Bureau of Standards MY, N. W. Bldg.

1952

HOIDE DOOV HOLED DO taken I the Library.

SUPPLEMENT 2 to NBS CIRCULAR 499

Nuclear Data

UNITED STATES DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

NUCLEAR DATA

Circular of the National Bureau of Standards 499 for sale by the Superintendent of Documents, Government Printing Office, Washington 25, D. C., price \$4.25. This price also includes three supplements that will include data reported during the three 6-month periods ending July 1, 1950, January 1, 1951, and July 1, 1951. Each supplement will be mailed automatically to purchasers of the table as soon as each publication becomes available. UNITED STATES DEPARTMENT OF COMMERCE, Charles Sawyer, Secretary NATIONAL BUREAU OF STANDARDS, A. V. Astin, Acting Director

NUCLEAR DATA

A Collection of Experimental Values of Half-lives, Radiation Energies, Relative Isotopic Abundances, Nuclear Moments, and Cross Sections

Compiled by

Katharine Way, Gladys Fuller, Marion Wood, Karin Thew and Alice Jurgens With the Help of Abstracts Prepared by Special Readers

[Issued November 26, 1951]

Supplement 2 (July 1950 to January 1951) to National Bureau of Standards Circular 499

READERS OF CURRENT JOURNALS AND REPORTS

•

ø

G. Friedlander G. Scharff-Goldhaber	Brookhaven National Laboratory
P. Axel R. B. Duffield	University of Illinois
W. S. Koski G. N. Plass	The Johns Hopkins University
J. R. Stehn	Knolls Atomic Power Laboratory
J. S. Smart	Naval Ordnance Laboratory
T. D. Hanscome	Naval Research Laboratory
H. Pomerance F. D. McGowan H. Zeldes	Oak Ridge National Laboratory

ACKNOWLEDGMENT

The Bureau group has received valuable help on editorial and lay-out problems from Mr. J. D. Luntz.

Contents

	rage
Explanation of Supplement 2	ľ
1. General Organization	
2. Special Details	
3. New abbreviations	
Alphabetical Index for Supplement 2	II
Table of Supplement 2	1
List of Fission and Spallation Papers	53
List of Journals Surveyed for Supplement 2	55
Additions to Old References	56
References for Supplement 2	58

EXPLANATION OF SUPPLEMENT 2

Т

1. General Organization

The new data in Supplement 2 to National Bureau of Standards Circular 499 are presented in the same general form as were those in Supplement 1, and the same general explanation applies. Minor changes in style have been made and a few new notations have been added. These will be mentioned later in detail.

As in the case of Supplement 1, a list of "Additions to Old References" has been included. Any old reference key in either the Table or Supplement 1 for which a newer and better reference is known is included in the list, the old key number being followed by the new reference. In addition, new references to data reported in Supplement 1 are given in the <u>body</u> of Supplement 2 as well as in the list of additions.

It is suggested that frequent users of the *Table* use the "Additions" list to insert the new reference under the old key in the main reference list. This job can be done in ii minutes.

2. Special Details

The only major class of new information which is included in Supplement 2 and not in Supplement 1 is a year's list of fission and spallation papers, given at the back of the Supplement.

An addition to the compilation of W. F. Hornyak, T. Lauritsen P. Morrison, and W. A. Fowler, Energy Levels of Light Nuclei, III, Rev. Mod. Phys. 22, 291 (1950), is in preparation. It was decided, therefore, to omit from this Supplement data on light element reactions pertaining to Q values, resonances, charged particle cross sections, etc., since they will be covered in the other paper. However, new data on neutron cross sections and β disintegrations are reported in Supplement 2 as they were in Supplement 1.

Policies adopted in *Supplement 1* which are continued here are briefly summarized below.

Listing of Methods for Measuring γ and β Energies. The abbreviations sl, $s\pi$, and $s\pi\sqrt{2}$ are used to designate lens, 180°, and double focusing spectrometers, respectively. In the case of γ -rays the designations pe⁻, ce⁻, Compt indicate that the measurements were made by means of photo, conversion, or Compton electrons, respectively.

Inclusion of Spin and Parity Assignments. Authors' estimates of spins and paritles are included in the decay schemes.

Listing of γ -rays Following β Decay under Parent Nucleus Only. The level information is provided by cross references in the Table.

Listing of Magnetic Moments. Results are based on the following values and are without diamagnetic corrections.

$\mu(H^{\perp}) = 2.7934$ nuclear magnetons	5
$\nu (\text{Na}^{23}) / \nu (\text{H}^1) = 0.28450$	47B7
$\nu(D^2)/\nu(H^1) = 0.153506$ *	47B29
$\nu(B^{11})/\nu(H^1) = 0.320827$	49A12

* Note error in Explanation of Supplement 1 where the value 0.307013 was given inadvertently.

Methods of Production. The lowest energy of the bombarding particle used is given when stated by the experimenter since it indicates an upper limit to the reaction threshold.

3. New Abbreviations

E2, M1, etc.	electric quadrupole, magnetic dipole,
	etc. radiation
Г_/Г	resonance scattering fraction
	Γ_n = neutron width
	Γ = total width
osc	pile oscillator method
J	Spin of compound nucleus in a nuclear
	reaction. "I" is used to denote the
	spin of the target nucleus.

