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ABSTRACT
FACTUNC is a system for solving unconstrained minimization problems based

on the concept of factorable programming. This concept enables the user to

provide the problem function and data in a user friendly way and does not
require user-supplied derivatives. The system utilizes the factorable
function concept to obtain the first and second derivatives required for
unconstrained optimization. In all cases derivatives are obtained rapidly and
accurately (up to roundoff errors due to machine precision)

,
as opposed to

finite differencing.

As a system for nonlinear minimization, FACTUNC allows several options.
First the user can solve regression (nonlinear least squares) problems by
providing the regression equation and the data for the dependent and
independent variables. The second option allows for the minimization of the

sum of an indexed function. The user provides the function, and the indexed
data. This can be used for example to solve maximum likelihood estimation
problems when the user provides the negative of the (weighted) log of the

frequency function and the data. The third option is simply to minimize a

function supplied by the user. Utilizing barrier function methodology, this
third option can sometimes be used to solve constrained problems.
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1 . INTRODUCTION

We report here on FACTUNC, a system for solving unconstrained minimization
problems developed at the National Bureau of Standards. FACTUNC differs from
other optimization systems in one fundamental aspect: the internal
representation of functions as "factorable”. In section 2 we discuss the
concept and merits of factorable functions in more detail. One advantage of
this approach is that once a function is represented in factorable form, its
gradient, Hessian and even higher order derivatives may be calculated
automatically and exactly. In order to use FACTUNC, the user need only supply
the system with a statement of the problem function in a FORTRAN- like
expression. The system then proceeds to translate this function statement
into factorable form, and uses this representation to compute the gradient and
Hessians as required.

The Hessian matrices computed by FACTUNC, are initially obtained in dyadic
form, i.e., as a sum of rank one matrices. Moreover, the factors of these
rank one matrices are obtained from the gradient evaluation. The advantages
of this representation, and how it can be utilized are explained in more
detail in section 2.

There are a number of different ways to use FACTUNC. For example, FACTUNC
may be used as a general unconstrained minimization system. The system also
provides a user-friendly front-end for objective functions which involve an
indexed sum of terms of the same form (such as the negative of the logarithm
of the likelihood function which is used to solve maximum likelihood) . When
working with this option, the user need only supply the general form of a

typical term in the indexed sum (e.g., a typical term in the logarithm of the
likelihood function) . The nonlinear least squares problem is another example
of an indexed sum. Since nonlinear regression problems arise frequently in
applications, FACTUNC has a special option for solving this type of problem.
In order to solve such a least squares minimization problem, the user need
only supply the general form of the nonlinear regression equation, and, of
course, the data. Finally, by using a sequential unconstrained minimization
approach for solving constrained minimization, FACTUNC may be incorporated as

part of a constrained optimization system. Thus, FACTUNC may be used to solve
the sequence of unconstrained problems which arise in the barrier method, or
in the method of centers. In each of these cases, the option of using an
indexed sum can be invoked.

The use of the various options available in FACTUNC is explained in detail
in sections 3-5. For ease of presentation, we have chosen to start with the

nonlinear least squares option. The underlying approach in implementing
FACTUNC is common to all the various options, and is described in section 1.1

below.
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1 . 1 Representation of Functions in FACTUNC

Computer programs for solving nonlinear problems are widely available, A
major difficulty in using the software is addressed in the FACTUNC system.
This difficulty is how to construct a user-friendly way to represent the
information which is required for the nonlinear minimization, concerning the
nonlinear function, which can also be accessed in a computationally efficient
manner by algorithms for minimization. It is solved in FACTUNC by allowing
the user to provide a FORTRAN- like expression to represent the nonlinear
objective function. This is then processed by the system and represented
internally in the form of a factorable function. In this form the quantities
required by algorithms for solving the problem: function values, first
derivatives, and second derivatives are automatically computed by the system.

The statement for the function allows the regular operations such as plus

(+)

,

minus (-), product (*)

,

division (/)

,

power (**)

,

and parentheses. If
parentheses do not conform (e.g., an extra left parenthesis, or some other
mismatch, an error statement is produced). In addition, the statement allows
for single variable functions. The single-variable functions available for
use by the system are given in Table 1. Note that any single-variable
function can theoretically be used. These are just the ones programmed to

date

.

FACTUNC also accepts complex terms which involve the nesting of parentheses
and single variable transformations within other, provided that the resulting
expression represents a well defined mathematical expression. Thus FACTUNC
will be able to accept and process a function of the form

A*SQRT(X**3+ (Y/(X+Y))*ENTR0P(Z))-1.7*DECAY(SIN(Y))

.

However, the expression

(GAMMA(X+Y) )/(2*L0G(Y) )

)

is incorrect. The system will notify the user of the excess in the number of

right parentheses. Removal of the last parenthesis, will result in an
expression acceptable to FACTUNC.



TABLE 1. SINGLE ARGUMENT FUNCTIONS AVAILABLE IN THE FACTUNC SYSTEM

FACTUNC NAME ALGEBRAIC NOTATION DESCRIPTION

EXP(X) e'* Exponential

LOG(X) logioX Common Logarithm

LN(X) log^x Natural Logarithm

SIN(X) sin X Sine

COS(X) cos X Cosine

TAN(X) tan X Tangent

GAMMA(X) r(x) Gamma

ARCSIN(X) arcs in x Arcsine

ARCTAN(X) arctan x Arctangent

CUMNOR(X)
1— EXP(-t2/2)dt^ J«

Cumulative Normal

SQRT(X) Jx Square Root

DECAY(X) 1-e'* Decay Function

ENTROP(X) X'in X Entropy

NORDEN(X) — EXP(-x2/2)

J 2ir

Normal Density

BARLN(X) <

®
,
x<0

-In X, x>0

Logarithmic
Barrier Function
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2. MATHEMATICAL BACKGROUND ON FACTORABLE FUNCTIONS

This section is provided as background for the interested reader. It is
not necessary to understand the theory of factorable functions in order to use
the FACTUNC system. Those interested only in using the system may therefore
skip this section.

A factorable function is a multivariable function that can be written as
the last of a finite sequence of functions, in which the first n functions in
the sequence are just the coordinate variables, and each function beyond the
nth is a sum, a product, or a single-variable transformation of previous
functions in the sequence. More rigorously, let [f^(x), f2 (x)

, ..., fL (x)

]

be
a finite sequence of functions such that f^ :R" -* R, where each f^ (x) is

defined according to one of the following rules.

Rule 1 For i=l
, ..., n, f^ (x) is the value of the i^^ Euclidean coordinate:

fi(x)=Xi. (2.1)

Rule 2

.

For i=n+l
, ..., L, f^ (x) is formed using one of the following

compositions

:

a.

)

fi (x) = or

b.) fi (x) = fj(i,(x) * fk(i,(x); or (2.2)

c.

