 1

e–nba

n1–s
. (32)

Using this basic result, thez -function Eq. (28) may be
written as

z (s) = O
n

(En –m )–s + zT (s) , (33)

where

zT (s) =
b s

G (s) On
O`
k = 1

e–kb(En –m)

k1–s
. (34)

If we expand zT (s) abouts = 0 we see thatzT (0) = 0
and

z 'T (0) = O
n
O`
k = 1

e–kb(En –m)

k
= – O

n

lnF1–e–b(En –m)G .

(35)

(This is noted easily from using the expansion
1/G (s) = + gs2 + . . . valid nears = 0.) As T → 0 we
see thatz 'T (0) → 0. Only the first term in Eq. (33),
which has no explicit temperature dependence, will con-
tribute to

,
G at T = 0. This contribution is associated

with the zero-point energy which arises in the path
integral approach [23], and disappears if we normal
order the operatorĤ – mN̂. In the z-function method
this normal ordering is accomplished by taking
z (s) = zT (s). Then Eq. (29) gives

,
G = –z 'T (0) = bV , (36)

from Eqs. (30) and (35).
To summarize this section, we have shown how the

effective action which governs the quantum theory may
be computed for the simple Schro¨dinger field theory
described by the classical action functional Eq. (1). The
result consists of a sum of two terms; a classical part
involving the background fieldC̄ , and a quantum part
given formally by Eq. (20). The formal result for

,
G was

given meaning by the introduction of a generalizedz -
function, and we showed how the definition of

,
G in Eq.

(29) was equivalent to the usual thermodynamic poten-
tial. In the next section we will show how all of this
formalism may be used to discuss BEC.
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4. BEC as Symmetry Breaking

For the free boson gas in three spatial dimensions,
BEC can be understood as a phase transition. At the
critical temperature characterizing the transition, the
specific heat has a maximum, and the derivative of the
specific heat is discontinuous. (See Refs. [24,21,25,26]
for example.) In quantum field theory this phase transi-
tion can be interpreted as symmetry breaking where the
symmetry which is broken is theU (1) gauge symmetry
associated with the change in phase of the wave func-
tion. For charged particles coupled to electromagnetism,
this symmetry is a local gauge symmetry; for uncharged
particles the symmetry is a rigid, or global, symmetry.
This was discussed in the context of relativistic field
theory in cases where the background field was constant
[28,27], as well as the more general case where the
background field is not necessarily constant [29,30].
Nonconstant background fields are essential in cases
where there is an applied magnetic field, or where there
is a potential termU1(x ).

The formalism set up in Secs. 2 and 3 is applicable
whether the background fieldC̄ is constant or not. The
equations of motion forC̄ and C̄† were given in
Eq. (18). Using the result for the effective action
obtained in Eq. (19) we find

F–
1

2m
D 2 + U1(x )–mGC̄ = 0 , (37)

along with the complex conjugate equation. We have
used the fact that for static potentials and electro-
magnetic fields the background field should be indepen-
dent of time: C̄ = C̄ (x ). The simplicity of this result is
also a consequence of our assumption that the theory
does not contain any self-interactions; this assumption
results in

,
G containing no explicit dependence onC̄.

Symmetry breaking is associated with a nonzero value
for C̄. We may expandC̄ in terms of the complete set
of solutions {fn (x )} to Eq. (25):

C̄ (x ) = O
n

Cnfn (x ) , (38)

whereCn are the expansion coefficients which must be
determined. Substitution of Eq. (38) into Eq. (37), and
using Eq. (25), results in

O
n

Cn (En – m )fn (x ) = 0 . (39)

Because the eigenfunctions obey the orthonormality
condition Eq. (26), if we multiply both sides of Eq. (39)
by f *

n (x ) and integrate overx we have

Cn (En – m ) = 0 . (40)

In order that the thermodynamic potential Eq. (30)
makes sense, we must have

m # E0 (41)

where E0 is the lowest energy level. In terms of the
generalizedz -function this condition ensures that the
effective action, or Helmholtz free energy, is real.
It also ensures that the particle occupation numbers
1/(e–b(En –m) – 1) are all non-negative. It then follows
from Eq. (40) that ifm < E0 # En, the only solution to
Eq. (40) is for all of the expansion coefficientsCn to
vanish. In this case Eq. (38) becomes simplyC̄ (x ) = 0,
and there is no symmetry breaking. However, if it is
possible for the chemical potentialm to reach the critical
valuemc defined by

mc = E0 , (42)

thenCn in Eq. (40) will be undetermined. In this case all
of the Cn with n Þ 0 will vanish, and the background
field is given by

C̄ (x ) = C0f0(x ) , (43)

where f0(x ) is the eigenfunction corresponding to the
ground state. Ifmc = E0 is possible to attain, the symme-
try is broken.