Alphabetical Index to Elements

Element	Symbol	Ζ	Page	Element	Symbol	Z	Page
Actinium	AC	89	50	Neodym1um	Nd	60	39
Aluminum	Al	13	7	Neon	Ne	10	5
Americium	Am	95	52	Neptun1um	Np	93	51
Ant1mony	Sb	51	33,34	Neutron	n	0	1
Argon	A	18	10	N1ckel	Ni	28	15
Arsenic	AS	33	19	N10b1um	ND	41	24
Astatine	At	85	49	(Columbium)			
To m form		50		N1trogen	N	7	4
Barium	Ba	56	37				
Berkellum	BK	97	52	Osmium	0s	76	45
Beryllium	Ве	4	2	Oxygen	0	8	4
Bismuth	B1	83	49				
Boron	В	5	2,3	Palladium	Pd	46	27
Bromine	Br	35	20	Phosphorus	Р	15	8
				Platinum	Pt	78	46
Cadmium	Cd	48	29,30,31	Plutonium	Pu	94	51
Calcium	Ca	20	11	Polon1um	Ро	84	49
Californium	Cſ	98	52	Potassium	K	19	11
Carbon	С	6	3	Praseodymium	Pr	59	38,39
Cer1um	Ce	58	38	Promethium	Pm	61	39
Ces1um	Cs	55	37	Protactinium	Pa	91	- 50
Chlorine	Cl	17	9,10				
Chrom1um	Cr	24	13	Radium	Ra	88	50
Cobalt	Co	27	15	Radon	Rn	86	50
Copper	Cu	29	16	Rhenium	Re	75	45
Curium	Cm	96	52	Rhodium	Rh	45	27
				Rubidium	Rb	37	22
Dyspros1um	Dy	66	40	Ruthen1um	Ru	44	28
Erb1um	Er	68	41	Samarium	Sm	62	39
Europ1um	Eu	63	40	Scandium	Sc	21	12
		•0		Selenium	Se	34	19.20
Fluorine	F	9	5	S111con	st	14	10,20
Francium	Fr	87	50	Silver	49	47	28,29
				Sod1um	Na	11	6
Gadol 10110	Gđ	64	40	Stront 11m	Sr	38	22 23
Gallium	Ga	31	17.18	Sulphur	S	16	9
German fum	Ge	32	19	Baipha	5	10	0
Gold	Au	79	46	Tantalum	Та	73	43
				Technet1um	TC	43	26
Hafnium	Hſ	72	42	Tellurium	те	52	35
Helium	Не	2	1	Terb1um	Tb	65	40
Holm1um	НО	67	40	Thallium	Tl	81	47,48
Hydrogen	H	1	1	Thorium	Th	90	50
				Thulium	Tm	69	41
Indium	In	49	31	Tin	Sn	50	32,33
Iodine	I	53	35,36	Titanium	T1	22	12
Iridium	Ir	77	45				
Iron	Fe	26	14	Uran1um	U	92	51
Krypton	Kr	36	21	¥anad1um	V	23	13
Lanthanum	La	57	38	Wolfram	W	74	44
Lead	Рþ	82	48,49	(Tungsten)			
Lithium	L1	3	2	Venon	Yo	54	78
Lutet1um	Lu	71	41		Ne	• 04	30
Magnesium	Mg	12	6	ILLERDIUM	YO	.70	41
Manganese	Mn	25	14	Yttrium	Y	39	23
Mercury	Hg	80	47	7.1nc	Zn	30	17
Molybdenum	Mo	42	25	Zirconium	Zr	40	23

.

0	NEUTRON	n			0-n 1-H 2-He
1 0 1	I	1/2	50H67	Analysis of n reflection from magnetized mirror.	M.Hamermesh, E.Eisner, PR 79, 888.
	ß	0.78 sl	50R65	Allowed shape.	J.M.Robson, PR 81, 297(A) (1951).
1	HYDROGEN	Н			
н	σ _t (120 ev) (345 ev)	20.3 ~19.7	50H53	Co and Mn foils used as resonance scattering detectors	C.T.Hibdon, PR 79, 747.
	(0.798 - 4.9	7 Mev) table °	50L54	L1(p,n) and D(d,n) sources. Values good to ± 2 %.	E.E.Lampi, et al., PR 80, 853.
	(42 Mev)	0.203	50H71	Be (d,n) . C ¹² $(n,2n)$ detector.	R.H.Hildebrand, C.E.Leith, PR 80, 842.
	(270 Mev)	0.038	50D55	Be (350 Mev p,n). B1-f detector.	J.DeJuren, PR 80, 27.
	(280 Mev)	0.033	50F56	Be(340 Mev p,n). Scin; recoil p's.	R.Fox, et al., PR 80, 23.
1 1 0	μ	2.79245 ± 0.0002	50B73	From ratio of nuclear res- onance and cyclotron frequencies in same field.	F.Bloch, C.D.Jeffries, PR 80, 305.
2 1 1	σ _t (120 ev) (345 ev)	3.34 3.32	БОН5 3	Co and Mn resonance scattering detectors.	C.T.Hibdon, PR 79, 747.
	(42 Mev)	0.29	50H71	Be (d,n) . $C^{12}(n,2n)$ detector.	R.H.Hildebrand, C.E.Leith, PR 80, 842.
	(270 Mev)	0.057	50D55	Be (350 Mev p,n). B1-f detector.	J.DeJuren, PR 80, 27.
	(280 Mev)	0.049	50F56	Be(340 Mev p,n). Scin; recoil p's.	R.Fox, et al., PR 80, 23.

2 HELIUM He

He	σ _s (thermal) 1.4 (ep1-Cd) 1.5	5	50H80	Scattering detected in BF ₃ annular pc.	S.P.Harris, PR 80, 20.
3 2 1	μ negati σ(n,p) grap E _n =0.4-3.0 Mev	ve S 5 h 5	50F51 50C59	Results compared with those from inverse reaction. *	M.Fred, et al., PR 79 , 212(A). J.H.Coon, PR 80 , 488. *G.A.Jarvis, et al., PR 79 , 729.

Nuclear Data, National Bureau of Standards Circular 499

• • . -. •

-				
3	11	TH	H I I M	- i i
0				

3	LITHIUM Li				3-Li 4-Be 5-B
Li	$\sigma_{a}^{}(\text{pile }n)$	65	osc 50C71	Based on $\sigma_{\rm a}({\rm B})$ = 710. No self-screening correction.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	σ _t (120 ev) (345 ev)	2.24 1.65	50H53	Co and Mn foils used as reso- nance scattering detectors.	C.T.H1bdon, PR 79 , 747.
	$\sigma_{t} (0.02 - 1.4 \text{ Mev})$ $E_{o} = 0.27 \text{ Mev}$	graph Mev Γ=0	50A53 .045 Mev	Concludes p-neutrons, J = 2 for level in L1 ⁸ .	R.K.Adair, PR 79 , 1018.
	$\sigma_{\rm t}^{}$ (42 Mev)	0.68	50H71	Be (d,n) . C ¹² $(n,2n)$ detector.	R.H.Hildebrand, C.E.Leith, PR 80, 842.
	$\sigma_{\rm t}$ (280 MeV)	0.164	50F56	Be(340 Mevp,n) Scin; recoil p's.	R.Fox, et al., PR 80, 23.

4 BERYLLIUM Be

Be	$\sigma_{t} (0.2 - 1.4 \text{ Mev})$	graph .62,0.81	50B89	See 49A8 for analysis of 0.62 resonance.	C.K.Bockelman, PR 80 , 1011. New reference. Curve in 50Ad.
	$\sigma_{\rm t.}^{}(14 {\rm ~Mev})$	1.5	50067		L.S.Goodman, T.R.Robillard, ANL-4476, 62.
	$\sigma_{\rm t}$ (42 Mev)	0.85	50H71	Be (d,n) . C ¹² $(n,2n)$ detector.	R.H.Hildebrand, C.E.Leith, PR 80 , 842.
	$\sigma_{\rm t}^{}$ (270 Mev)	0.229	50D55	Be(350 Mev p,n). Bi-f detector.	J.DeJuren, PR 80, 27.
	$\sigma_{\rm t}$ (280 Mev)	0.225	50F56	Be(340 Mev p,n). Scin; recoil p's.	R.Fox, et al., PR 80, 23.
8 4 4	au	$5 \times 10^{-14^8}$	50M80	From Be ⁸ displacement in O ¹⁶ 4-pronged stars.	C.H.Millar, A.G.W.Cameron, PR 81, 316(A).
	Mass difference Be ⁸ - 2He ⁴	in Mev 0.09	50075	From six forked pairs in cosmic ray stars.	J.Crussard, Nature 166, 825.