)

fi (x) ~
( l ) 1 >

where j(i) < i, k(i) < i. and Tl is a function of a single variable. Then
f(x) = fL (x) is a factorable function and [fj^(x), f2 (x)

, ..., fL (x)
]

is a

factored sequence. Thus a function, f(x), will be called factorable if it can
be formed according to Rules 1 and 2, and the resulting sequence of functions
will be called a factored sequence or, at times, the function written in
factored form.

Although it is not always immediately grasped, the concept of a factorable
function is actually a very natural one. In fact, it is just a formalization
of the natural procedure one follows in evaluating a complicated function.
Consider for example the fuhction

f(x) = (a^x) (sin[b^x] ) (exp [c^x] ) , (2.3)

where a,b,c and x are (2x1) vectors. The natural approach to evaluating
this function for specific values of and X2 is first to compute the

quantities within the parentheses, then to apply the sine and exponential
functions, and finally to multiply the three resulting quantities. This might
be done in stages as follows.
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(2.4)

fe = b,f, fii “ f9 f
1 0

f7 - b2f2 fl2 = sin(f8)

= a^fi fs = fg 4- f? fia = exp

(

f
1

1

)

” ^2^2 fg = c^fi fl 4
- fs • fl2

- fa + f4 fio = C2f2 fl5 " fia * fi4

This is one possible factored sequence for the function in (2.3).

In order to appreciate fully the value of factorable functions the concept
of an outer product matrix must be introduced. An (m x n) matrix A is called
an outer product matrix if there exists a scalar a, an (m x 1) vector a, and
an (n X 1) vector b such that

A = aab^ .

The expression aab^ is called an outer product or a dvad . Note that a dyad is

conformable since the dimensions of the product are (m x 1)(1 x 1)(1 x n)

,

which yields the (m x n) outer product matrix A as desired. A useful property
of outer product matrices is that, if they are kept as dyads, matrix
multiplication with them is simplified to inner products alone, saving the
computations required to form the matrices involved. For example,

Ac = aQ:[b^c]
,

d"^ A -
[
d^ a

]
ab^

,
and

AF = aa[b^F]

,

where c is (n x 1), d is (m x 1) and F is (n x m)

.

Factorable functions possess two very special properties that can be
exploited to produce efficient (fast and accurate) algorithms: (i) once
written in factorable form, their gradients and Hessians may be computed
exactly, automatically, and efficiently; and (ii) their Hessians occur
naturally as sums of dyads whose vector factors are gradients of terms in the
factored sequence. The first of these properties is utilized in FACTUNC for
providing the first and second derivatives of nonlinear functions. The second
has obviated the task of multiplying a matrix by a vector, reducing it to a

series of inner products, as noted above, which in many cases results in less

effort.

In order to clarify these concepts, we consider again the illustrative
function in (2.3). Table 1 is a display of the gradient and Hessian of this

function. The entries in each column are the summands in the expressions for
the gradient and Hessian. For example.
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Vf = [sin(b^x)
]
[exp(c^x) ] a + [a^x] [cos(b^x)

]
[exp(c^x) ]b

+ [a’-x] [sin(b^x)
]
[exp(c'^x) ]c.

The table also illustrates the left- to-right
,
tree-like structure of the

derivatives involved. From the table it can be seen that both the gradient
and Hessian naturally have the dyadic structure discussed above. Notice too
that the vectors in the monads and dyads are drawn from the set {a,b,c), each
of which is the gradient of a factored sequence function in (2.4).

TABLE 1.

MONADIC AND DYADIC STRUCTURE OF GRADIENT
AND HESSIAN OF ILLUSTRATIVE FUNCTION

Function Gradient Summands Hessian Summands

a^ X • s in [
b"^ X

]
exp

[
c*^ x

]

(sin[b^x] exp [c^x] :a)

(cos [b^x] exp [c^x] :ab)

(sin[b’-x] exp [c^x] :ac)

(a^x'cos [b^x] exp [c^x] :b)

(cos [b^x] exp [c^x] :ba)

(-a^x*sin[b^x]exp[c^x] :bb)

(a^x«cos [b^x] exp [c'^x] :bc)

(a^x*sin[b^x] exp [c^x] :c)

(sin[b^x] exp[c^x] :ca)

(a'^x’cos [b^x] exp [c'^x] :cb)

(a^x« sin[b^x] exp [c^x] :cc)

It is important to understand that the derivative calculations performed
by the FACTUNC system are not estimations, but mathematically exact

calculations. Furthermore, they are also compact, since factored sequences

mimic hand calculations
,
and thus this technique is different from symbolic

manipulation techniques for differentiation, which tend to produce large

amounts of code. The techniques used in Factorable Programming are efficient

exploitations of the special structure inherent in factorable functions and
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their partial derivative arrays. These results were extended to higher order
derivatives by Jackson and McCormick [1986], who showed that factorable
functions have arrays of n'^^ order derivatives (tensors) which are naturally
computed as sums of generalized outer product matrices (polyads)

.

3. SOLVING REGRESSION (LEAST SQUARES) PROBLEMS (OPTION 1)

We begin the discussion of the use of the code with a description of the
simplest way to use it; for solving nonlinear regression problems.

A regression equation relates a dependent variable to a function involving
one or more independent variables and parameters. Given a set of values of
the dependent variable and simultaneously observed values of the independent
variables, the "best" values of the parameters in a least squares sense are
those which minimize the sum of the squared differences between the observed
dependent values and the estimated ones. Models giving rise to least squares
problems are legion in the physical and social sciences. The FACTUNC system
provides a user friendly way to represent the data and the regression
function. This is particularly important when the parameters enter
nonlinearly in the regression function.

In the FACTUNC system, one variable, y, is the dependent variable and
there may be one or more independent variables , . . .

.

The problem modeler
must specify the form of the function f which is believed to represent the
relationship between the variables. The function has parameters a^^

,
. . . ,

ajjj

which must be calculated in a way to give a "best" fit to the observed data.

Ideally, the relationship y = f(aj^
,

. . . ,an,;xj^ , . . . ,x„) would hold precisely,
i.e.

,

y^ = f(ai

,

. . . ,
. . . ,

x^)

for each i=l,2,...,k, where k is the total number of observations and the
super/subscript i indicates the values of the variables at the i^^

observation. However, it will not usually be possible to get an exact fit.

In the least squares method, the parameters are chosen to minimize the
quantity

k
S [y^ -f(ai ,

. . . ,
. . . ,

x^)]^
,

i=l

the sum of the squares of the residuals. A least squares problem is said to

be nonlinear if the parameters appear nonlinearly in the regression equation.
For more discussion see McCormick [1983], pp. 93-99.

To solve a nonlinear least squares problem using FACTUNC, the user must
provide an input file giving the regression equation, the names of the

parameters along with their starting values and upper and lower bounds, and a

list of the observed data. The general structure of the input file is

explained in the following.
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Input File Format

( 1 ) NLSQ

All characters on this line are ignored and can be used as a comment
to entitle the problem.