We can now make a direct link between symmetry
breaking and BEC. The particle number was given in
terms of the effective action by Eq. (17). If we use the
result Eq. (19) forG , we may write

N = N0 + N1 (44)

where

N0 = –
1
b

­
­m HSem+Eb

0

dt E
S

dsx C̄†F ­
­t

– m

–
1

2m
D 2 + U1(x )GC̄J

= E
S

dsx C̄†C̄

= uC0u2 , (45)

and

N1 = –
1
b

­
,
G

­m
. (46)
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BecauseC0 is associated with the ground state eigen-
function in Eq. (43), it is natural to try and associateN0

with the number of particles in the ground state, andN1

with the number of particles in excited states. If we use
Eqs. (30) and (36) we have

N1 = O
n
Fe–b(En –m)–1G–1

. (47)

In the next section we will see how a general criterion
can be obtained which allows us to see if it is ever
possible form to reach the critical valuemc = E0, and
hence to decide if symmetry breaking can occur. For the
remainder of the present section we will look at two
simple applications of the results we have obtained so
far.

4.1 Free Boson Gas

The first example we will discuss is the free boson gas
in D spatial dimensions. The special case ofD = 3 is
treated in Refs. [24,21,25,26] using conventional statisti-
cal mechanical methods. For the case of generalD see
also Ref. [31]. We setA = 0 andU1(x ) = 0. We takeS
to be a box of dimensionsL1, . . . ,LD , and will impose
periodic boundary conditions on the field with the
infinite box limit taken at the end. Equation (25) simpli-
fies to

–
1

2m
=2 fn(x ) = Enfn (x ) , (48)

here, and we have

En =
1

2m OD
j = 1

S2pnj

Lj
D2

(49)

wherenj = 0, 61, 62, . . .. Thelabeln on En stands for
the set (n1, . . . , nD ) characterizing the energy levels.
The lowest energy level isE0 = 0 here, so that the critical
value found for the chemical potential ismc = 0. We
therefore requirem # 0. The eigenfunctionf0(x ) corre-
sponding toE0 = 0 is

f0(x ) = V–1/2 (50)

where V = L1 . . . LD is the volume of the box. (The
factor of V–1/2 comes from the normalization condition
Eq. (26)).

The generalizedz -function is [see Eqs. (27) and (28)]

z (s) =

O`
j =–`

O`
n 1 = – `

? ? ? O`
nD = – `

Fiv j – m +
1

2m OD
i = 1

S2pni

Li
D2G–s

(51)

wherev j = 2pj/b . If we are interested in the infinite
volume limit we may takeL1, . . . , LD to be very large,
and replace the sums overn1, . . . , nD with integrals.
These integrals may be performed with the result

z (s) = V S m
2pD

D/2 G (s–D/ 2)
G (s)

F (s–D/2, –m ) (52)

whereF (s,a) was defined in Eqs. (31) and (32). Defin-
ing zT (s) as in Eq. (33), and making use of Eq. (36) we
find (with T = b –1)

,
G = –V SmT

2pD
D/2 O`

n = 1

enbm

n1+D/2
. (53)

From Eq. (46) we find

N1 = V SmT
2pD

D/2 O`
n = 1

enbm

nD/2
. (54)

If D > 2 the sum in Eq. (54) is bounded for allm # 0.
For largeT we haveN1 , TD/2. This means that for large
enough temperatures we can put any number of parti-
cles into excited states. In other words, for any value of
N, no matter how large, we can always solveN = N1

whereN1 is given by Eq. (54) form with m < 0, provided
that the temperature is large enough. From our discus-
sion above this means thatC0 = 0, resulting inN0 = 0
andC̄ = 0 so that there is no symmetry breaking.