5 BORON B

В	$\sigma_{\rm s}^{}({\rm epi-thermal})$ 3.5	50H90	B filtered n's. Measured with scattering chamber.	C.T.Hibdon, C.O.Muehlhause, ANL-4552, 6.
	$\sigma_{\rm t}$ (2300 eV) 6.3	50190	V resonance n's.	See above.
	$\sigma_{t} (0.2-1.0 \text{ MeV}) \text{ graph} \\ \frac{E_{o}}{0.43} \frac{\sigma_{o}}{6.7} \frac{\Gamma}{0.045} \frac{J}{2 \text{ or } 3}$	50B89	Resonance attributed to B ¹¹ because of abundance. O contamination negligible.	C.K.Bockelman, PR 80 , 1011. New reference Curve in 50Ad.
	$\sigma_{\rm t}$ (42 MeV) 0.85	50H71	Be (d,n) . $C^{12}(n,2n)$ detector.	R.H.H1ldebrand, C.E.Leith, PR 80 , 842.
	Relative isotopic abundances 10 19.57% 11 80.43%	50053	B^{11}/B^{10} ratio for 6 minerals agreed to ± 0.3 %. Possible BF_3 source fractionation eliminated.	0.0sberghaus, Z. Phys. 128, 366.
			(B continued on next page)	
· · · D	and the transferred and a	Cincula	- 400 Sumplament 2 Tul	1050 Tomasu 1051

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

*

5 BORON B (continued)

8 53	au 0.65 ^S 50A eta^{\dagger} 13.7 a eta a coincidences $E_a \sim$ same as in L1 ⁸ decay	B ¹⁰ (21.2 Mev p,t); Be ⁹ ($p,2p$); C ¹² (\sim 30 Mev p,na). Thresholds and E _{β} eliminate C ⁹ assignment.	L.W.Alvarez, PR 80, 519.
10 5 5	$\sigma_{s}^{}$ (epi-thermal) 2.43 501	90	See B, 50H90.
	$\sigma_t (0.5 - 2.1 \text{ Mev})$ 50W No resonances found	74	H.B.Willard, et al., PR 81 , 329(A).
11 5 6	$\sigma_{s}^{}(epi ightarrow thermal)$ 3.76 50F		See B, 50H90.
	σ _t (0.5 - 2.1 Mev) 50W E _o 1.28	4	See B ¹⁰ , 50W74.

6 CARBON C

с	σ _t (120 ev) (345 ev)	4.72 4.72	50H53	Co and Mn foils used as resonance scattering detectors	C.T.Hibdon, PR 79, 747.
	σ _t (0.798 - 4.97	Mev) table	50L54	L1(p,n) and D(d,n) sources. Values good to $\pm 2\%$.	E.E.Lampi, et al., PR 80 , 853.
	$\sigma_{ m t}$ (2.5 - 3.8 MeV $_{ m E_o}$ \sim) graph 2.9,3.7	50R60	D(d,n) source. Scin. Anisotropy of scattered n's observed. *	R.Ricamo, et al., HPA 23 , 508 and *23 , 503.
	σ_{t} (42 Mev)	1.09	50H71	Be (d,n) . C ¹² $(n,2n)$ detector.	R.H.Hildebrand, C.E.Leith, PR 80 , 842.
	$\sigma_{\rm t}$ (270 Mev)	0.288	50D55	Be (350 Mev p,n). Bi-f detector.	J.DeJuren, PR 80, 27.
	σ _t (280 Mev)	0.279	50F56	Be(340 Mev p,n). Scin; recoil p'S.	R.Fox, et al., PR 80, 23.
	Isotope shift		50B70	C^{13} shifted to lower frequency.	C.R.Burnett, PR 80, 494.
14 6 8	ß	0.155 sl	50W82	F-K plot slightly convex for 0.06 mg/cm ² source in agree- ment with 48Ci0, 49A3.	S.D.Warshaw, PR 80, 111.
15 6 9	2.4 ^s activity n from $C^{14}(n,\gamma)$.	ot found	50Y51	$\sigma(ext{th } n)$ <1 microbarn.	L.Yaffe, W.H.Stevens, PR 79 , 893.
	New reference for	r data reported in	50H10	c ¹⁵ .	E.L.Hudspeth, et al., PR 80 , 643.

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

3

5-В 6-С

	7	NITROGEN	N				7-N 8-0
N		σ	1.76	osc	50C71	Chem. Cf. σ [N ¹⁴ (n,p)].	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
		σ _t (120 ev) (345 ev)	~9.9 ~9.6		50H53	Co and Mn foils used as resonance scattering detectors.	C.T.Hibdon, PR 79, 747.
		$\sigma_{t}^{}$ (42 Mev)	1.22		50H71	Be (d,n) . $C^{12}(n,2n)$ detector. N ₂ CH ₂ used.	R.H.Hildebrand, C.E.Leith, PR 80, 842.
, 12	5	$eta^{ extsf{+}}$ to a emitt.	ing state	of C ¹²	50A57	Delayed α 's with τ of 13 x 10 ^{-3 s} found.	L.W.Alvarez, PR 80, 519.
14 7	7	q	0.01	Mic	50851	$J = 1 \rightarrow 2$ transition of $N^{14}F_3$.	J.Sheridan, W.Gordy, PR 79 , 513.

8 OXYGEN 0

o	$\sigma_{t}^{}(0-1.44 \text{ MeV}) \text{ graph}$ $\frac{E_{o}}{0.44} \frac{\sigma_{o}}{14.0} \frac{\Gamma}{0.045}$ $1.00 7.9 0.100$ $1.30 6.7 0.040$	50B89 J 3/2 3/2 3/2	Li(p,n). p-neutrons most likely for first two res- onances and p or d for third.	C.K.Bockelman, PR 80, 1011. New reference. Curve in 50Ad.
	σ _τ (2.6-3.8 Mev) graph Double max. ~3.6	50R60	D(d,n) source. Scin. Anistrophy of scattered n's observed.*	R.Ricamo, et al., HPA 23 , 508 and *23 , 503.
	σ_{t} (42 MeV) 1.36	50H71	Be (d,n) . C ¹² $(n,2n)$ detector. Derived from several molecular σ 's.	R.H.Hildebrand, C.E.Leith, PR 80 , 842.
	$\sigma_{ m t}^{}$ (270 MeV) 0.372	50D55	Be(350 Mev p,n). B1-f detector.	J.DeJuren, PR 80, 27.
	σ _t (280 Mev) 0.380	50F56	Be(340 Mev.p,n). Scin; recoil p's,	R.Fox, et al., PR 80, 23.

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

.