(2) This can also be used to identify the regression equation.

(3) Regression equation - given in the following format:

(dependent variable) = (expression involving functions,
parameters, constants, and independent variabies)$

The notation follows the usual FORTRAN conventions (e.g.

indicates multiplication) . See the table for a list of the allowed
functions. The equation may be written on several lines, but the ”="

must appear on the first line. The end of the equation is signalled
by the "$". Spaces are ignored.

(4) Comment - demarcates problem constants section (must be present)

.

(5) Problem constants - number of parameters, constants, independent
variables, and observations (in free format).

(6) Comment - used to demarcate parameter section (must be present)

.

(7) Parameter section - A line is given for each parameter in the
regression equation showing the parameter name in quotes, a starting
value, a lower bound, and an upper bound (in free format).

(8) Comment - used to demarcate constant section (must be present)

.

(9) Constant section - A line is given for each named constant in the
regression equation showing the constant name in quotes and its

value. This section may be blank, but the preceding comment (8) must
always be present.

(10) Comment - used to demarcate data section (must be present).

(11) Data section - A line is given showing the names of the variables (in

quotes) in the regression equation. Under each variable name a
column of data values is listed. Each row of this section represents
one observation.

As an example of the use of the regression (least squares) option consider
the data in Table 2. The elements in the table are the ratios of those people
who died in the category indicated in the appropriate row and column, divided
by those who would be expected to die if the sample were taken from a general

10



population of nonsmokers. If the matrix elements are denoted by DEATH, the
row indicator by DEPTH, and the column indicator by GIGS, a reasonable
regression equation is

DEATH = 1 + (a^ + a2 DEPTH) (1 - EXP( -ag GIGS)

)

where (a^
,
a2 ,

are parameters. The values of DEPTH and GIGS need to be
quantified. The values used for this example are given in Figure 1, the input
file for FAGTUNG. The optimization problem is:

16

min S [DEATHi - {1 -f (a^ + a2 DEPTHi)(l - EXP( -ag GIGS^ ) ) )
]

^

a^^ i“l

TABLE 2. DATA ON SMOKING AND HEALTH

Degree
of

Inhalation

Number of Gigarettes per Day

1-9 10-19 20-40 40+

None 1.29 1.46 1.56 2.05
Slight 1.29 1.68 1.84 1.97
Moderate 1.61 1.82 1.84 2.01
Deep 1.88 1.76 2.18 2.50

The general format of the input file for this example is given in Figure 1,

with each line of the file numbered and keyed to the input file format given
above. Figure 2 is the exact input file for this example, while Figure 3 is

part of the FAGTUNG output. Table 1 is a list of the functions of a single
argument which can be used in describing input functions.
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FIGURE 1. SAMPLE INPUT FILE FOR LEAST SQUARES OPTIONS.

(1) NLSQ - EXCESS DEATHS AS FCN OF DAILY SMOKES AND DEPTH OF INHALATION

(2) REGRESSION EQUATION

(3) DEATH=1 . + (A1*DEPTH+A2 ) * ( C 1 - EXP ( -A3*CIGS ) )

$

(4) NUMBER OF PARAMETERS, CONSTANTS, INDEPENDENT VARIABLES, OBSERVATIONS

(5.) 3 1 2 16

(6) PARAMETERS

,

STARTING VALUE, LOWER BOUND, UPPER BOUND

(7) 'Al' 0.1 0. 10.

'A2' 0.6 0. 10.

'A3' 0.01 0. 10.

(8) CONSTANTS

:

NAME, VALUE

(9) 'Cl' 1.

(10) VARIABLES

:

NAME ABOVE COLUMN

(11) 'DEATH' 'CIGS' 'DEPTH'

1.29 5. 0.

1.46 15. 0.

1.56 30. 0.

2.05 65. 0.

1.29 5. .3333

1.68 15. .3333

1.84 30. .3333

1.97 65. .3333

1.61 5. .6667

1.82 15. .6667

1.84 30. .6667

2.01 65. .6667

1.88 5. 1.0000
1.76 15. 1.0000

2.18 30. 1.0000
2.50 65. 1.0000

*A11 inputs are free form. The numbers in parentheses correspond to the

numbers in the explanation above, but are not part of the input file.
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FIGURE 2. Exact Input File for Smoking and Health Regression Problem

NLSQ - SMOKING AND HEALTH REGRESSION
REGRESSION EQUATIONS

DEATH = 1. +(A1*DEPTH+A2)*(C1-EXP(-A3*CIGS))$
NUMBER OF PARAMETERS , CONSTANTS , INDEPENDENT VARIABLES , OBSERVATIONS

3 2 2 16

PARAMETERS
,
STARTING VALUE, LOWER BOUND, UPPER BOUND

'Al' 4. 0. 10.

'A2' 3. 0. 10.

'A3' .1 0. 10.

CONSTANTS: NAME, VALUE
'DUM' 2.2

'Cl' 1.

VARIABLES: NAME ABOVE COLUMN: THOSE NOT HERE ARE ASSUMED ON FILES
'DEATH' 'GIGS' 'DEPTH'

1.29
1.46
1.56
2.05
1.29
1.68
1.84
1.97
1.61
1.82
1.84
2.01
1.88
1.76
2.18
2.50

5.

15.

30.

65.

5.

15.

30.

65.

5.

15.

30.

65.

5.

15.

30.

65.

0 .

0 .

0 .

0 .

3333
3333
3333
3333
6667
6667
6667
6667

1.000
1.000
1.000
1.000
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FIGURE 3. Partial Output for Least Squares Exanple.

NLSQ - SMOKING AND HEALTH REGRESSION
LEAST SQUARES PROBLEM
HESSIAN FORMED EXPLICITLY

REGRESSION EQUATION
DEATH = 1. +(A1*DEPTH+A2)*(C1-EXP(-A3*CIGS))$

SINGLE CHARACTER OUTPUT STRING OF (FUNCTION) EQUATION
1.+(A1*DEPTH+A2)*(C1-EXP(-A3*CIGS))$

NUMBER OF PARAMETERS , CONSTANTS , INDEPENDENT VARIABLES , OBSERVATIONS
THE NUMBER OF UNKNOWNS IS = 3

THE NUMBER OF SYMBOLIC CONSTANTS IN THE EQUATION (FUNCTION) = 2

THE NUMBER OF INDEPENDENT VARIABLES = 2

THE NUMBER OF DATA OBSERVATIONS = 16

PARAMETERS
,
STARTING VALUE, LOWER BOUND, UPPER. BOUND

Al .400000E+01 .OOOOOOE+00 lOOOOOE+02
A2 .300000E+01 .OOOOOOE+00 lOOOOOE+02
A3 .lOOOOOE+00 .OOOOOOE+00 lOOOOOE+02

CONSTANTS: NAME, VALUE
DUM .220000E+01
Cl .lOOOOOE+Ol

VARIABLES: NAME ABOVE COLUMN
DEATH CIGS DEPTH

1.29000 5.00000 .00000
1.46000 15.00000 .00000
1.56000 30.00000 .00000
2.05000 65.00000 .00000