Now consider what happens asT decreases. As this
happens,m must increase towardsm = 0 if we are to
satisfyN = N1 with N1 given by Eq. (54). Eventually a
critical temperatureTc is reached at whichm = 0. This
temperature is defined by

N = V SmTc

2p DD/2

zR(D/ 2) (55)

wherezR is the Riemannz -function. If r = N/V is the
density of particles, we have

Tc =
2p
m F r

zR(D/ 2)G
2/D

. (56)

For T < Tc it is not possible form to decrease beyond
m = 0, so it remains frozen at this critical value. From
Eqs. (54) and (55) we have

N1 = N ST
Tc
DD/2

. (57)
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It is therefore not possible to accommodate all of the
particles in the excited states. BecauseN0 = N–N1, we
have

N0 = N F1–ST
Tc
DD/2G (58)

as the number of particles in the ground state. Using Eq.
(45) we find

C0 = N 1/2 F1–ST
Tc
DD/2G1/2

, (59)

and from Eqs. (43) and (50) we have forT < Tc

C̄ = r 1/2 F1–ST
Tc
DD/2G1/2

(60)

For the special caseD = 3, the results Eqs. (56) - (58)
reproduce the standard expressions. The generalization
to arbitraryD was given by May [32].

If D # 2 the situation is entirely different than the one
we have just described. If we try to letm → 0 in
Eq. (54), it is observed that the sum is not bounded. This
means that we may put any number of particles into the
excited states. Equivalently, forD # 2 we can always
solveN = N1 with N1 given in Eq. (54) form with m < 0
for any temperature. It is not possible form to reach the
critical valuem = 0 for anyT > 0 with a finite number
density of particles. This is easy to see whenD = 2
because the sum in Eq. (54) may be easily performed to
give

N1 = –V SmT
2pDln[1–ebm] . (61)

SettingN1 = N = rV, and solving Eq. (61) form gives

m = T ln [1–e–
2pr
mT] . (62)

For smallT this results in

m . e–
2pr
mT . (63)

There is no BEC, in the same sense as BEC for theD = 3
gas, whenD = 2. This agrees with the analysis of
Refs. [32,33]. ForD = 1 it is not possible to perform the
sum in Eq. (54) in terms of simple functions form < 0;
however, since the sum is not finite form = 0, BEC is not
possible in this case.

4.2 BEC in a Magnetic Field

We will now consider the case where there is a
constant applied magnetic field. We will allow the
spatial dimensionD to be general, but will only consider
the case of a magnetic field with a single nonzero com-
ponent. (The general case is more complicated and is
discussed in Ref. [17].) If we choose the magnetic field
to point in thez-direction, a suitable gauge choice for
the vector potential is

A = (–By, 0, . . . , 0) (64)

whereB is the strength of the magnetic field. Eq. (25)
reads

F–
1

2m S ­
­x

+ ieByD2

–
1

2m OD
j = 2

­2

­(x j)2G fn (x ) = En fn (x ) .
(65)

This equation is equivalent to that for a simple harmonic
oscillator, and the energy levels are easily found to be
[34]

En = (2j + 1)
eB
2m

+
1

2m OD
i = 3

S2pni

Li
D2

(66)

where j = 0, 1, 2, . . . ; ni = 0, 61, 62, . . . ; and we
have again imposed periodic boundary conditions. The
eigenvalues Eq. (66) are degenerate with degeneracy
eBL1L2/(2p ). The smallest energy eigenvalue is seen to
be

E0 =
eB
2m

(67)

and the critical value of the chemical potential is

mc =
eB
2m

. (68)

The generalizedz -function defined in Eq. (34) is

zT (s) =
eB
2p

L1L2
T–s

G (s)

O`
j = 0

O`
n 3 = – `

? ? ? O`
nD = – `

O`
k = 1

e–kb(En –m)

k1–s
. (69)

Taking the large box limit, and replacing the sums over
n3, . . . ,nD with integrals (which just involves a product
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of gaussians), and noting that the sum overj is just a
geometric series, results in

zT (s) = V SeB
4pD SmT

2pD
D/2–1

T–s

G (s) O
`

n = 1

e–nbm

nD/2–s sinhS neB
2mTD

. (70)

From Eq. (36) we find

,
G = –z 'T (0) = –V SeB

4pD SmT
2pD

D/2–1

O`
n = 1

e–nbm

nD/2 sinhS neB
2mTD

. (71)

Using this result in Eq. (46) leads to

N1 = V SeB
2pD SmT

2pD
D/2–1

O`
n = 1

e–nb(m–mc)

nD/2–1 F1–e–
neB
mTG–1

(72)

with mc given by Eq. (68).
We can now analyze whether or not BEC occurs in

the same way as for the free boson gas in the previous
example. First, if we use the inequality (1–e–x)–1 > 1,
valid for all x > 0, we see that

N1 > V SeB
2pD SmT

2pD
D/2–1 O`

n = 1

e–nb(m–mc)

nD/2–1
. (73)

From our earlier discussion we know that BEC is only
possible ifN1 remains bounded asm → mc. Because the
sum in Eq. (73) is not bounded asm → mc for D /2–
1 # 1, this inequality shows that BEC will not occur for
D # 4. This includes the physically interesting case of
D = 3, as shown originally by Schafroth [35]. The
absence of BEC forD # 4 was given originally by May
[36].