•

·

9 FLOURINE F

C.K.Bockelman, PR 80, 1011. σ_ (0.01-0.7 Mev) graph 50B89 L1(p,n). Six additional F σ. Eo Γ maxima observed. New reference. Curve in 50Ad. J 0.10 17.0 0.015 1 σ. (0.5-2.1 Mev) 50W74 L1(p,n). Distinction between H.B.Willard, et al., PR 81. Eo scattering and absorption 329(A)(1951). from the fact that BF, 0.95 scattering counter shows only last three 1.24 resonances. 1.66 absorption 2.04 σ_{+} (42 MeV) 50H71 Be(d,n). $C^{12}(n,2n)$ detector. R.H.Hildebrand, C.E.Leith, 1.60 LiF used. PR 80, 842. F²⁰ New reference for data reported in 50J4 J.V.Jelley, Phil. Mag. 41, 1199. 70^S Produced by $0^{16}(d,n)$. 9**17**8 50P64 V. Perez-Mendez, P. Lindenfield, $\begin{array}{l} \text{Log ft}_1 \sim \text{2.5.} \\ \text{Log ft}_2 \sim \text{3.5.} \end{array}$ β_1^+ 25% 0.78 $S\pi$ PR 80, 1097. β_2^+ 1.72 75 % ST 0.98 а 19 9 10 $\sigma(\text{fast } n, \gamma) 12^{\text{s}}\text{F}$ graph 50H70 L1(p,n). Based on $\sigma(th n, \gamma) =$ R.L. Henkel, H.H. Barschall. Eo σ_{o} 0.01. E = 0.225 - 0.370 and PR 80. 145. New reference. 0.510 - 0.625 Mev. Curve in 50Ad. 1.2 mb 0.27 0.59 1.0 mb 50G65 From $\nu(\mathrm{H}^{1})/\nu(\mathrm{F})$ [HF1] E.W.Guptill, et al., Can. J. 2.62805 I μ $= 1.062917 \pm 0.00001.$ Res. A28, 359. Magnetic resonance frequency No temperature effect observed. H.S.Gutowsky, C.J.Hoffman, 50G57 function of chemical compound PR 80, 110. \$ 96.5% 20 5.33 sl 50L57 Suggests that 2.45γ of 50J4 R.M.Littauer, Phil. Mag. 41, Ĩ11 9 6.74 sl is due to impurity. 1214. 3.5% γ sl;ce 1.64

10 NEON Ne

Ne	$\sigma_{\rm s}$ (th n)	2.4	50160	S.P.Harris, PR 80, 20.
	Relative 20 21 22	isotopic abundances 90.92 % 0.257% 8.82 %	50N51	A.O.Nier, PR 79 , 450.
	22	8.82 %		

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951 5

9-F 10-Ne

11	SODIUM Na				-Na 2-Mg
Na	$\sigma_{a}^{}$ (pile <i>n</i>)	0.50 [°] osc	50C71	Chem. Based on $\sigma_{a}(B) = 710$.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	σ_{t} (120 ev) σ_{t} (345 ev)	4.16 4.22	50H53	Thin Co and Mn foils used as resonance scattering detectors.	C.T.Hibdon, PR 79 , 747.
	σ _t (1-800 ev)	3.3	50S40	Used fast chopper.	W.Selove, et al., ANL-4397, 86.
i	σ_{t} (42 Mev)	1.67	50H71	From σ (NaCl) = 3.777, σ (CCl ₄) = 9.516, and σ (C) = 1.092. C ¹² (n,2n)C ¹¹ detector.	R.H.Hildebrand, C.E.Leith, PR 80 , 842.
	$\sigma_{s} \begin{bmatrix} I + \frac{1}{2} \\ I - \frac{1}{2} \end{bmatrix}$	0.8 8.8	50865	Calculated from resonance data of (50H9) and $\sigma_{\rm t}$ above (50S40).	W.Selove, PR 80, 290.
	New reference for	data reported in	50W6.	Na ²⁴ .	W.D.Whitehead, N.P.Heydenburg, PR 79 , 99.
20 11- 9	τ ~ β^{\dagger} > Ne(p,n) threshold=16.9	0.25 ^S 3.5 [*]	50A57	Intense α 's of >2 Mev follow β^+ . *From energy considerations and intensity of α 's observed.	L.W.Alvarez, PR 80, 519.
11 ²⁴ 13	τ	15.04^h±0.06	50855	Ion exchange chemistry. Used windowless pc.	A.K.Solomon, PR 79, 403.
	τ	15.10^h ± 0.04	50C69	Ion exchange chemistry, 4π ionization chamber.	J.W.Cobble, R.W.Atteberry, PR 80 , 917.
	γ	2.78 ^a pairs [≠] 8 x 10 ⁻⁴	50M82	Observed annihilation radiation. Consistent with E2.	W.Mims, et al., Nature 166, 1027.
	No $eta\gamma$ angular c	orrelation	50B60		J.R.Beyster, M.L.Wiedenbeck, PR 79 , 728.
	γy angular corre	lation	50C77	Consistent with $\hat{\Gamma} = 4, 2, 0$.	G.Charpak, F.Suzor, J. Phys. Rad. 11, 633.
	Na (n, γ) Peaks at 2.8,3. 3.9,4.	γ spectrum 0,3.2,3.6, 4,4.8,5.4	50M74	$D_{\gamma p}$ in deuterium loaded emulsions. γ peaks of comparable intensity.	C.H.Millar, et al., Can. J. Res., 28A, 475.

12 MAGNESIUM Mg

.

Mg	$\sigma_{a}^{}$ (pile n)	0.057 Osc	50C71	Based on $\sigma_{\rm a}({\rm B})$ = 710. No chem.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	σ_{t} (42 Mev)	1.72	50H71	Be (d,n) . $C^{12}(n,2n)$ detector.	R.H.Hildebrand, C.E.Leith, PR 80 , 842.
25 12 13	Al ²⁷ (d,a) Q	6.58,6.01,5.62,4.95, 4.61,3.84,3.22,2.57, 1.77,1.10,0.63	50S68	E _d = 11.1. Al absorption of α's; pc. Calibration with ThC' α's. Angular distribution curves given for different Q's.	A.D.Schelberg, et al., PR 80 , 574.
26 12 14	Al (Y,p)	threshold = 8.6	50D56		B.C.Diven, G.M.Almy, PR 80, 407.