1.29000 5.00000 .33330
1.68000 15.00000 .33330
1.84000 30.00000 .33330
1.97000 65.00000 .33330
1.61000 5.00000 .66670

1.82000 15.00000 .66670
1.84000 30.00000 .66670
2.01000 65.00000 .66670
1.88000 5.00000 1.00000
1.76000 15.00000 1.00000
2.18000 30.00000 1.00000
2.50000 65.00000 1.00000

THE OPTIMAL VALUES OF THE UNKNOWNS ARE
1 A1 = .54488E+00
2 A2 = .74750E+00
3 A3 = .93753E-01

THE LEAST SQUARES VALUE IS = .46916E+00

THE GRADIENT IS -.14019E-09 -.25256E-09 -.23803E-08
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4. MINIMIZING THE SUM OF AN INDEXED FUNCTION (OPTION 2)

The general structure of the input file for minimizing the sum of an
indexed function is explained in the following. This option is triggered by
placing the word MAXL in columns 1-4 of the first line in the input file. The
main difference between the input format of this option and the least squares
option is that on line three the "=" sign and name of the dependent variable
do not appear. The user merely writes on line 3 (and for as many following
lines as needed) the indexed function whose sum is to be minimized. The
remainder of the input file is exactly that described in Section 3.

4.1 MAXIMUM LIKELIHOOD ESTIMATION

Another common method of finding estimates of parameter values that

explain observed data is the method of maximum likelihood estimation. Let b =

(bj^
, . . . ,bj. ) be r unknown parameters of a frequency function go(yfb) of the

random variable y. Let y^^ yjj,
be m observations of y. The likelihood

function associated with these observations and frequency function is

L(yi ,
• . . .y^ , . . . ,bj.) = go (Xi ,b)go (y2 ,b) . . .gg (y„ ,b) . (4.1)

An important method of estimating the values of bj^ b^ based on the
observed . ,yj^ is to maximize the likelihood function (4.1) . The
bj^ bj. that maximize (4.1) are called maximum likelihood estimators and
have many desirable statistical properties. The reader is referred to Cramer

[??] for a fuller discussion.

The problem of maximizing L(yj^ y^, ,
b) is an unconstrained

mathematical programming problem. Since the logarithm of the likelihood
function achieves its maximum at the same b as the likelihood function itself,

the general problem of likelihood estimation is stated as follows.

Find values (bj^
, ..., b^ ) that

r

maximize S In goCXiib), (^. 2 )

i=l

or

r

minimize -S In go(yi,b), (4.3)

i=l

The example for this section comes from the world of biomedicine and is

taken from [Bracken and McCormick, 1968]

.

The mathematical technique
illustrated is the minimization of the negative of the log- likelihood
function.

It is hypothesized that the population of systolic blood pressures can be

separated into three separate groups. The distribution of blood pressures
within each of these groups can be represented by a normal frequency function
bet pj^ , P 2 ,

and P 3
represent the proportions of the population in each of the
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three groups. Let (Ms.^Ts) he the means and standard
deviations of the normal frequency functions corresponding to each group.
These nine values correspond to the unknovm {bj

}

parameters.

Then under these assumptions the frequency function for the random
variable y, which denotes systolic blood pressure, is obtained by summing the
frequency functions of the individual groups times their probability of
occurrence to yield

1

J 2n
k=l

exp
(y

-

where

Pi + P 2 + Pa = 1-

There are eight parameters in this frequency function since one
proportion, or probability, can be eliminated. Let pg = l-p

3
^-p2 . Let n^

equal the frequency of occurence of the i^^ observation. The problem then is

to find values of (pj^ , P2 , » A*2 » ^3 » » ^2 » ^a ) that

minimize
1

Pi P2
exp

^1 2af
+ exp

^2

I-P 1 -P2

exp
^3

The data for this are given in Table 4. Using the FACTUNC Systems yields
estimates

,

. (See Appendix A)

Pi = .255 = 128.8

P2 = .594 = 158.3

Pa = .151 ^3 = 222.2

= 10.3

a2 = 21.7

03 = 18.5

The input file for this problem is given in Figure 4. Abbreviated output

is given in the Appendix A.
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TABLE 4. SYSTOLIC BLOOD PRESSURE VALUES WITH FREQUENCY OF OCCURRENCE

Systolic
Blood
Pressure

Frequency
of

Occurrence

Systolic
Blood
Pressure

Frequency
of

Occurrence

Systolic
Blood
Pressure

Frequency
of

Occurrence

95 1 150 17 200 3

105 1 155 4 205 3

110 4 160 20 210 8

115 4 165 8 215 1

120 15 170 17 220 6

125 15 175 8 225 0

130 15 180 6 230 5

135 13 185 6 235 1

140 21 190 7 240 7

145 12 195 4 245 1

260 2
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FIGURE 4. INPUT FILE FOR SYSTOLIC BLOOD PRESSURE PARAMETERS ESTIMATION.

MAXL-FIND PARAMETERS DEFINING FREQUENCY FUNCTION MIN -(LOG LIKE FN)

FREQUENCY FUNCTION IS WEIGHTED SUM OF THREE NORMALS
( -FREQ) *LN( (P/SIG)*NORDEN( (Y-MU)/SIG)+( ( (1

. -P-Q) /SIG2)*
NORDEN( (Y-MU2)/SIG2) )+(Q/SIG3)*NORDEN( (Y-MU3)/SIG3) )

$

NUMBER OF UNKNOWN PARAMETERS , CONSTANTS , IND . VARS. AND OBSERVATIONS
8 0 2 31

PARAMETERS: STARTING VALUE, LOWER AND UPPER BOUND
'MU' 133.2425 120. 200.

'SIG' 9.47758 8. 70.

'P' .28802 .2 .9

'MU2' 171.10458 141. 230.

'SIG2' 33.76752 10. 100.
'Q' .2 .1 .9

'MU3' 200. 100. 300.

'SIG3' 30. 10. 50.

CONSTANTS ( NONE FOR THIS PROBLEM)
INDEXED DATA

'Y' 'FREQ'

95. 1.

105. 1.

110. 4.

115. 4.

120. 15.

125. 15.

130. 15.

135. 13.

140. 21.

145. CM

150. 17.

155. 4.

160. 20.

165. 8.

170. 17.

175. 8.

180. 6.

185. 6.

190. 7.

195. 4.

200. 3.

205. 3.

210. 8.

215. 1.

220. 6.

225. 0.

230. 5.

235. 1.

240. 7.