Of course one must be precise about what is meant by
the absence of BEC here. What we have shown is that if
BEC is interpreted to be synonymous with symmetry
breaking and a phase transition in the same way as BEC
occurs for the free boson gas in three dimensions, then
it does not occur. On the other hand, if one interprets
BEC as a sudden build-up of particles in the ground

state, then it may still occur even in the absence of a
phase transition. It is important to keep the definition
which is chosen for BEC firmly in mind. We will return
to this matter in Sec. 6. Finally, it can be shown that even
though there is no phase transition, the charged Bose
gas still exhibits a Meissner-Ochsenfeld effect [35].
Although we have shown that there is no phase transi-
tion if D # 4, we have not shown that there is one for
D > 4. To do this we must show thatN1 remains
bounded asm → mc. If we use the inequality

S1–e–
neB
mTD–1

# S1–e–
eB
mTD–1

(74)

valid for all n $ 1, then we see that

N1 < V SeB
2pD SmT

2pD
D/2–1

(1–e–
eB
mT )–1 O`

n = 1

e–nb(m–mc)

nD/2–1
.

(75)

For D $ 5, the sum on the RHS of this inequality
remains bounded asm → mc. As in the example dis-
cussed in Sec. 4.1, this means that it is not possible to
place an arbitrary number of particles in excited states
if T < Tc whereTc is the solution to

N = SVeB
mTc

D SmTc

2p DD/2 O`
n = 1

n 1–D/2 S1–e–
neB
mTc D–1

.

(76)

Unlike the case of the free boson gas, it is not possible
to obtain an explicit expression forTc in terms of the
particle number, although approximate expressions can
be obtained for strong and weak fields [17].

To summarize this section, we have shown the con-
nection between BEC and symmetry breaking. The gen-
eral results were illustrated with two examples. The first
was the familiar case of a gas of free bosons. The second
was a gas of charged bosons in a constant magnetic
field. In both cases we saw how BEC interpreted as a
phase transition corresponding to a breaking of theU (1)
gauge symmetry could occur in some cases but was
inhibited in others. The crucial deciding factor was the
number of spatial dimensions. In the next section we
will discuss a general criterion for deciding if BEC as
symmetry breaking can occur.

5. General Criterion for BEC as
Symmetry Breaking

In the last section we saw how the free boson gas
did not undergo BEC, at least in the sense of a phase
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transition, if the spatial dimensionD # 2. If a constant
magnetic field was applied to a charged gas of bosons,
no BEC occurs ifD # 4. In this section we will discuss
the underlying features present in these two examples
which allows a unified treatment of these two cases, and
in addition generalizes the analysis to a wide class of
systems. We follow Refs. [37,38].

The key feature present in both examples given in the
last section is that the energy levels may contain a dis-
crete part as well as a continuous part. For the free Bose
gas inD dimensions we had Eq. (49). In the infinite box
limit n1, . . . ,nD could be treated as continuous. There-
foreEnwas labelled byD continuous quantum numbers.
BEC was found to occur forD $ 3. For the charged
Bose gas in a constant magnetic field the energy levels
were given by Eq. (66). This time, again in the large box
limit with n3, . . . ,nD treated as continuous, the energy
levels involved (D–2) continuous quantum numbers, and
one discrete label corresponding to the degenerate
Landau levels. This time BEC occurs ifD $ 5, which
can be suggestively written involving the number of
continuous quantum numbers as (D–2) $ 3. The
feature common to both examples given in Sec. 4 is that
the dimension of the space associated with the continu-
ous labels had to be at least 3 for BEC to occur in the
sense of a phase transition and symmetry breaking.