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951

13	3 A	LUN	11 N U	M AI

13-A1

A1	$\sigma_{a}^{}$ (pile n)	0.212	osc 50C71	Based on $\sigma_{a}^{}(B)$ = 710. Chem.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63 , 1175.
	σ_{t} (10 - 550 keV)	curve	50H70	L1 (p,n) . Many peaks.	R.L.Henkel, H.H.Barschall, PR 80 , 145.
	$\sigma_{t}^{}(42 \text{ Mev})$	1.78	50H71	Be (d,n) . C ¹² $(n,2n)$ detector.	R.H.Hildebrand, C.E.Leith, PR 80 , 842.
	$\sigma_{\rm t}$ (270 Mev)	0.555	50D55	Be(350 Mev p,n). Bi-f detector.	J.DeJuren, PR 80, 27.
	$\sigma_{\rm t}^{}({\rm 280~Mev})$	0.566	50F56	Be(340 Mev p,n). Scin; recoilp's	R.Fox, et al., PR 80, 23.
	Resonance E Γ _n ∕Γ >	>40 kev * 0.99	50H54	From measurement of Σ_a and Σ_s , resonance absorption and scattering integrals, in Argo, $\Gamma_n/\Gamma = \Sigma_s/(\Sigma_s + \Sigma_a)$. Σ_a from catorrection for 1/v absorption. in annular counter. Correcti	S.P.Harris, et al., PR 79 , 11. nne heavy water pile. admium ratio and σ_a (th n). Σ_s from comparison with C on for potential scattering.
	Mg(p,γ) Peạks at 0.88,1 1.22,5	L.03,1.06,1 1.26,1.35	50C66 1. 11 ,	$E_p = 0.35 - 1.5$ Mev. Several peaks show evidence of more than one level.	J.N.Cooper, et al., PR 80 , 131(A).
	Al (γ, n) 6. 3 ⁸ Al Al (γ, p)	σ curve $\overline{\sigma}$ table	50D56	Angular distribution of p 's symmetrical. For the (γ, p) reaction, $E_{\gamma} = 13.9, 17.1, 20.8.$	B.C.Diven, G.M.Almy, PR 80 , 407.
	New reference for	data repor	ted in 50W6	Al ²⁸ .	W.D.Whitehead, N.P.Heydenburg, PR 79 , 99.
26 13 13	Mg ²⁵ (d,n) Q 5.58,3	3.58,1.95,0	50853 0.45	E _d = 1.47. Separated isotopes. Ilford C2 photo plates.	C.P.Swann, et al., PR 79 , 598.
27 13 14	σ (10 - 550 kev n	γ)2.30 ^m Al curve	50H70	L1(p , n). Based on σ (th n , γ) = 0.22. Several resonances observed.	R.L.Henkel, H.H.Barschall, PR 80, 145.
	σ(~0.03 Mev n,)	/)2.30 ^m A1 1.6 mb	50H84	Based on $\sigma(\tan n, \gamma) = 0.21$ of 47S33. Sb - Be n's.	V.Hummel, B.Hamermesh, ANL-4476 and PR 82, 67.
	$\sigma(n,p)$ 9.58 ^m Mg/ σ	(n,α) 14.90 ^t 0.85	Na 50067	14 Mev n from $\mathrm{H}^{3}(d,n)$.	L.S.Goodman, T.R.Robillard, ANL-4476, 62.
	μ	3.63938	I 50G 85	From $\nu_{\text{Na}} / \nu_{\text{A}\text{I}}$ [NaAlO ₂] = 1.015081 ± 0.00001.	E.W.Guptill, et al., Can. J. Res. 28A , 359.
	Mg ²⁶ (d,n) Q 5.68,4 2.03,1	80,3.76,2 .35,0.256,	50853 2.93, -0.13	E _d = 1.47. Separated isotopes. Ilford C2 photo plates.	C.P.Swann, et al., PR 79 , 598.
28 13 ¹⁵ 15	Al (n,γ) $\mathbb{E}_{\gamma}(n)$	nax) = 8.0 -	8.5 50H51	Photo plates. Dy p . Peaks at 5.3, 6.3.	B.Hamermesh, PR 80, 415.
	Al(d,p) Angular distrib p spectrum	oution curv	50H80 res	E _d = 4.6, 5.8, 7.5. Intensity max. in forward direction. Argon - filled ic.	J.R.Hölt, C.T.Young, Proc. Phys. Soc., Lond., A63 , 833.

Nuclear Data, National Bureau of Standards Circular 499 966962 O - 51 - 2 Supplement 2, July 1950 - January 1951

•

.

14	SILICON SI				14-Si 15-P
Si	σ_{a} (th n)	0.15	50T58	S1 - H ₂ 0 mixture compared with C - H ₂ 0 mixture and with H ₂ 0. H, 0, C σ 's taken as 0.313, 0.0016, 0.0045, respectively.	C.W.Tittle, H.Faul, PR 80 , 908.
	σ_{a} (pile n)	0.16 osc	50C71	Based on $\sigma_{a}(B) = 710$. No chem.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	σ _t (120 ev) (345 ev)	2.21 2.30	50H53	Thin foils of Co, Mn used as resonance scattering detectors.	C.T.Hibdon, PR 79, 747.
28 14 14	$ \left. \begin{array}{c} \operatorname{Al}^{27}(p,p) \operatorname{Al}^{27} \\ \operatorname{Al}^{27}(p,\gamma) \operatorname{Sl}^{28} \\ \operatorname{Al}^{27}(p,\alpha) \operatorname{Mg}^{24} \end{array} \right\} $	yield curves	50854	E _p = 1.4 - 4.1. Many resonances observed.	F.C.Shoemaker, et al., PR 79 , 228(A).
	r -	-5.07	50D52	From $\triangle f(C_2H_4-61^{28})=19.45\pm0.08$, f(C_2H_4)=14.37±0.015; $\triangle f(C0-5f^{28})=6.45\pm0.03$, f(C0)=1.38±0.07.	H.E.Duckworth, R.S.Preston, PR 79 , 402.
29 14 15	S1 ²⁸ (d, p) Q 6.18,4 3.10,2	4.89,4.12,3.75 2.58,2.09,1.31	50M69	E _d = 3.8. Level values unchanged from 49AH.	H.T.Motz, R.F.Humphreys, PR 80, 595.
	f –	· 4 . 94	50D52	From $\triangle f(S1^{29} - N1^{58}) = 3.07 \pm 0.02$ and $f(N1^{58}) = -8.01 \pm 0.05$.	H.E.Duckworth, R.S.Preston, PR 79 , 402.
30 14 16	S1 ²⁹ (d,p) Q 8.36,5 .9	96 ?, 4.45,3.36,2.	50M69 66	E _d = 3.8.	H.T.Motz, R.F.Humphreys, PR 80 , 595.
	f -	5.70	50D57	From $\triangle f(CH_3 - S1^{30}) = 24.53 \pm 0.05$ and $f(CH_3) = 18.83 \pm 0.015$.	H.E.Duckworth, et al., PR 79 , 188.
31	au	2.59 ^h	50156		E.Lüscher, et al., HPA 23, 561.
14 17	S1 ³⁰ (d,p) Q 4.33,3 2.60,5	3.60,3.10, 2.00	50M69	E _d = 3.8. Q = 4.33 believed to be ground state Q.	H.T.Motz, R.F.Humphreys, PR 80, 595.

