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We consider the problem, arising in nuclear spectroscopy, of estimating peak areas in the presence of a
baseline of unknown shape. We analyze a procedure that chooses the baseline to be as smooth as is consistent
with the data and note that the estimates have a certain minimax optimality. Expressions are developed for the
systematic and random errors of the estimate, and some large sample approximations are derived. Procedures for
choosing a smoothing parameter are developed and illustrated by simulations.
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1. Introduction

The estimation of peak area in the presence of a baseline of unknown shape is a common problem in
nuclear and other spectroscopies. In this paper we analyze some of the properties of a generalization of a
procedure proposed by Currie [2]* and note that the procedure has a certain minimax optimality.

We first introduce the problem and some notation. We suppose that counts are accumulated in n channels
over a length of time T, and that the total number of counts has mean p = V7T, where v = mean counting
rate per unit time. We let y; denote the proportional count in the j channel, i.e. the total count in the j*
channel divided by p, and we assume that

Y, =By, + B +te,fj=1...,n

Here, I' = (y,, . . . , ¥.)7 is a vector representing a peak shape, which is assumed known (I' might be
known from theory or from measurement of pure specimens, for example), B, is its unknown amplitude, which
we wish to determine, and B, is the unknown baseline mean in the j* channel. The &/s are random counting
errors with mean zero and nonsingular covariance matrix p.~'"W~" where W is a matrix which is assumed to
be known. (In applications, W is typically estimated rather than known. An application of the 8-method [7]
to the perturbation thus introduced shows that the asymptotic means and variances are unchanged.) In vector
notation the model can be written

!
|

= [[]B + ¢
AB + €

where Y = (yy, - . ., %)% B = (Bo» By - - - » B)Tand € = (g, . . . , €,)7. We note that this model is
underdetermined, and that even in the limit, with no counting error, there is no unique solution for B,.

Currie [2] proposed estimating B by forcing the baseline to be as smooth as is consistent with the data (in
a sense explained below), taking as measures of smoothness

* Siatistical Engineering Division, Center for Applied Mathematics.
1 Figures in brackets refer to literature references at the end of this paper.
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§ = 2:1 B - Bt )

or
S, = 21 (B: — 2Bisy T+ Bis2)
iz

or generally

8§ = E (AkB)z

i=1

A

where A is & differencing operator. The estimate [ is formed by minimizing S, subject 1o the constraint
(Y—ABYW(Y—4B) =

where the constraint ¢ is obtained from the x? distribution. Using the technique of Lagrange multipliers, the
solution is found to be

B = (ATWA + AUTU)ATWY
when A is chosen to force B to satisfy the constraint and S, is expressed as

S, = |lUBIP.

By considering numerical examples, Currie reached some empirical conclusions about the statistical behavior
of the method, with sp=cial attention to the bias, or systematic error, of the method.

Techniques of this kind have been used in solving ill-pesed problems such as integral equations of the
first kind [1] and in smoothing data via smoothing splines [8, 11]. Motivated by such problems, Kuks and
Olman [5] and Speckman {9] have considered the problem of estimating a linear functional A”B by linear
functionals of the data, £7Y. Their result is the following: Consider the linear medel

Y=AB + ¢

where € has a nonsingular covariance matrix 02W =1, and assume that |UB|[® = a? for some matrix U such

that N(U') N N(4) = ¢ (V(A) = null space of A). Then the estimate £]Y for which

E(€JY —h"B)? = min max E (£JY —R7B)?
¢UBIF = of

is unique and is given by
€Y = hT(ATWA + (o¥a®)UTU)'ATWY.

Identifying A with o?/a? this solution is seen to be formally the same as the estimate proposed by Currie
for estimating the peak amplitude B, = (1, 0, . . ., 0)B. An operational difference is that the minimax
theorem assumes the smoothness parameter o to be known, whereas Currie implicitly estimates it from the
data. It should be noted that the estimate is minimax for estimating any single linear functional but is not
generally minimax for estimating several linear functionals simultaneously [10]. '

In the next section we will consider the more general problem of several peaks of known shape and unknown
amplitudes, superposed on an unknown baseline (Curmrie considered only the single peak case). We will
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develop expressions for the bias and variance of the amplitude estimates and limiting approximations as the
expected total count p— which give some insight into the properties of the method. In section 4 a procedure
for choosing A from the data is discussed and is illustrated by some simulations.