Suppose that we consider any system for which the
energy levels can be expressed as the sum of a discrete
part which we will denote byEd

p, and a continuous part
which we deal with by box normalization with the
infinite box limit taken at the end as in the examples
presented in the last section. We will assume that the box
has dimensionq. We may write

En = E d
p +

1
2m Oq

i = 1
S2pni

Li
D2

, (77)

whereL1, . . . ,Lq are the sides of the box. Herep is just
a set of labels for the discrete part of the spectrum. With
the large box limit taken, the labelsn1, . . . ,nq may be
regarded as continuous. The generalizedz -function (34)
reads

zT (s) =
b s

G (s) Op
EdqnO`

k = 1

e–kb(En –m)

k1–s

=
Vq

(4p )q/2

Tq/2–s

G (s) Op
O`
k = 1

e–kb(Ed
p–m)

k1+q/2–s
(78)

after the integration over the continuous part of the
energy spectrum has been performed.

We found that BEC with the associated phase transi-
tion only occurs if it is possible form to reach the critical

valuemc determined by the lowest energy level. (See the
discussion around Eq. (42).) In the case of Eq. (77) we
havemc = E0 = Ed

0. Because the lowest mode is playing
such a crucial role, it is advantageous to separate it off
and define

zT (s) = z (0)
T (s) + z (Þ0)

T (s) (79)

where

z (0)
T (s) =

Vqd0

(4p )q/2

Tq/2–s

G (s) O
`

k = 1

e–kb(mc–m)

k1+q/2–s
(80)

represents the contribution of the lowest mode to the
z -function (with d0 the degeneracy), andz (Þ0)

T (s) is
given by Eq. (78) but with the sum overp restricted to
the nonzero modes only. We havezT (0) = 0 as before,
and

z (0)
T ' (0) =

Vqd0

(4p )q/2
Tq/2 O`

k = 1

e–kb(mc–m)

k1+q/2
, (81)

z (Þ0)
T ' (0) =

Vq

(4p )q/2
Tq/2 O

pÞ0
O`
k = 1

e–kb(Ed
p–m)

k1+q/2
. (82)

These expressions may now be used to find the effective
action

,
G or the thermodynamic potentialV given in

(36).
The advantage of separating off the lowest mode as

we have done is that the argument of the exponential in
Eq. (82) will remain negative even ifm = mc. The conse-
quence of this is that the sums in Eq. (82) will converge.
This remains true even if we differentiate Eq. (82) with
respect tom to find the contribution of the excited states
to the particle number given in terms of

,
G by Eq. (46).

Therefore, whether or not a phase transition occurs rep-
resenting BEC is determined by the behaviour ofz (0)(s).
If we drop terms which remain finite asm → mc we
have

N (m → mc) . T
­

­m
z (0)

T ' (0)

. Vqd0 S T
4pD

q/2 O`
k = 1

e–kb(mc–m)

kq/2
(83)

If the sum in Eq. (83) remains finite asm → mc, then
the number of particles which can exist in excited states
is bounded, and we get BEC and a phase transition with
symmetry breaking. Clearly this can occur only for
q > 2. If q # 2, we can conclude that BEC does not
occur, at least in the sense of a phase transition.
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We can obtain much more detailed information on
exactly howN diverges asm → mc. Forq = 0 the sum in
Eq. (83) is just a geometric series, and forq = 2 the sum
is just the expansion of the naturallogarithm. Forq = 1
the sum may be evaluated as described by Robinson
[39]. We therefore find

N(m → mc) . Td0

mc–m
(for q = 0); (84)

N(m → mc) . 1
2

TV1d0 (mc–m )–1/2 (for q = 1);

(85)

N(m → mc) . 1
2

TV2d0 ln S T
mc–mD (for q = 2).

(86)

Only that part ofN which diverges asm → mc has been
shown. The ground state when there is symmetry break-
ing can be determined in the way described in Sec. 4.

In this section we have shown how the occurrence of
BEC is linked to the numberq which characterizes the
continuous part of the energy spectrum. For BEC to
occur we requireq $ 3. For the free boson gas inD
dimensions, sinceq = D , this recovers our earlier result
in Sec. 4.1. For the charged boson gas in a constant
magnetic field, we haveq = D– 2, again recovering our
earlier result in Sec. 4.2. The physical meaning ofq is
that it is the number of spatial dimensions for which the
particles are effectively free to move. For the boson gas
in a magnetic field in thez direction, classically the
motion in thex–y plane is restricted to circular orbits,
and it is only in thez-direction that the motion is free.
A variety of other examples, often established by long
and detailed calculations all emerge from this relatively
simple analysis [38]. A similar approach may be used
for relativistic gases [37,38].