15 PHOSPHORUS P

P	$\sigma_{_{a}}$ (pile n)	0.193 osc	50071	Based on $\sigma_{a}(B) = 710$. Chem.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63 , 1175.
31 15 16	σ(n , p) E _n = 1.9 - 3.75	σ curves Mev	50 L5 6	7 - 8 resonances.	E.Lüscher, et al., HPA 23, 561.
32 15 17	au	14.30 ^d	50B78	Rate of energy emission measured by calorimeter.	J.G.Bayly, Can. J. Res. 28A, 520.
	Positive parti	cles/e ⁻ ~8 x 10 ⁻⁴	50056	$E_e^{-\sim}0.19$. sm with path length of 4.4 cm. Ilford G5 plates.	G.Groetzinger, D.Kahn, PR 80, 108.
	β^{-} Bump at $\sim H_{\rho} =$	1.708 sl 1000	50W66	eta shape constant over several half lives.	S.D.Warshaw, et al., PR 80 , 288.
	Note abstracts	in pR 83, 215 (1951) wî	nich will be reported in <i>Suppleme</i>	nt 3.

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

8

.

.

16	SULPHUR S				7-C
S	$\sigma_{a}^{}$ (pile n)	0.49	osc 50071	Based on $\sigma_{a}(B) = 710$. No chem.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	σ _t (0.015 - 1.45	Mev) σ curve	50P53	Resonances at 0.111 $(J = \frac{1}{2})$; 0.203,0.274,0.290 $(\frac{1}{2} \text{ or } \frac{3}{2})$; 0.375 $(\frac{1}{2})$; 0.585 $(\frac{3}{2})$; 0.700 $(\frac{1}{2})$; 0.725; 0.742.	R.E.Peterson, et al., PR 79 , 593.
	$\sigma_{t}^{}$ (42 Mev)	1.97	50H71	Be (d,n) . C ¹² $(n,2n)$ detector.	R.H.Hildebrand, C.E.Leith, PR 80, 842.
	New reference fo	or data repo	rted in 5009	s ³⁵ .	L.Gross, D.R.Hamilton, PR 80, 484.
32 16 ³² 16	$P^{31}(p,\gamma)S^{32}$ 11 levels betw and (10.0 + 1.0	γ yield c ween (10.0 ⁴ 61) Μεν	urve 50G55 †1.08)	~12 Mev γ observed at $E_p = 1.270.$	G.R.Grove, et al., PR 80 , 107.
	σ(n,p) E _r = 1.9 - 3.75	σ curve Mev	50L56	6 resonances. Absolute values fixed from 48K28.	E.Lüscher, et al., HPA 23 , 561
	M 31 .	. 9823 ± 0 ⋅ 00	10 50845	Absolute mass measurement.	L.G.Smith, PR 81, 295(A).
33 16 ¹⁷	μ	0.63	Mic 50E51	Sample enriched to 5.54 % S^{33} . CCS^{33} J = 1 \rightarrow 2 transition; g - factor taken as 0.421.	J.R.Eshbach, et al., PR 80 , 1106.
35 16 ¹⁹	M(8 ³⁵ - 8 ³²)/M(8 M(8 ³⁵ - 8 ³²)/M(8	3 ³⁴ - S ³²) 1.50156 ± 3 ³³ - S ³²) 2.99882 ±	50K46 0.00015 0.00030	$J=1 \rightarrow 2$ transition for OCS.	W.S.Koski, et al., PR 81 , 296(A).

17 CHLORINE CI

Cl	$\sigma_{a}^{}(pile n)$	31.5	0SC 50H62	Based on $\sigma_a(B) = 710$.	S.P.Harris, et al., PR 80, 342.
	$\sigma_{a}^{}(\text{pile }n)$	31.3	osc 50C71	Based on $\sigma_a(B) = 710$. No self- screening correction; no chem.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	Resonance $\frac{E_{o}(ev)}{-75}$ $\sigma_{s}(120 ev)$ $(345 ev)$ $(\sim 2700 ev)$	$ \frac{\Gamma_{\gamma}}{0.30} \frac{\Gamma_{n}}{2.63} $ 5.12 3.02 1.60	50H55 J 1 or 2	From thermal σ_a , assumption of 1/v absorption, and new values of σ_t measured with Co, Mn, and V resonance scattering detectors.	C.T.Hibdon, C.O.Muehlhause, PR 79, 44.
	$\sigma_{\rm t}~(42~{\rm MeV})$	2.11	50H71	Be (d,n) . $C^{12}(n,2n)$ detector.	R.H.Hildebrand, C.E.Leith, PR 80 , 842.
	q coupling $C1^{35}/C1^{37}$	ratio 1.277	50856 Mic	BrCl used.	D.F.Smith, et al., PR 79 , 1007.
	M(Cl ³⁵)/M(Cl ³⁷) 0.945986 ± 0.000008		50856 00008 Mic	See above.	See above.
				(Cl continued on next page)	
Nuclear Da	ta, National	Bureau of Star	ndards Circula	r 499 Supplement 2, Jul	y 1950 - January 1951 9

Supplement 2, July 1950 - January 1951

16-S

17	CHLORINE CI (continued)	7-C 8-A
34 17 17	$egin{array}{cccccccccccccccccccccccccccccccccccc$	R58 Cl ³⁵ (18 Mev <i>p,pn</i>) and S ³⁴ (18 Mev <i>p,n</i>). sl; ce, pe, Compt.	L.Ruby, J.R.Richardson, PR 80, 760.
36 17 19	$\sigma(3-3.7 \text{ Mev } n, \alpha) 14.3^{d} \text{P shows}$ 50 monotonic increase	L56 No σ values given. Possible peak at $E_n = 3.45$. $D(d,n)$.	E.Lüscher, et al., HPA 23 , 561.
	$Cl^{35}(n,\gamma)$ γ spectrum 50 E _{γ} (max) = 8.5 Lines at 3.1,3.4,3.9,4.5 - 5.0 No line at 8.5	174 Special D loaded C2 plates. MgCl_ used. Two or more γ^1 s in broad peak.	C.H.Millar, et al., Can. J. Res. 28A , 475.
	$E_{\gamma}(\max) = 10.5$ 50 Some structure shown Line at 8.7 ?	W61 D ₂ in ionization chamber counter CCl ₄ used.	R.Wilson, PR 80, 90.
-	E (max) = 9.2 50 Several peaks 4.2 - 7 Mev Intense line at 8.5	H51 D ₂ O loaded Ilford C2 plates. C ₂ Cl ₆ used.	B.Hamermesh, PR 80, 415.
38 17 21	τ 37.29^m 50	C69 Produced by Cl(pile n); ion exchange. 4π ic.	J.W.Cobble, R.W.Atteberry, PR 80 , 917.
	γγ angular correlation 50 indicates 2 E2 γ's with I = 3,2,0	362 1.1 β with log ft = 5.0 should then be 1 st forbidden.	R.M.Steffen, PR 80, 115.
39 17 22	$β^{-}$ 93% 1.65 a 50 7% 2.96 a γ 0.35 aβe ⁻ α = 0.05 1.35 a coin γγ, (0.35 e ⁻)β, (1.85 β)γ coinciden (2.96 β)γ coincidences could not have been observed A ⁴⁰ (γ, p) threshold = 14.2	Height Proposed decay scheme: $55.5^{m}C1^{39}$ 1.65 93% 1.35 0.35 $>15^{y}A^{39}$	R.N.H.Haslam, et al., PR 80, 318. 1.65 β: [log ft~4.8] 2.96 β: [log ft~7.7] [f _{7/2} -]* *See A ³⁹ , 50B66.