2. Bias and variance

In this section we will assume the following, multi-peak model:
Y=+ - +B,J, +B, + ¢

[T:]B + &
=AB + &

where Y is an n-vector, I' = [T, Ty, ..., ], Ba = (Bass - - - » B2,)" is the vector of mean background
counts, 7 = (BT, B7), and € is a vector of random errors with nonsingular covariance matrix p. ='W -1, We

will derive expressions for the bias and variance of the estimate
B = (ATWA + NUTU)ATWY

when U is of the form

0 0
U _| pan
{n+p—k) x (n+p) 0 Ul

(n—kxp (n—K)n

and thus UTU is of the form

o 0
Xp  nan
(ﬂ+P§J:‘[EI"-+P) - POP D ’
pxp nxn
where
b = Ulu,

(D is not diagonal) and A = 1/pa? is given. If A is estimated from the data these expressions are conditional
on A. The unconditional bias and variance are different.

We will focus attention on the estimate B, of the vector of peak amplitudes, which is of primary interest.
It is thus useful to partition the matrix (ATWA +AUTU) 1

(ATWA+\UTY)

'wr rwr |
WL W+\D

= By, By
B2] 822
From an identity for the inverse of a partitioned matrix [7],

B,, = (I™WT)~'+ (I™WT) ~I™WTW + \D — W (LWT) - ‘[ ™W7] - 'WT(I"WT) ~*
= G '+ GCT'OROC !
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where G = (I"WT"), 8 = WT, and R is the matrix given in square brackets. With this notation,
By, = —G0RY.
B, = BI; we will not need By,. Now,

EP = (ATWA+AUTU) TATWAR

and
r'ewrg, + I''wp
ATWAR = ! 2
P [Wral + WB, ]
_lop, + efaz]
0B, + WB, |
so that

~

ER, = (G~'+ G '0"R78G ") (GR, +07R,) — GT'O'R™' (8B, + WB,).
We thus have, after simplification, an expression for the bias of B,:
B, — EB, = = G707/ — R™'(W — ©6G'07)IB.. (1

Note that the bias does not involve B, and that the derivation of the bias expression has not assumed that
p ='W -1 is the true covariance matrix of the random errors. In the appendix it is shown that the bias is zero
ifUiB, = 0.

A simple bound for the bias may be obtained as follows: [rom the expression above, the squared bias for
a particular component {,;, say, may be written in the form

|Bu: - EBlkP = ]’TE'2|2

Let P = UT (U,UT)~'U, be the matrix which projects onto N(U,), let @ = I — P project onte N(U,}, and
express B, = PB, + (QPB.. Noting [rom above that @B, = 0, we may wrile
B> = |UT (U, UT)_IUlﬂzlz
< U, UT) T LB

{Ba: ||U,ﬂ2u2sa21

= AU,V U

We now consider the variance of the estimate. Under the assumption that the covariance matrix of the
errors is b~ !W ™1, it is immediate that the covariance matrix of B is

T = wo(ATWA+AUTU) TATWAATWA + AUTU) 1

In an appendix it is shown how this matrix may he partitioned and that the covariance matrix of B, can
be expressed as

3, = poFTF 2)

where
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F = W¥{[—(W—0GeNR~]OG™! (3)

and W2 is the symmetric square root of W.
We will now develop approximations to the bias and %), for large samples by examining their behavior as
7 and thus p~»o and A—0, The expressions for Z;, and the bias both involve the matrix

[ — R-\(W—66-18T) = I — [W+\D - WT([™WF)~'["W]~* (W— WI(T"WT) ~'T™W)

As A—0, R—W—~WI'([TWT')~T'7W, but this matrix is singular (the null space is spanned by 'y, . . .,
T,). A further complication is that D will typically not be of full rank {for exarnple, D mey annihilate constant
and linear functions). However, our assumption that ¥(U)N¥(4) = & guarantees that BT; # 0, j=1, .. .,
p and thus that the matrix R is invertible. In the appendix we prove the following:

LEMMA. Suppose that C is an nxn non-regative definite matrix with p dimensional null space spanned by
¥is « -+ » Vp Suppose that D is another nxn non-negative definite matrix and that N(C)NIN(D) = &. Then as
»—0

[ — (C + AD)~C = V(VIDV)~'VTD + O(r)

where V = [vy. . . ., v,] is an nxp matrix.