6. BEC in Harmonic Oscillator
Confining Potentials

We showed in the last section how BEC interpreted as
symmetry breaking could occur only if the continuous
part of the energy spectrum involved at least three con-
tinuous labels (q $ 3). A special consequence of this is
that if the energy spectrum is entirely discrete, corre-
sponding toq = 0, then BEC as symmetry breaking will
never occur. In other words, for a system characterized
by a discrete set of energy levels, if BEC does occur it
cannot be interpreted as a phase transition analogously
to the free boson gas in three dimensions. However, as
we have discussed recently [10], it is still possible to
have BEC in the sense that there is a critical temperature
characterizing the system at which the number of parti-

cles in the ground state has a sudden and dramatic
increase (see also Ref. [40]). This is borne out in the
experiments on alkali gases at microkelvin temperatures
[7-9].

The simple model we will discuss here is a system of
uncharged spin-0 bosons in a harmonic oscillator con-
fining potential. This is of phenomenological interest
since it represents a model for the magnetic traps used
in experiments [7-9]. We will use the action Eq. (1) with
A = 0, andU1(x ) the harmonic oscillator potential

U1(x ) =
1
2

m(v 2
1x 2 + v 2

2y 2 + v 2
3z2) . (87)

(We will only consider 3 spatial dimensions here
although the analysis may be generalized in an obvious
way to any number of dimensions.) The energy levels
are simply

En = (n1 +
1
2

)"v1 + (n2 +
1
2

)"v2 + (n3 +
1
2

)"v3 , (88)

wheren = (n1, n2, n3,) with ni = 0, 1, 2, . . . and we have
reinstated the explicit" dependence. The lowest energy
level, which determines the critical value of the chemi-
cal potential as in Eq. (42), is

mc = E0 =
1
2

" (v1 + v2 + v3) . (89)

The total number of particles is given by the usual Bose
distribution function

N = O`
n 1 = 0

O`
n 2 = 0

O`
n 3 = 0

Heb(En –m) – 1J–1

. (90)

Although it is possible to proceed with the anisotropic
case, our results are most easily illustrated for the
isotropic harmonic oscillator withv1 = v2 = v3 = v .
(The general anisotropic case is dealt with in Ref. [11].)
For the isotropic oscillator, the triple sum in Eq. (90)
becomes the simpler result

N = O`
l = 0

1
2

(l + 1)(l + 2) He(l + e)x – 1J–1

(91)

where we have defined the dimensionless variablesx
ande by

x =
"v
kT

, (92)

m = "v (
3
2

–e ) . (93)
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Sincemc = 3
2"v , a phase transition with the associated

symmetry breaking occurs only if it is possible form to
reach the valuee = 0. Our general analysis of the last
section shows that this can never happen; however, for
this particular example we can show this another way. If
we expand

He(l + e)x – 1J–1

= O`
n = 1

e–n(l + e)x , (94)

then the sum overl in Eq. (91) is easily done with the
result

N = O`
n = 1

e–nex (1–e–nx)–3 . (95)

For x > 0 we have (1–e–nx)–3 > 1, so that

N > O`
n = 1

e–nex = (eex–1)–1 . (96)

As we lete → 0, which should be the signature for BEC,
it is seen thatN increases without bound. This is quite
different from the free boson gas in three dimensions
where the number of particles is bounded. This means
that regardless of the temperature, it is always possible
to solve Eq. (95), or equivalently Eq. (91), fore given
any finite N, with e > 0. It is never possible for this
system to attain the limite = 0 for anyT > 0 and any
finite number of particles. The fact that a Bose gas in a
harmonic oscillator potential does not condense in the
same way as a free boson gas was noted originally in
Ref. [41].

This points out a fundamental difference between our
analysis and other treatments [42,40,43]. We have
treated the energy spectrum for the harmonic oscillator
as discrete with the ensuing sums. The physically inter-
esting case occurs whenv /2p , 100 Hz, andT , m K.
In this case,x as defined in Eq. (92) is small. A plausible
approach is to argue that forx << 1, it is justified to
replace a sum such as Eq. (95) with an integral. This is
tantamount to regarding the energy levels as continuous
rather than discrete, and the analysis of Sec. 5 shows that
the underlying physics is crucially dependent on the
numberq of continuous dimensions in the energy spec-
trum. Any approximation which effectively changes
q from 0 to 3 is therefore suspect.