18 ARGON A

A	$\sigma_{a}^{}(\text{pile }n)$	0.62	osc	50071	Chem. Based on σ_{a} (B) = 710.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	New reference	for data :	reported	in 5022	A ³⁷ .	A.Zucker, W.W.Watson, PR 80. 966.
39 18 21	τ β ⁻ Noγ>0.3	>15 ^y 0.565	sl	50B66	<pre>K(pile n); eluted from charcoal column by He. Log ft >8.7. △ I= 2, yes shape makes ground state f_{7/2}.</pre>	A.R.Brosi, et al., PR 79 , 902.
	2.6 ^m activity	with eta	~2.1	50Z52	From A ³⁸ (<i>d</i> ,p).	A.Zucker, W.W.Watson, PR 80, 966.

.

Nuclear Data, National Bureau of Standards Circular 499

· · ·

.

19	POTASSIUM	К				20-Ca
K	$\sigma_{a}^{}$ (pile n)	1.89	osc	50071	No chem. Based on $\sigma_{a}(B) = 710$.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	σ_{t} (120 ev) σ_{t} (345 ev)	1.92 1.75		50H53	Thin Co and Mn foils used as resonance scattering detectors.	C.T.Hibdon, PR 79, 747.
39 19 20	μ	0.39104	I	50065	$\nu (K^{39}) / \nu (N^{14}) = 0.64580.$ Used N ¹⁴ values of 50P6.	T.L.Collins, PR 80, 103.
40 19 21	β 's/sec(gm of K): γ/β	=23 ~0.05		50571	$\tau_{\beta} = 18.3 \times 10^{8}$. From counts as function of KI crystal weight.	B.Smaller, et al., PR 79 , 940. *Based on K ⁴⁰ /K of 0.0119%.
	β ⁻ \$/sec(gm of K)= K/β ⁻	- 28 0.14		50S52	$\tau_{\beta} = 14.2 \times 10^{8^{y}}$. Counted β 's and Auger e ⁻ 's ^{**} . Extra- polated to zero source and backing thickness.	G.A.Sawyer, M.L.Wiedenbeck, PR 79 , 490. ** Assumed e ⁻ /(e ⁻ + X) = 0.88.
	K's/sec(gm of K)^	~ 3		50P74	From A content of Bugginger salts of known age.	M.Pahl, et al., Z. Naturforsch. 5a, 404.
	К∕/ <i>β</i> [−]	0.13 [†]	pc	50844	K X-rays counted. e ⁻ /(e ⁻ + X) used not given.	V.L.Sailor, et al., PR 81, 298(A)(1951) and [†] verbal report.
	к/ <i>Б</i>	0.126	ms	50183	Isotopic dilution method for A^{40} and Ca^{40} in ancient sylvite.	D.C.Hess, et al., PR 81 , 298(A) (1951) and PR 80 , 916.
	к// <i>Б</i> <	0.67		50653	From counting rate differences in G-M's with high and low efficiency for A X-rays **.	T. Gráf, PR 79 , 1014. **Assumed e ⁻ /(e ⁻ +X) = 0.88 and ß/sec(gm of K) = 26.8.
	k/β ≤	≤0.07		50C68	Special counter for X and $X + \beta$'s. Approximate back-scattering correction used.	M.Ceccarelli, et al., PR 80, 909.
	ß	1.33	S	50F64	Enriched KCl. Shape fitted by C3 factor of Greuling.	L.Feldman, C.S.Wu, PR 81, 298(A) (1951).
	γ	1.48	sc1n	50H74	No other γ with intensity > 10% of 1.48 γ .	R.Hofstadter, J.A.McIntyre, PR 80, 631.
	γ	1.46	scin	50B63		P.R.Bell, J.M.Cassidy, PR 79, 173.
42 19 23	$egin{smallmatrix} eta\gamma & extsf{angular cor:} \ eta & eta &$	relation 0.062		50B60	Consistent with I = 2-, 2+, 0+ of 49841.	J.R.Beyster, M.L.Wiedenbeck, PR 79, 728.

20 CALCIUM Ca

Са	$\sigma_{a}^{(pile n)}$	0.40	OSC	50C71	Based on $\sigma_{\rm a}$ (B) = 710.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	$\sigma_{t}^{}$ (42 Mev)	2.21		50H71	Be (d,n) . C ¹² $(n,2n)$ detector.	R.H.Hildebrand, C.E.Leith. PR 80, 842.
45 20 25	β	0.255	scin	50K60	Split crystal technique. Kurie plot straight.	B.H.Ketelle, PR 80, 758.
45 20 25	ß	0.255	scin	50K60	Split crystal technique. Kurie plot straight.	B.H.Ketelle, PR 80, 758.

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

11

19-K

•

3.e

21	SCANDIUM	Sc				22-Ti
Sc	$\sigma_{a}^{}(\text{pile }n)$	31.8	OSC	50H62	Based on $\sigma_{a}^{}(B)$ = 710.	S.P.Harris, et al., PR 80 , 342.
44 21 23 3.96 ^h	eta^{\star}_{γ}	1.54 1.18	a a coin	50056	K^{41} (23 Mev a,n); chem. One β^{\dagger} . $\beta\gamma$ coincidences indicate cascade.	W.H.Cuffey, PR 79 , 180.
45 21 24	μ	4.7508	I	50858	$\nu (\text{Sc}^{45}) / \nu (\text{Br}^{79}) \qquad [\text{ScCl}_3] \\ = 0.96954 \pm 0.00006, \text{ and} \\ \nu (\text{Br}^{79}) / \nu (\text{H}^1) \qquad [\text{NaBr}] \\ = 0.25059 \pm 0.00005.$	R.E.Sheriff, D.Williams, PR 79 , 175.
46 21 25	$\beta_{2}^{-} < 0.06\%$ γ_{3}^{-} γ_{2}^{-}	1.49 0.88 $\alpha = 1.7$ 1.12 $\alpha = 0.9$	sl sl;ce ⁻ 4 x 10 ⁻⁴ sl;ce ⁻ 98 x 10 ⁻⁴	50M62	Both γ 's E2 in agreement with angular correlation results.	M.L.Moon, et al., PR 79 , 905.
	$eta^{r}_{\gamma_{3}} \sim$ 0.9% γ_{2}	1.2 0.89 α = 1.3 1.12 α = 0.6	Sπ Sπ;ce 6 x 10 ⁻⁴ Sπ;ce 507 x 10	50P71	No 1.49 β^{-} found*. Authors propose first excited T1 ⁴⁶ level at 1.12 MeV, with γ_{3} preceding γ_{2} .	F.T.Porter, C.S.Cook, PR 81 , 298(A) (1951) and [*] verbal report.
	β ₂ ≤0.05%			50857	Study of $\beta\gamma$, $\gamma\gamma$ coincidences and electron tracks in cc.	B.N.Sorensen, et al., PR 79 , 1007.