Applying this lemma 10 the expressions for Z,, and the bias of B,, with W — WI'(I"WT')~ \I'"W corresponding
to € and I’ corresponding to V we have,

COROLLARY: Under the assumptions of our linear model, as A—0 {(p—>w),

~ (I7D) " 'TTDR,+0(A) (1)
(Cor) - (oW prYI™DT) ! + 0(h). (2)

Bl"Eﬁl
P2z

h

The expression for the bias is simpler to understand if we write it as
By —Ep, — — (U (E,)]~ (UD)(U,B2)

and keep in mind that U,, is a differencing operator. The bias is determined by the relationships of the
vectors U\, j=1, . . . , p and U [3;. If the baseline B, is quite smooth /1B, will be small. If a particular
peak shape T; does not overlap any other peaks then the limiting (ju—>%) bias of the estimate of its amplitude
is simply

~ (UIF') r( U, Bz) ax
—FEf,. = ¥ <
By~ EBy="wTie i)

which follows from the rule for the inverse of a partitioned matrix and the Cauchy-Schwartz inequality. The
large components of UT; will be those near the peak center and if the true background $; is smooth in this
region, the bias will be small. '

When two peeks overlap substantially, however, the bias will typically be worse than the bias if either one
of the peaks were absent, since corresponding elements of the matrix [(U,T)7(/;,T7)] ~* will be large.

Finally, we note that this limiting bias does not depend on the weighting matrix W &nd that it depends
linearly on the baseline proportion. ,

The variance of the estimste B; of a peak amplitude can also be expressed simply in the case that the
matrix W is diagonal and the peak does not overlap other peaks:

(U, WU
A Y

Vﬂ"(é'lj) =

but in the case that there is considerable peak overlap the variance may be inflated considerably,
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It is of some interest to consider the relative size of the bias to the standard error and to understand
qualitatively how this is affected by varying the baseline amplitude. To this end we consider a single peak

model with a peak shape standardized so that Z+; = 1 and a standard baseline profile with 2 B = 1. Any
=

mixture of this peakshape and background profile with peak proportion B, and background proportion 1 — 3,
can be expressed as Byl -+ (1—B,)B, where 0 < By < 1. Denoting DI by V = (V,, . . ., V,)" and taking
W-! = diag (Byy; + (1 —PBo)B,), the appropriate bias (B) and standard error (&) of Bo given by the equations
ahove are

|Bl = (1-~-By) Z ViB/ZVy,

SO T .
o= v [(1—Bo) ZVEB, + Bo IV VUEF

From these expressions we may make some observations that agree with observations made by Currie on the
basis of empirical experiments: (1) The bias is proportional to the background proportion; (2) For small values
of B, the standard error is proportional to the square root of the background proportion; (3) Since ZVFB, is

typically less than ZV?y,, the standard error increases with increasing peak area proportion.

We conclude this section with a brief consideration of the problem of mis-specification of I'. Suppose that
the true peak profile is Iy = I"+38[; from calculations similar to those done above for the bias, we find that
the additional bias introduced by 81" is

CT'OT [I-RTN(W-066"toN]sIs,
which, as p—, tends to
(I ! (I'"D3I)BR,.

In the single peak case, the Cauchy-Schwarz inequality shows that this quantity is bounded in absolute value
by B,||U15F||/||U1F§|. Thus a variation 8" such that U,8I is highly correlated with U,I" will give rise to a
relatively large bias proportional to the peak amplitude.

3. Choosing A

If the parameter o is known, the minimax A is A = 1/po®. In the absence of this knowledge, A must be
chosen from the data. In this section we discuss a class of such procedures and illustrate them with examples.
Given a non-negative definite matrix B, one might attempt to choose A to minimize

E(P(\) — EYYB (P(\) — EY) = ET5(\)
where

T\ = A(ATWA + AUTU) - ATWY
= A(NY.