If the correct behaviour for smallx is desired, the only
safe approach is to deal with the exact sum Eq. (95). The
result in Eq. (95) does not converge very rapidly for
small x, nor does it display in any transparent way the
behaviour at smallx. However, it is possible to convert
Eq. (95) into a contour integral (which is an exact result,
not an approximation), and by deforming the contour

of integration in an appropriate way obtain at least an
asymptotic expansion for some appropriate range of the
parameters. The details of this procedure are described
in Ref. [11]. We will illustrate the general technique for
the number of particles as given in Eqs. (91) or (95).

The aim is to obtain an asymptotic expansion ofN
valid for smallx and smalle . We can do this by making
use of the Mellin-Barnes representation for the exponen-
tial:

e–n =
1

2pi E
c+i`

c–ì

daG (a )n –a (97)

valid for R (n ) > 0 andc [ 5 with c > 0. Equation (97)
is easily proven by closing the contour in the left hand of
the complex plane, enclosing the simple poles ofG (a )

at a = –n, n = 0, 1, 2, . . .with residue (–1)n

n !
. The

residue theorem immediately gives the Maclaurin series
for e–n. From Eqs. (91) and (94) we have

N = O`
n = 1

O`
l = 0

1
2

(l + 1)(l + 2)e–n(l + e)x

=
1

2pi O`
n = 1

O`
l = 0

1
2

(l + 1)(l + 2)

3 Ec+i`

c–ì

daG (a )n–ax–a(l + e )–a . (98)

The order of summation and integration may be inter-
changed provided that we deform the contour of integra-
tion first so thatc > 3. The sum overn can now be done
in terms of the Riemannz -function, and the sum overl
in terms of the generalized, or Hurwitz,z -function
zH (s, a) defined by Ref. [20]

zH (s, a) = O`
n = 0

(n + a)–s (99)

for R (s) > 1 and 0 <a # 1. (The Riemannz -function is
the special casezR (s) = zH (s, 1).) The sums in the orig-
inal expression for the particle number have now been
performed exactly with no approximations, and we
have obtained an integral representation for the particle
number:

N =
1

2pi E
c+i`

c–ì

daG (a )x–a zR (a )
1
2

{ zH (a –2,e )

+ (3–2e )zH (a –1,e ) + (1–e ) (2–e )zH (a , e )} .

(100)
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Closing the contour in the left half of the complex plane
and use of the residure theorem now leads to an asymp-
totic expansion ofN in powers ofx:

N .
zR (3)

x 3
+ S3

2
– eD zR (2)

x 2
+

1
ex

+ 2 Sln x
x D . (101)

It is possible to extend the range of validity of the expan-
sion to larger values ofe . This can be done by treating
the first (l = 0) term in Eq. (91) separately and applying
the contour integral procedure we have just described to
the remaining terms. The result is

N . 1
eex – 1

+
zR (3)

x 3
+ S3

2
– eD zR (2)

x 2
+ 2 Sln x

x D .

(102)

which is more accurate than Eq. (101) for largere .
Similar expansions may be obtained for other thermody-
namic functions [10,11]. For the internal energy we find

U
"v

=
3zR (4)

x 4
+ S9

2
– 3eD zR (3)

x 3
+

13zR (2)

4x 2

+
3

2ex
+ 2 S e

x2 ,
1
xD . (103)

For the specific heat we find

C/k=
12zR (4)

x 3
+

9zR (3)

x 2
+

2zR (2)

x
–

12ezR (3)

x 2

–
9e 2zR (3)2

x 4
–

18e 2zR (2)zR (3)
x 3

+
9e 4zR (2)zR (3)2

x 6 + 2 Sln x ,
e
xD .

(104)

These analytic results can be shown to be in excellent
agreement with numerical results obtained from an eval-
uation of the exact sums in the range in which they are
valid ( smallx and smalle ).

In a similar way we are able to treat the anisotropic
oscillator potential. Introducing the geometric mean
V = (v1v2v3)1/3 of the oscillator frequencies, we found
for the particle number

N. 1

e("be/3) (v1+v2+v3) – 1
+S kT

"VD
3

zR (3)+g S kT
"VD

2

zR (2),

(105)
with

g =
1
2

(v1v2v3)2/3 S 1
v1v2

+
1

v1v3
+

1
v2v3

D . (106)

Analogous results forU andC are given in [11].
Because there is no sharp phase transition, identi-

fying a critical temperature is problematical. One
approach which has been used in finite volume systems
[44,45] is to calculate the maximum of the specific heat,
and identify the temperature at which the maximum
occurs with the BEC temperature. It is very difficult to
obtain reliable analytic expressions for the specific heat
in the region of the maximum for this model. However
it is possible to compute the specific heat numerically,
and the result is shown in Fig. 1.