245. 1.

260. 2.
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5. MINIMIZING A GENERAL UNCONSTRAINED FUNCTION (OPTION 3)

This option is triggered by placing UNCO in the first four positions of
the first line of input. The main difference between the input format of this
and that for an indexed function (See Section 4) is that there is no data
defining the index at the end of the input.

This option will be illustrated after a discussion on how to solve
constrained problems by solving a sequence of unconstrained problems.

5.1 SOLVING CONSTRAINED PROBLEMS VIA UNCONSTRAINED OPTIMIZATION

Although FACTNLS is primarily for unconstrained problems, it is possible
to use it as an aid for solving constrained optimization problems. There is a

well-known algorithm, SUMT, which solves constrained problems by solving a

sequence of unconstrained problems. For more information the reader is

referred to [Fiacco and McCormick 1968] or [McCormick 1983, Chapter 16]. A
brief description of the SUMT algorithm follows.

The optimization problem is assumed to be in the form:

minimize f(x)

^
s.t. g^(x) > 0, for i=l, ..., m,

hj (x) =0, for j^l
,

. .
.

,

p.

The vector x =
, ..., Any optimization problem can be put into the

above form. Denote R° = {x: gi (x) > 0, for i-1
, ..., m}

.

The SUMT algorithm
solves the problem

m p
minimize P(x,rj^) = f(x) - rj^ E ln[g^(x)] + E hj(x)/rj.

x€R° i=l j=l

for a sequence of values (rj^) which decrease strictly to zero. If x(rj.)

denotes a solution to the problem for rj^
,
the starting point for the new

problem with r^^ + j^
is x(rjj). For r^^ small, x(rj.) is an approximation to the

solution of the original constrained nonlinear programming problem. There is

an extrapolation method which can be used to estimate the solution accurately
using two vectors x(rjj) and x(rj. + j^) on the trajectory of unconstrained
minimizers. The chemical equilibrium problem will be used to explain this.

The example illustrating this option is to solve a constrained problem
by solving a sequence of unconstrained problems. The theory behind this
approach is given after a description of the optimization problem: CHEMICAL
EQUILIBRIUM. The example and data are taken from Bracken and McCormick
[1968] .
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The problem of determining the chemical composition of a complex mixture
under chemical equilibrium conditions has long been of interest. Such problems
arise in the analysis of the performance of fuels and propellants and in the
synthesis of complex organic compounds.

A mixture of chemical species held at a constant temperature and
pressure reaches its chemical equilibrium state concurrently with reduction of
the free energy of the mixture to a minimum. This is a consequence of the
second law of thermodynamics. The objective function to be minimized in the
chemical equilibrium model is the expression of the free energy of the
chemical mixture under study. The value of the free energy of the mixture is

minimized subject to the chemical reactions possible between species of the

mixture

.

White, Johnson, and Dantzig formulated the chemical equilibrium problem
as a mathematical programming problem with linear mass balance constraints
representing the possible chemical combinations of the chemical species of the

mixture, and a nonlinear objective function representing the free energy of
the mixture (to be minimized) . They investigated steepest descent and
piecewise linear programming approaches to formulating the problem. In a

second paper, they explored the piecewise linear programming problem further.
The problem is discussed briefly by Dantzig, who used it to illustrate the
method of generalized linear programming.

Consider a mixture of m chemical elements. It has been predetermined
that the m different types of atoms can combine chemically to produce n
compounds, where the monotonic atom is regarded for our purpose as a possible
compound. Define

Xj = the number of moles of compound j in the mixture at equilibrium,

_ _ n
X = the total number of moles in the mixture, where x = S Xj

,

j=l

a^j = the number of atoms of element i in a molecule of compound j

,

b^ = the number of atomic weights of element i in the mixture.

The mass balance relationships that must hold among the m elements are

and

n
2 a^jXj = bi ,

i=l, . .

j=l
. ,

m. (5.1)

Xj > 0, j=l, . . . ,
n. (5.2)

Determination of the composition of the mixture at equilibrium is

equivalent to determination of the values of Xj (j=l,...,n) that satisfy (5.1)

and (5.2) and also minimize the total free energy of the mixture. The total

free energy of the mixture is given by

S Xj [Cj + in(Xj/x)] (5.3)

j=l
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where

Cj = (F^/RT) + in P

where (Fj/RTj) is the modal standard (Gibbs) free energy function for the j th
compound, which may be found in tables, and P is the total pressure in
atmospheres

.

Thus the nonlinear programming problem is as follows. Choose Xj

(j=l,...,n) to minimize the nonlinear objective function (5.3) subject to

linear constraints (5.1) and non-negativity restrictions (5.2).

We consider the example problem formulated and solved by White, Johnson,
and Dantzig [??]. We solve the nonlinear programming problem by the

sequential unconstrained minimization technique and obtain similar answers.

The problem considered is the determination of the equilibrium
composition resulting from subjecting the compound I/2N2 H4 + I/2O2 to a

temperature of 3500“K and a pressure of 750 psi. In Table 5 we show for each
compound j of 10 possible compounds (where the monotonic atoms are termed
compounds) the Gibbs free energy function (F'’/RT)j

,
the computed value of Cj

for P = 750 psi, and the number atoms of H, N, and 0 per molecule. The number
of atomic weights of H, N, and 0 in the mixture are bj^=2, b2 =l, and b

3
=l.

Formulating the nonlinear programming model, the nonlinear objective
function to be minimized is

Xj^
[
-6.089 + ln(xj^/x)]

+ . . .

+ Xio [
-22.179 + ln(Xio/x)]

and the linear constraints of the nonlinear progranuning problem are as

follows

:

Xj^ + 2x2 + 2x3 + Xg + Q
= 2

,

X4 + 2X5 + Xg + Xy = 1.

X3 + X7 + Xg + 2X9 + Xio = 1.

> 0 ,
X2 > 0 , . . . ,

x^ 0 > 0.

Solving the above nonlinear programming problem, we obtain the values of

Xj (j=l,..., 10 ), the number of moles of the 10 compounds present in the

equilibrium mixture, which are given in Table 5. These values agree with
those obtained in [??]. The corresponding value of the objective function
is -47.76.
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TABLE 5. DATA ON 1/2N2H^ + I/2O2 AT 3500"K, 750 psi.

i=l i=2 i=3

j Compound (FVRT)j H N 0

1 H -10.021 - 6.089 1 0 0

2 Hz -21.096 -17.164 2 0 0

3 H2 O -37.986 -34.054 2 0 1

4 N - 9.846 - 5.914 0 1 0

5 Nz -28.653 -24.721 0 2 0

6 NH -18.918 -14.986 1 1 0

7 NO -28.032 -24.100 0 1 1

8 0 -14.640 -10.708 0 0 1

9 O2 -30.594 -26.662 0 0 2

10 OH -26.111 -22.179 1 0 1

TABLE 6.