ETg(\) is a weighted mean-square error. This quantity may be estimated from the data by using

RSS,(\) = (¥ — F(A)B (¥ —F(\)).
= YT (I—AQ))B (I —AN)Y
= YIGY ,
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The expectation of RSSz(\) can be computed to be

ERSSz(A) = ET5(\) + p™Y%r BW™Y) — 2u~' & (BAQWY)
and thus an unbiased estimate of ETg(A) is

To(A) = RSSz(A) — w=Yr (BW™Y) + 2u~Ur (BAQ)W™Y).
We note that if ¥ follows a Gaussian distribution, then

VarTa(A) = 2 w=% (CW~1)2 + 4 p=' (AB)GW™1 AB

For a given B we propose choosing A to minimize T5(\). (Similar procedures with B=1 have been discussed
in [3, 6].)

If it were possible, we might choose B so that ET(A) = E||B, — Bi(A)[% the total mean square error of
the estimates of the peak amplitudes. However, if we write

EY = [I': 1][2;]

ETg(\) may be expressed as

ETa(\) =E(B, — B.(N)YTTBT (B, — B.(M))
+ E(B, — BB (B, — B.(\)
+ 2E(Bl - ﬁl()\))rrTB (Bz - ﬁz(h))

from which it is apparent that it is imposible to choose B so that the second two terms vanish and the first
does not.

We have experimented with three choices of B: B) =1, B,=T(I''T) 7I'” and B, =T'(I'"T)~*I". B is the
matrix which projects onto the column space of I'; the motivation for choosing B, is that B, — Bz A) will
hopefully not be highly correlated with the columns of I' and thus the second two terms will be small and
the first term will dominate. Choosing By reduces the first term to E|IB, — Bl(k I and hopefully causes the

other terms to be small. A disadvantage in using B, or B, is that if there are two or more peaks with
considerable overlap, the variance of T4(\) may be rather large, causing the procedure to be rather unstable.

Curtie suggests choosing A so that RSS,{A) = n/p. The motivation for this is that p.-RSSy would follow
a chi-square distribution with n degrees of freedom if EY(\) = EY and no parameters were estimated from
the data. In fact, however, parameters have been estimated from the data, although it is not clear how many
“degrees of freedom” remain, and EY(\} # EY. Thus the application of the x? distribution is questionable.
The procedure outlined above with B=W would choose A to minimize

To(A) = RSSy{\) — np= + 21 er AQ\)

which would cause RSSy()\) to be somewhat smaller than #/j.. (In a vague sense, the “degrees of freedom”
of the Chi-square statistic are reduced.)

We now briefly discuss the results of some simulations of this technique. The configurations are the
following: (1) two slightly overlapping peaks on a linear baseline, (2) the same peaks on a quadratic baseline,
(3) two highly overlapped peaks on a quadratic baseline, and (4) & single peak on a quadratic baseline which
also contains a small “unsuspected” peak obscured by the dominant peak. All the simulations were done
over a width of 20 channels with a total count p. = 10° The sum of squared second differences was used
as the smoothness measure. Computations were done on the Univac 1100 at the National Bureau of Standards.
Subroutines from the IMSL library were used to generate random numbers and for matrix calculations. The
most numerically sensitive calculation is the inversion of the matrix ATWA + AUTU, which in theory is
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positive definite; however, the matrix may be for practical purposes numerically singular for very small or
very large values of X, so it is important that a good algorithm be used and that diagnostic messages be
printed when instabilities arise. (An alternative to actually forming and inverting this matrix is to simultaneously
diagonalize A7TWA and UTU; having done this once, (ATWA + AU/7U)™! may be computed quite rapidly for
various values of A.)

1. Two peaks on a linear baseline; the peak shapes were Gaussian with locations at channels 8 and 12
and standard deviations 1.5. Each peak contained 30 percent of the total area. The baseline was B; =
(1 + j) where ¢ was chosen so that the baseline area was 40 percent, For this configuration the optimal
(minimum variance unbiased) method of peak area estimation is weighted linear least squares; we are interested
in seeing what “price” has to be paid for the additional flexibility of the smoothing method in this null case.
Table 1a shows the bias, variance, and total mean square error of the peak area estimates for various values
of . From the table we see that ETB decreases as A increases (for A greater than 107 numerial problems
devetop). For A = 10° the variance is very close to that for the linear least squares.

TABLE 1a.