We have chosenv /2p = 416 Hz to be the geometric
mean of the frequencies in the sodium experiment [9].
The number of particlesN = 53105 is also taken from
the sodium experiment. The maximum in the specific
heat occurs forx . 0.0136, corresponding to a tempera-
ture ofT . 1.47m K. This is in remarkably good agree-
ment with the temperature of 2m K quoted in Ref. [9].

Another difference between our results and earlier
work [42,43] is that we find the specific heat to be
smooth and continuous at its maximum. A closeup of
the specific heat in a neighbourhood of its maximum is
shown in Fig. 2. The discontinuous behaviour found in
Refs. [42,43] is due to approximating sums with inte-
grals, which as stated earlier is not a reliable approxima-
tion.

That the specific heat is continuous has also been
realized by the authors of Ref. [40]. The question of
whether or not one can actually distinguish in an exper-
iment a drop as seen in Fig. 2 from a genuine disconti-
nuity has also been addressed there. They improved the
analysis of [42,43] by taking into account a suitable
density of states. In their procedure a parameter depend-
ing on the oscillator frequencies had to be determined
numerically. Our above described procedure gives the
complete analytical dependence, see Eq. (106).

Another possibility for obtaining an estimate of the
critical temperature for BEC consists of examining the
population of the ground state. The first term on the
RHS of Eq. (102) may be observed as the number of
particles in the ground state. (Putk = 0 in Eq. (91).) The
remaining terms then give the number of particles in
excited states. We could define the critical temperature
to be the temperature at which a specified fraction of the
total number of particles are in the ground state. If we
define

N0 = fN , (107)
where

N0 = (eex – 1)–1 , (108)

this fixese , and hence the chemical potential, in terms
of x andN by

ex = ln S1 +
1
fND . (109)
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For a large number of particles,e would be expected to
be small. If we use Eq. (102) we also have

(1–f )N . zR (3)x–3 +
3
2

zR (2)x–2 (110)

which gives a cubic equation forx. This may be solved
in a straightforward way. (A more accurate result may be
obtained by including more terms in the asymptotic

expansion [Eq. (102)] beyond those indicated [11]).
With N = 53105 we find x . 0.0136 for f = 1/100;
x . 0.014 for f = 1/10; x . 0.017 for f = 0.5; and
x . 0.0373 forf = 0.95. For the purpose of comparison,
we have computed the ground state population numeri-
cally. The result is shown in Fig. 3. The approximate
result for the number is in very good agreement with the
exact result.

Fig. 1. The specific heat in units ofk as a function ofx = "v /(kT). The total number of particles
is N = 53105 andv /2p = 416 Hz.

Fig. 2. The specific heat in units ofk as a function of 100x wherex = "v /(kT).
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We have worked out the maximum in the specific heat
for the two casesN = 23105 andN = 23104, and find
that it corresponds tox . 0.0185 andx . 0.0408,
respectively. Using the oscillator frequencies given in
Ref. [8] we find the temperature at which the specific
heat has a maximum isT . 380 nK, in good agreement
with the range of 100 nK to 400 nK for the experiment.
For the case of rubidium withN = 23104 we find
T . 71 nK if we use the oscillator frequencies of
Ref. [7]. If we use the frequencies given in Ref. [46] for
the strong trap we findT . 124 nK, again in close
agreement with the experiment. We can also compare
the results for the maximum in the specific heat to the
fraction in the ground state found from Eq. (110). For
the caseN = 23105, we find x . 0.0185 forf = 0.01;
x . 0.0191 for f = 0.1; x . 0.0233 for f = 0.5; and
x . 0.051 for f = 0.95. If we takeN = 23104 we find
x . 0.0404 for f = 0.01; x . 0.0417 for f = 0.1;
x . 0.051 forf = 0.5; andx . 0.114 forf = 0.95. In all
three cases, the maximum in the specific heat occurs
when only about 1 % of the particles are in the ground
state. The specific heat maximum is therefore a good
indicator of the onset of BEC.

For the case that BEC in the sense of a phase transi-
tion occurs, the critical temperature is the temperature at
which the ground state starts to become populated. (See
Eq. (58) for the free boson gas.) Because we have seen
that the specific heat maximum also corresponds to the
point at which the ground state population begins to
grow, we believe that this gives a good and reliable
indicator for the onset of BEC in neutral atoms trapped
by a confining potential.
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