COMPOSITION OF 1/2N2H^ + I/2O2
AT 3500’K, 750 PSI

j Compound

1 H .0407

2 Hz .1477

3 H2 O .7831

4 N .0014

5 Nz .4853

6 NH .0007

7 NO .0274

8 0 .0180

9 O2 .0373

10 OH .0969

In Figure 7 is the input file for the chemical equilibrium problem with an

initial value of rj^ = .01. In Appendix A is a portion of the output. The

final values at the unconstrained minimizer are then used in the input file

shown in Figure 8, which has a value of "RK" = .001. The solution of this

second unconstrained problem is given in Figure 10. With these two vectors,
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FIGURE 7. INPUT FILE FOR CHEMICAL EQUILIBRIUM PROBLEM WITH rk= .01.

UNCO--CHEMICAL EQUILIBRIUM PROBLEM USING BARRIER FUNCTION
SOURCE- PP 253-254 OF NONLINEAR PROGRAMMING BY GPMCC

C1*H+C2*H2+C3*H20+C4*N+C5*N2+C6*NH+C7*N0+C8*0+
C9*02+C 1 0*OH +RK* (BARLN (H) +BARLN (H2 ) +BARLN (H20

)

+BARLN(N) + BARLN(N2) + BARLN(NH) + BARLN(NO) + BARLN(O)
+BARLN(02) +BARLN(OH) ) + ( (H+2 . *H2+2 . *H20+NH+0H-B1)**2
+(N +2.*N2 +NH +NO-B2)**2 +(H20+N0+0+2 . *02+0H-B3)**2)/RK
-ENTR0P(H+H2+H20+N+N2+NH+N0+0+02+0H) + ENTROP(H) + ENTR0P(H2)
+ ENTR0P(H20) + ENTROP(N) + ENTROP(N2) + ENTROP(NH) + ENTROP(NO)
+ ENTROP(O) + ENTR0P(02)+ ENTROP(OH) $

NUMBER OF UNKNOWNS, CONSTANTS, QUANTITIES, AND OBSERVATIONS
10 14 0 0

STARTING VALUES FOR UNKNOWNS
.1 . 00001 10.

'H2' .1 0.00001 10.

'H20' 0.1 0.00001 10

'N' .1 0.00001 10.

'N2' 0.1 0.00001 10

'NH' .1 0.00001 10.

'NO' .1 0.00001 10.

'O' .1 0.00001 10.
'02' 0.1 0.00001 10

'OH' .1 0.00001 10.

CONSTANTS
'Cl' -6.089
'C2' -17.164
'C3' -34.054
'C4' -5.914
'C5' -24.721

'C6' -14.986

'C7' -24.100
'C8' -10.708
'C9' -26.662
'CIO'’ -22.179
'Bl' 2.

'B2' 1.

'B3' 1.

'RK' .01
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FIGURE 8: INPUT FILE FOR CHEMICAL EQUILIBRIUM PROBLEM WITH rk=.001

UNCO- -CHEMICAL EQUILIBRIUM PROBLEM USING BARRIER FUNCTION
SOURCE- PP 253-254 OF NONLINEAR PROGRAMMING BY GPMCC(RK=. 001)
C1*H+C2*H2+C3*H20+C4*N+C5*N2+C6*NH+C7*N0=C8*0+

C9*02+C10*0H +RK*(BARLN(H)+BARLN(H2)+BARLN(H20)
+BARLN(N) + BARLN(N2)+BARLN(NH)+BARLN(N0)+BARLN(0)
+BARLN(02) +BARLN(0H) )+((H+2. *H2+2 . *H20+NH+0H-B1)**2
+(N +2. *N2 +NH +N0-B2)**2 +(H20+N0+0+2 . *02+0h-B3)**2)/RK

-ENTROP(H+H2+H20+N+N+N2+NH+N0+0+02+0H)
+ ENTROP (H ) +ENTROP (N2 ) +ENTROP (h20 ) +ENTROP (N ) +ENTROP (N2 ) +ENTROP (NH ) +ENTROP
ENTROP(O) +ENTROP(02)+ ENTROP(OH) $

NUMBER OF UNKNOWNS, CONSTANTS, QUANTITIES, AND OBSERVATIONS
10 14 0 0

STARTING VALUES FOR UNKNOWNS
'H' .049942 .00001 10.

'H2' .15007 0.00001 10.

'H20' .79116 0.00001 10.

'N' .0066461 0.00001 10

'N2' .50722 0.00001 10.

'NH' .0050182 0.00001 10

'NO' .038836 0.00001 10
'0' .02846 0.00001 10.
'02' .052818 0.00001 10

'OH' .11177 0.00001 10.

CONSTANTS
'Cl' -6.089
'C2' -17.164
'C3' -34.054
'C4' -5.914
'C5' -24.721
'C6' -14.986
'C7' -24.100
'C8' -10.708
'C9' -26.662
'CIO' -22.179
'Bl' 2.

'B2' 1.

'B3' 1.

'RK' .001

VARIABLES
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the solution can be approximated using extrapolation theory. The two point
extrapolation is

x*(est) = [cx(rj, + i) - x(ri^)]/(c - 1)

where
c = + i .

In Table 7, the extrapolation is performed using the output from the two
unconstrained minimizations.

Eventually, solving constrained problems will be an automatic procedure,
For now, with care, the FACTUNC program can be used to find solutions to

constrained problems.

When implementing the SUMT approach, it is important to use the single
argument function BARLN(X) . This prevents the sequence of iterates from
straying from R°

,
the interior of the feasible region. The use of LN(X) will

result in disaster. The user must also be sure that the initial starting point
is in the strict interior of the feasible region.

Choosing the and + is still more of and art than a science.
Experience is often a help in doing this. A large value to start with is

usually better then a small one, which creates a number of difficult
unconstrained minimization problems.

6. FUTURE WORK

The system described in this manual is just the first step in a proposed
series of optimization programs. One basic addition that is envisioned is the
implementation of a general indexing capability based on modern data base
concepts. Allowing "subscripted” data will extend the applicability of the

system to large problems without a concomitant increase in program size.

The second generalization is to the solution of constrained optimization
problems. Although this can be accomplished (as indicated in subsection 5.1)
using a barrier function approach, it is important for a user to specify in a

user friendly way inequality and equality constraints on the problem unknowns.

A third extension will be to allow the use of this system by algorithmists to

test their methodology. The system can be used to represent the problems and
to compute automatically the derivatives required by the algorithms.
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TABLE 7.