X Bias B,; VYar B, Bias B, Var Biz Tolal MSE ETB, x 10° ETB, x 107 ETB, X 10°
10° 0 0.559( —4) 0 0.593(—4) 0.115(—3) 0.664 0.180 0.985
10! 0 .315(—4) 0 .345(-4) L660( — 4) 404 .178 975
107 0 . 108(—4) 0 A126(—4) 234(—4) 278 176 .963
108 0 .692( — 5} 0 172 —5) .146{ — 4} .237 175 956
10¢ 0 .519(—5) 0 .596(— 5} A1l —4) 217 .174 952
10° 0 .487(—5) 0 .575(—5) L106{—4) 214 174 L0951
least 0 .486{—5) 0 575(—4) .106(—4)

squares

(A =09}

Table 1b show;s the results for one realization wiath random Poisson noise added. As stated above, the total
count was 10°. TB, is minimized at A= 10 and TB; and TB; are minimized at A=10%. (In this and in the
later simulations in which noise was added, the weighting matrix W was estimated from the data.)

TABLE 1b.

A B B TH, X 10° T8, % 10 T8, X 10°
10° | 0.205 | 0.208 0.692 0.180 0.984
w0 | .295 | .299 .515 .178 972
w | .207 | .302 .380 173 .948
10| .299 | .302 L340 171 .942
00| .209 | .300 .370 171 .933
10| 299 | .300 .38l 170 .932

2. Two peaks on & quadratic baseline—the peaks were as above and the background was B; = <1 + j
+ j2/20) above ¢ was chosen so that £B; = 0.4. This shape deviates only slightly from a linear baseline.
Table 2a exhibits the biases, variance, and total mean square error for various values of A; as A increases
the variance decreases and the bias increases. For this discretization the minimum total mean square error
occurs for A = 350 (MSE = .17 X 10~%). The mean square emor for the least squares method is much
larger, being dominated by the bias (MSE = 0.42 X 1073). The minima of ETB,, ETB,, and ETB; occur
at k= 250, 450, and 550 respectively, over which range the MSE does not change appremably

Table 2b summarizes the results of a single realization with randem Poisson noise. TBI, TB,, and TB; are
minimized at A = 350, 250 (or 350), and 350, respectively. It is noteworthy that the estimates do not change
substantially over the tabulated range of A. Other realizations gave similar results.

For this example there is little difference in the results for B), By, or By—any choice would give satisfactory
results. B, is somewhat easier to compute,
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TABLE 2a.

Total
A Bias By, Bias B, | VerPy | VarBy, | MSEx10* | ETB,X10° | ETB,x10° | ETB,x10°
50 | —0.327(—4) | —0.291(~4) | 0.144(—4) | 0.16%—4) | 0.312 0.304 0.174 0.949
150 | —.649(-4) | —.185(—4) | .89%-5) | .111(-4) | .201 272 173 944
250 245(~3) | .468(-3) | .787(=3) | .976(-5) |  .179 266 1723 942
350 448(—3) | .750(~3) | ~.740(=5) | 911(-5) |  .1727 267 17219 9413
450 658(=3) | .102(—2) | .714-5) | .B68(—3) | .1728 270 17216 94099
550 B67(—3) | .127(—2) | .696(—5) | .836(-5) | 177 215 17218 94097
650 207(-2) | .1sl(—2) | .684(-5) | .811(-5) | .184 281 17225 94117
750 128(-2) | .173(—2) | .673(~5) | .791—5) | .193 288 1723 942
850 2482 | 195(—2) | .665(—5) | .TTa(—5) |  .204 296 173 942
950 167(-2) | .215(—2) | .657(=5) | .759(=5) | .216 304 173 943
least As6(—-1) | .128(~1) | .465(=5) | .579(=5) | 4.19
squares
(A==}
TABLE 2b.
A By Bi. | 7B,x10° | 78B,x10° | TB,x10°
50 | 0.300 | 0305 | 0.256 0.173 0.945

150 | 299 | .308 206 1721 9415

250 | 290 | .302 196 17190 9405

350 | 298 | .302 195 17190 9404

450 | .208 | .30 199 17196 9406

550 | .298 | .301 205 1721 9409

650 | .298 | .301 213 1722 9412

750 | .207 | .300 222 1723 9416

850 | .207 | .300 232 1724 9421

950 | .207 | .300 242 173 943

3. Two peaks on a quadratic baseline; the peaks were close enough together (centers 9, 11, o0 = 1.5)
so that there was no trough between them when they were superimposed. The peak areas were 0.3 and 0.3
again and the baseline was as in the previous example. On a grid of X values spaced linearly by 150 the
minimum MSE occurred at A = 800 (MSE = 0.20610 X 10~%; the minimum of ETB, was at A\ = 350
(MSE = 0.213 X 10~%); the minimum of ETR, was at A = 650 (MSE = 0.20611 X 10~%: the minimum
of ETB; was at A = 950 (MSE = 0.207 X 10~%), The MSE for a linear least squares fit was 0.241 X
103, Table 3 records the minimizing values of X for TB,, TB,, and TB,, and the corresponding MSE’s for.
4 realizations. The results suggest that fBl may be a more stable criterion function in this situation, but we
would not wish to make a conclusion on the basis of a sample size of 4!