EXTRAPOLATION FOR CHENICAL EQUILIBRIUM PROBLEM
USING VALUES FROM TWO SUMT MINIMIZERS

Compound Solution
for rij = .01

Solution
for rjj = .001

Extrapo-
lation

True
Solution

H .049942 .041726 .0408 .0407

Hz .15007 .14829 .1481 .1477

H2 O .79116 .78409 .7833 .7831

N .0066461 .0022263 .0017 .0014

Nz .50722 .48779 .4856 .4853

NH .0050182 .00008635 -.0005 .0007

NO .038836 .028593 .0275 .0274

0 .028460 .019089 .0180 .0180

O2 .052818 .038759 .0372 .0373

OH .11177 .098314 .0968 .0969

Free
Energy -48.702 -47.850 -47.755 -47.76
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APPENDIX A:

ABBREVIATED OUTPUT FOR MAXL OPTION EXAMPLE.

MAXL-FIND PARAMETERS DEFINING FREQUENCY FUNCTION MIN -(LOG LIKE FN)
MINIMIZING INDEXED SUM
HESSIAN FORMED EXPLICITLY

FREQUENCE FUNCTION IS WEIGHTED SUM OF THREE NORMALS
(-FREQ)*LN((P/SIG)*NORDEN((Y-MU)/SIG)+(((l. -P-Q)/SIG2)*
NORDEN( (Y-MU2)/SIG2) )+(Q/SIG3)*NORDEN( (Y-MU3)/SIG3) )

$

SINGLE CHARACTER OUTPUT STRING OF (FUNCTION) EQUATION
( -FREQ)*LN( (P/SIG)*NORDEN( (Y-MU)/SIG)+( ( (1

. -P-Q)/S
IG2)*NORDEN( (Y-MU2)/SIG2) )+(Q/SIG3)*NORDEN( (Y-MU3)

/SIG3))$

NUMBER OF UNKNOWN PARAMETERS , CONSTANTS , DATA COLS., OBSERVATIONS
THE NUMBER OF UNKNOWNS IS = 8

THE
THE

NUMBER OF
NUMBER OF

SYMBOLIC CONSTANTS
DATA COLUMNS = 2

IN THE EQUATION (FUNCTION) =

THE NUMBER OF DATA OBSERVATIONS = 31

PARAMETERS: STARTING VALUE, LOWER AND UPPER BOUND
MU .133243E+03 .120000E+03 .200000E+03
SIG .947758E+01 .800000E+01 .700000E+02
P .288020E+00 .200000E+00 .900000E+00
MU2 .171105E+03 .141000E+03 .230000E+03
SIG2 .337675E+02 .lOOOOOE+02 . lOOOOOE+03

Q .200000E+00 .lOOOOOE+00 . 900000E+00
MU3 .200000E+03 .lOOOOOE+03 .300000E+03
SIG3 .300000E+02 .lOOOOOE+02 .500000E+02

CONSTANTS ( NONE FOR THIS PROBLEM)

INDEXED DATA
Y

95.00000
105.00000
110.00000
115.00000
120.00000
125.00000
130.00000
135.00000
140.00000
145.00000
150.00000
155.00000
160.00000
165.00000
170.00000

FREQ
1.00000
1.00000
4.00000
4.00000
15.00000
15.00000
15.00000
13.00000
21.00000
12.00000
17.00000
4.00000
20.00000
8.00000

17.00000
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175.00000 8.00000
180.00000 6.00000
185.00000 6.00000
190.00000 7.00000
195.00000 4.00000
200.00000 3.00000
205.00000 3.00000
210.00000 8.00000
215.00000 1.00000
220.00000 6.00000
225.00000 .00000
230.00000 5.00000
235.00000 1.00000
240.00000 7.00000
245.00000 1.00000
260.00000 2.00000

THE OPTIMAL VALUES OF THE UNKNOWNS ARE
1 MU = .12878E+03
2 SIG = .10297E+02
3 P = .25475E+00
4 MU2 = .15826E+03
5 SIG2 = .21741E4-02

6 Q = .15123E+00
7 MU3 = .22224E+03
8 SIG3 = .18505E+02

THE LEAST SQUARES VALUE IS = .11384E+04

THE GRADIENT IS -.37851E-13 -.60924E-13 -.60966E-11 -.43141E=13
-.10113E-13

THE GRADIENT IS -.76739E-11 .67502E-13 -.20073E-12
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APPENDIX B:

ABBREVIATED OUTPUT FOR CHEKICAL EQUILIBRIUM PROBLEM (rk=.01)

UNCO- -CHEMICAL EQUILIBRIUM PROBLEM USING BARRIER FUNCTION
UNCONSTRAINED PROBLEM
HESSIAN FORMED EXPLICITLY

SOURCE- PP 253-254 OF NONLINEAR PROGRAMMING BY GPMCC
Cl*H+C2*H2+C3*H20+C4*N+C5*N2+C6*NH-i-C7*N0+C8*0+

C9*O2+C10*OH +RK*(BARLN(H)+BARLN(H2)+BARLN(H20)
+BARLN(N) + BARLN(N2)+BARLN(NH)+BARLN(N0)-»-BARLN(0)
+BARLN(02) +BARLN(OH) )+( (H+2 .*H2+2 .*H20+NH+0H-B1)**2
+(N +2.*N2 +NH +NO-B2)**2 +(H20+N0+0+2 .*02+0H-B3)**2)/RK

- ENTROP (H+H2+H20+N+N2+NH+N0+0-K)2+0H

)

+
ENTROP (H ) +ENTROP (H2 ) +ENTROP (H20 ) +ENTROP (N )+ENTROP (N2 ) +ENTROP (NH ) +ENTROP (NO )

+

ENTROP(O) + ENTROP (02)+ ENTROP (OH) $

SINGLE CHARACTER OUTPUT STRING OF (FUNCTION) EQUATION
C1*H+C2*H2+C3*H20+C4*N+C5*N2+C6*NH+C7*N0+C8*0+C9*0
2+C 10*OH+RK* (BARLN (H ) +BARLN (H2 ) +BARLN (H20 ) +BARLN (

N

) +BARLN (N2 ) +BARLN (NH ) +BARLN (NO ) +BARLN (0 ) +BARLN ( 02

)

+BARLN(OH) )+( (H+2 . *H2+2 . *H20+NH+0H-B1 )**2+(N+2 . *N2
+NH+N0-B2 ) **2+ (H20+N0+0+2 . *02+0H-B3 ) **2 ) /RK- ENTROP
(H+H2+H20+N+N2+NH+N0+O+02+0H)+ENTR0P (H) +ENTROP (H2

)

+ENTROP (H20 ) +ENTROP (N ) +ENTROP (N2 ) +ENTROP (NH ) +ENTRO
P (NO ) +ENTROP ( 0 ) +ENTROP ( 02 ) +ENTROP (OH )