TaBLE 3. Minimizing values of X and corresponding MSE’s for four realizations.

T8,

78,

TB,

I 30{279%10-4)
2 5000208 X109
3 500{208x10°%
4 950(207x 1079

14001 217 % 10-4
3000(288 % 10-%)
1100(210 % 1074
5000(407 X 10~%

1300( 217 X 104
2150(246 X 10~%)
2600(267 X 104
6500(501 X 10~%)

4. A single peak (center = 10, o = 2) on a quadratic baseline with a hidden peak centered at 12 with
standard deviation 2. The peak area of the dominant peak was 0.8 and the area of the hidden peak was 0.02,
In an attempt to mimic a situation in which the hidden peak is unsuspected, a single peak model was fit.
The behaviors of ETB;, ETB,, and ETB; were somewhat different. ETB, had a minima at A = 10 (MSE =
0.55 X 107*) whereas ETR, and ETB, had minimum at X = 10* (MSE = 0.96 X 10~%), The MSE was
minimum at A = 107 (MSE = 0.18 X 107%). The MSE of the linear least squares procedure was 0.21 %
10~*, The reason that ETB, was minimized for a smaller value of X is that this criterion gives greater weight
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to fitting the baseline as well as the peak than do the other two, which concentrate more on the peak. The
baseline {which includes the hidden peak) is fit well with small values of A since it is not very smooth. Since
the hidden peak has substantial correlation with the modelled peak, however, B, and B fail to choose A
large encugh.

On several realizations with random noise TB 1 achleved a minimum at small values of \ and TB and TB 3
at larger values of X, On some occasions TB, and TB3 also had local minima at small values of A. Figure 1
ghows the estimated baseline for A = 20, which was the attained minimum for TB, on a particular realization.
The unsuspected peak shows quite clearly, giving valuable diagnostic information! The estimated baseline
for the larger value of A = 10* at which TB, and TB were minimized smooths over the pesk (fig. 2). We
also plotted residuals on a square root scele to stabilize the variance, y; = V7 — V%4N). Figure 3 shows

the residual plot for A = 10% there is a hint of a discrepancy near channel 12,

Estimatéd Background (A= 20)

-2 T T T
yox10 < %
x
%
x
x W X
x
1.1 x 10 2 x -
x
x
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-3 I XX -
1.1 x10 *— l | .
1 20
Channel
FIGURE 1.

Estimated Background (A= 104)
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4
Rooted Residuals (A= 10 )

32x103F X X —
x xx % x
x
g( x
x x x
-3 x
«1.5%x10 v |- -
x
X X
-3 _
-6.2x 10 I I x |
1 20
Channel
FIGURE 3.

If the hidden peak is incorporated into the model, the total MSE, ETB,, ETB, and ETB, are all minimized
for A == 10°. The total MSE is 0.36 X 10~* and the individual MSE’s are 0.20 X 10~* and 0.16 X 10—+
for the large and small peaks respectively. The bias and variance for the small peak are 0.99 X 10~? and
0.15 X 107* 50 that the relative error in estimating this peak area is quite large. For the linear least squares
method the total MSE is 0.13 X 10~ the hias and variance for the small peak are .36 X 10~2 and .12
X 1074

On the basis of these computations there is no clear evidence that would favor B, or B, over B,, despite
the fact that they were designed to focus more on the peak. The last example shows that focusing on the
peak may hide unsuspected features of the baseline. The computations suggest that choosing A to minimize
TB(\) is reasonable, but they are not nearly extensive enough to give insight into the stochastic behavior of
the minimizing A.