$

NUMBER OF UNKNOWNS, CONSTANTS, QUANTITIES, AND OBSERVATIONS
THE NUMBER OF UNKNOWNS IS = 10

THE NUMBER OF SYMBOLIC CONSTANTS IN THE EQUATION (FUNCTION) =

THE NUMBER OF INDEPENDENT VARIABLES = 0

THE NUMBER OF DATA OBSERVATIONS = 0

STARTING VALUES FOR UNKNOWNS
H .lOOOOOE+00 .lOOOOOE-04 .lOOOOOE+02
H2 .lOOOOOE+00 .lOOOOOE-04 .lOOOOOE+02
H20 . lOOOOOE+00 .lOOOOOE-04 .lOOOOOE+02
N . lOOOOOE+00 .lOOOOOE-04 .lOOOOOE+02
N2 .lOOOOOE+00 .lOOOOOE-04 .lOOOOOE+02
NH .lOOOOOE+00 .lOOOOOE-04 .lOOOOOE+02
NO .lOOOOOE+00 .lOOOOOE-04 .lOOOOOE+02
0 .lOOOOOE+00 .lOOOOOE-04 .lOOOOOE+02
02 .lOOOOOE+00 .lOOOOOE-04 . lOOOOOE+02
OH .lOOOOOE+00 .lOOOOOE-04 .lOOOOOE+02

CONSTANTS
Cl -.608900E+01
C2 -.171640E+02
C3 -.340540E+02
C4 -.591400E+01
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C5 -.247210E+02
C6 -.149860E+02
C7 -.241000E+02
C8 -.107080E+02
C9 -.266620E+02
CIO -.221790E+02
B1 .200000E+01
B2 .lOOOOOE+01
B3 .lOOOOOE+01
RK .lOOOOOE-01

VARIABLES

THE OPTIMAL VALUES OF THE UNKNOWNS ARE
1 H .49942E-01
2 H2 .15007E+00
3 H20 = .79116E+00
4 N .66461E-02
5 N2 = .50722E+00
6 NH .50182E-02
7 NO — .38836E-01
8 0 = .28460E-01
9 02 .52818E-01

10 OH = .11177E+00

THE LEAST SQUARES VALUE IS = -.48702E+02

THE GRADIENT
-.94860E-09

IS -.22860E-07 -.28291E-07 -.22719E-08

THE GRADIENT
-.49182E-07

IS -.67860E-05 -.49977E-09 -.20685E-09

-.10537E-03

-.51097E-07

31



APPENDIX C;

PARTIAL OUTPUT FOR CHEMICAL EQUILIBRIUM (rj^= .001)

UNCO- -CHEMICAL EQUILIBRIUM PROBLEM USING BARRIER FUNCTION
UNCONSTRAINED PROBLEM
HESSIAN FORMED EXPLICITYLY

SOURCE- PP 253-254 OF NONLINEAR PROGRAMMING BY GPMCC (RK=.001)
C1*H+C2*H2+C3*H20+C4*N+C5*N2+C6*NH+C7*N0+C8*0+

C9*O2+C10*OH +RK*(BARLN(H)+BARLN(H2)+BARLN(H20)
+BARLN(N) + BARLN(N2)+BARLN(NH)+BARLN(N0)+BARLN(0)
+BARLN(02) +BARLN(OH) )+((H+2. *H2+2 . *H20+NH+0H-B1)**2
+(N +2. *N2 +NH +NO-B2)**2 +(H20+NCH-0+2 . *02+0H-B3)**2)/RK

- ENTROP (H+H2+H20+N+N2+NH+N0-K)+02-K)H)
+ENTROP (H) +ENTROP (H2 ) +ENTROP (H20) +ENTROP (N) +ENTROP (N2 ) +ENTROP (N2 ) +ENTROP (NH)

+ENTROP(NO)+ENTROP (0) + ENTROP (02)+ ENTROP(OH) $

SINGLE CHARACTER OUTPUT STRING OF (FUNCTION) EQUATION
C1*H+C2*H2+C3*H20+C4*N+C5*N2+C6*NH+C7*N0+C8*0+C9*0
2+C 10*OH+RK* ( BARLN (H )+BARLN (H2 ) +BARLN (H20 ) +BARLN (N
) +BARLN (N2 ) +BARLN (NH ) +BARLN (NO )+BARLN ( 0 ) +BARLN ( 02

)

+BARLN(OH) )+( (H+2 . *H2+2 . *H20+NH+0H-Bl)**2+(N+2 . *N2
+NH+N0-B2)**2+(H20+N0+0+2 . *02+OH-B3)**2)/RK- ENTROP
(H+H2+H20+N+N2+NH+N0+0+02+0H ) +ENTROP (H )+ENTROP (H2

)

+ENTROP (H20 ) +ENTROP (N ) +ENTROP (N2 ) +ENTROP (NH ) +ENTROP
(NO ) +ENTROP ( 0 ) +ENTROP ( 02 ) +ENTROP (OH )

$

NUMBER OF UNKNOWNS, CONSTANTS, QUANTITIES, AND OBSERVATIONS
THE NUMBER OF UNKNOWNS IS = 10

THE NUMBER OF SYMBOLIC CONSTANTS IN THE EQUATION (FUNCTION) = 14

THE NUMBER OF INDEPENDENT VARIABLES = 0

THE NUMBER OF DATA OBSERVATIONS = 0

STARTING VALUES FOR UNKNOWNS
H .499420E-01 .100000E-04 .lOOOOOE+02
H2 .150070E+00 .lOOOOOE-04 .lOOOOOE+02
H20 .791160E+00 .lOOOOOE-04 .100000E+02
N .664610E-02 .lOOOOOE-04 .100000E+02
N2 .507220E+00 .lOOOOOE-04 .lOOOOOE+02

NH .501820E-02 .lOOOOOE-04 .100000E+02
NO .388360E-01 .100000E-04 .100000E+02

0 .284600E-01 .100000E-04 .lOOOOOE+02
02 .528180E-01 .100000E-04 . 100000E+02
OH .111770E+OO .100000E-04 .100000E+02

CONSTANTS
Cl -.608900E+01
C2 -.171640E+02
C3 -.340540E+02
C4 -.591400E+01
C5 -.247210E+02
C6 -.149860E+02
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C7 ~.241000E+02
C8 -.107080E+02
C9 =.266620E+02
CIO -.221790E+02
B1 .200000E+01
B2 .lOOOOOE+01
B3 .lOOOOOE+01
RK .lOOOOOE-02

THE OPTIMAL VALUES OF THE UNKNOWNS ARE

THE CURRENT VALUES OF THE UNKNOWS ARE
1 H .41726E-01
2 H2 .14829E+00
3 H20 .78409E+00
4 N .22263E-02
5 N2 = .48779E+00
6 NH = .86349E-04
7 NO = .28593E-01
8 0 = .19089E-01
9 02 .38759E-01

10 OH .98314E-01

THE LEAST SQUARES VALUE IS = -.47850E+02

THE GRADIENT IS -.20583E-09 -.21088E-08 -.17735E-10 -.20692

THE GRADIENT IS -.13664E+02 -.10834E-09 -.24742E-08 -.68331
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