There are many possibilities we have not mvestlgated Other choices of B are possible; for example B =
T{(I'7T;)~'T] would focus on the jth peak if there were more than one peak, B=W~ would weight the
deviations according to the variances of the observed counts; a possible advantage of this choice is that the
statistics RSSy{\) might be compared with the percentiles of a x? distribution (above, however, we have noted
some difficulties with this procedure). Another pOSSIblllty is to attempt to choose between several smoothness
criteria by computing TB(")()\) fork = 1,2,3,...,Kand choosing the solution corresponding to

min inf TB®(\) .
k 1Y
4. Final Comments

The results above leave several questions unanswered and suggest problems for further research, The
following is perhaps the most immediate: in many applications the peak vector is not known exactly, but is

1 j-
assumed to have a parametric form such as Y = Yo) = ;'y J—;E, where 7y is a given function . and o

are location and shape parameters and must be estimated from the data. If the peak profile I' is estimated
from other experiments, for example from pure sources, the variability of the estimate will affect subsequent
analyses in which it is used. We plan to pursue the analysis of these problems in the future.

An alternative approach to the problem is to use the method of maximum likelihood with the assumption
of Poisson statistics; which might be more appropriate for small counts. The likelihood function of B could
be maximized subject to the constraint |[UB|? = a®. Although we conjecture that the large sample properties
of the estimates would be equivalent to the results above, the small sample properties would be different.
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Finally, we note again that in the multi-peak situation the estimates we have considered are minimax for
any single peak amplitude but are probably not jointly minimax. One might attempt to solve the simultaneous
minimax problem by numerical optimization; we conjecture that the results would not be substantially different.
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6. Appendix

Here we derive an expression for the covariance matrix of Bl and prove the lemma in section 2 of the text.
The covariance matrix of B is, with the notation of section 2,

RS = (ATWA+AUTU) " 'ATWA(ATWA + NUTU) ™!

_ [Bn By, [c h [Bu By,
By Bn||©® W||B: B

We are interested in =,;. Multiplying through and noting that B;, = B,

WZ, = BuGBy, + B,0B,, + B,,07B]; + B,,WB],

B, I'"WIB,, + B\,WIB,, + B,,I"WB,, + BL,WB,,
= (WVTB,, + WV2BL)" (WVTB,, + WY2BT)

= FTF .

il

Now, using the expressions for B; and By, and ' = W10

F = WV (TG~} + TGT1OTR-'OG~! — R™'OG™)
= W (W1 + WO'OGT1OR-1~R™) OC!
= W [l — (W-0G6-10NR™] 06!,

which is the expression to be derived.
We now prove the lemma. The key to the proof is the fact that under the assumptions of the lemma € and
D may be simultaneously diagonalized [4]; there exists a nonsingular matrix X such that

Xcx = Q
XDX =M

where £ and M are diagonal matrices with elements ®; and |, From this representation we note that the
null space of € (resp. D) is spanned by those columns of X corresponding to zero diagonal elements of L)
(resp. M). The assumption of the lemma guarantees that the two null spaces contain no vectors in common.
Now expressing C and D in terms of X, £2, and M, and writing / = XX~*
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I— (C+AD)-IC = X [I—-(Q+AM) Q] X
= XR X!

where R, = diag [Apu/(w; +Ap)].
We note that if B,eN(U;) = N(D) this representation makes it clear that B, is unbiased, for if «; is a
column of X corresponding to p; = 0, then

XRX " =X —H . =g
Lo (I D NTHIY

where ¢; is the /™ unit vector,

The diagenal elements of R, corresponding to w; = 0 are 1’s, so that

0 0 N, O
-1 = -1 A -1
AR X (0 I) A1+ X (0 0) X

where N, = diag [p/(0;+Ap)]. It is easily verified that the first matrix, call it P, on the right hand side
of the expression above has the following properties: (1) it is idempotent with range N(C); (2} Py = 0 if
veN(D); (3} for any vector v, (Pv)"D(I — P)v = 0. P is therefore a projection matrix which projects orthojonally
with respect to the pseudo inner-product (u,v) = u'Dv, and may be written

P = V(V'DV)~ W'D
where V = (v, . . , v,) spans the null space of C. Finally noting that ¥, is bounded, we have

AR X' =P + O\

Finally, we note that expansions for small values of A (corresponding to large samples) or small values of
A~ (corresponding to a nearly linear background and moderate sample size) may be carried using identities
of the form

1 + g2
i+e T