22 TITANIUM TI

Ti .	σ_{a} (pile n)	5.0	osc 50071	Based on $\sigma_a(B) = 710$. Self- screening correction; no chem.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	$\sigma_{t}^{(120 ev)}$ $\sigma_{t}^{(345 ev)}$	4.69 ~4.8	50H53	Thin foils of Co, Mn used as resonance scattering detectors.	C.T.Hibdon, PR 79 , 747.
	σ_{s} free σ_{s} bound	4.0 4.2	50L65	Sample outgassed at 1000° in vacuum furnace to remove H.	M.Levin, et al., CUD-53, 6.
45 *	Reference numbe	er	[49K36]	Number should be 49K37.	* Correction to Table.
	$\substack{ \substack{ \tau \\ \beta^{\star} \\ \gamma \\ \text{Sc K X-ray} } }$	3.09 ^h 1.00 0.80	50K51 sπ sπ;pe ⁻ ,Compt crit a	0.48 γ of 49K37 (see above) now attributed to annihil- ation radiation. Produced by Sc ⁴⁵ (5 Mev p,n); chem.	H.E.Kubitschek, PR 79 , 23.
	$egin{array}{ccc} & & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & \ & & \ & & \ & & \ & & \ & & \ $	3.05 ^h 0.57 1.02 0.45	50T51 sπ sπ,pe	No 0.80 γ observed. Produced by Sc ⁴⁵ (10 Mev $d, 2n$) and Sc ⁴⁵ (5 Mev p, n); chem. *2-3% of annihilation γ .	M.Ter-Pogossian, et al., PR 80 , 360.
	Sc ⁴⁵ (p,n) t]	hreshold \sim	2.85 49H50		A.O.Hanson, et al., Rev. Mod. Phys. 21 , 635.

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951 12

.

21-Sc

.

· · ·

23	VANADIUM	V			23-V 24-Cr
v	$\sigma_{\rm a}^{}({\rm pile}n)$	4.93	OSC 50H62	Based on $\sigma_{a}(B) = 710$,	S.P.Harris, et al., PR 80, 342.
	$\sigma_{a}^{}$ (pile n)	4.4	osc 50C71	Based on $\sigma_{a}(B) = 710$. Self- screening correction; no chemistry.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	$\sigma_{t}^{}(120 ev) \sigma_{t}^{}(345 ev)$	5.35 5.87	50H53	Thin foils of Co and Mn used as resonance scattering detectors.	C.T.Hibdon, PR 79 , 747.
	σ _t (0.01 – 1 Μεν	7) graph	50B53	Li(p,n). BF, pc. Many rapid fluctuations.	J.M.Blair, J.R.Wallace, PR 79 , 28.
51 23 28	σ(~0.03 Mev n	$(\gamma)3.74^{m}V$ 59 mb	501184	Based on $\sigma(\text{th } n, \gamma) = 4.50$ of 47833. Sb - Be n 's.	V.Hummel, B.Hamermesh, ANL-4476, 54; PR 82, 67 (1951).
	σ(fast n,γ)3.7 E _n = 0.120 0.400 0.650	74 [™] V 16 mb 6 mb 3 mb	50H70	L1(p,n). Based on σ (th n,γ) = 4.8. 10 maxima, not fully resolved, for E between 0.120 and 0.650.	R.L.Henkel, H.H.Barschall, PR 80, 145.
52 23 29	$ \begin{array}{c} \tau_1 \\ \gamma \\ \\ \beta^2 \\ \gamma \end{array} $	3.74 ^m 0.25 a large 2.6 ^m ~2.6 ~1.5	50R67 a a	No β e ⁻ , no β (soft γ) coincidences. β (hard γ) coincidences. τ_2 from different irradiation times. Pure sample but no chem.	G.A.Renard, Ann. Phys., Paris, 5, 385.
	∇ ⁵¹ (d,p) Levels 0.72 2.04	,1.31,1.65 ,2.37,2.75	50462	E _d = 3.8 Mev. Wedge filter and photo plates.	A.Y.Abramov, Doklady Akad. Nauk, SSSR, 73 , #921; NSA 4 , #6435.

24 CHROMIUM Cr

Cr	$\sigma_{a}^{}(pile n)$	3.1	osc 50C7	Based on $\sigma_{a}(B) = 710$. Self- screening correction. No chem.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63 , 1175.
51 24 27	V(p,n) Q -1.55 -2.97	,-2.33,-2.7 ,-3.08	50S6 2	Levels at 0.78, 1.17, 1.42, 1.53. Reaction can furnish mono- energetic n 's up to $E_n = 0.78$.	P.H.Stelson, et al., PR 80 , 287.

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951 13

.

·

25	MAN	GAN	ESE	Mn

-

25-Mn 26-Fe

Min	$\sigma_{\rm a}$ (pile n) 12.8 osc 50 Resonances $E_{\rm o} = 345,2400 {\rm ev}$ 50	C71 Based on $\sigma_a(B) = 710$. Self- screening correction. No chem. DH54 See Al ²⁷ .	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63 , 1175. S.P.Harris, et al., PR 79 , 11.
	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	20078 From measurements of Σ_s , Σ_a and σ_{self} . Γ values give σ_s (th) = 2.13, σ_a (th) = 12.1, σ_s coh = 2.03. They are consistent with σ_s (E _n) if two level Breit-Wigner formula is used with nuclear radius = 0.29 x 10 ⁻¹² cm.	S.P.Harris, et al., PR 80, 1014.
	New reference for data reported in 500	W6 Mn ⁵⁶ .	W.D.Whitehead, N.P.Heydenburg, PR 79 , 99.
52 25 27 5.8 ^d	τ 6.0^d 50	DH48 Observed for 120 ^d in ic.	T.H.Handly, ORNL-867.
55 25 30	σ(~0.03 Mev n,γ)2.59 ^h Mn 50 78 mb	DH84 Based on $\sigma(\operatorname{th} n, \gamma) = 10.7$ of 47S33. Sb - Be n's.	V.Hummel, B.Hamermesh, ANL-4476, 54; PR 82 , 67 (1951).
56 25 31	Mn(d,p) 50 Levels 1.22,1.77,2.07, 2.45,2.82	DA62 E _d = 3.8 Mev. Wedge filter and photo plates.	A.Y.Abramov, Doklady Akad. Nauk, SSSR, 73 , #921; NSA 4 , #8435.

26 IRON Fe

Fe	Incoherent scattering 50H69 largely inelastic			Single crystal transmission and polarization studies.	D.J.Hughes, et al., PR <mark>80</mark> , 481.
	$\sigma_{a}^{}$ (pile n)	2.4 0	sc 50C71	Based on $\sigma_{\rm a}$ (B) = 710. Self-screening correction. No chem.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63 , 1175.
	σ_{t} (120 ev) σ_{t} (345 ev)	9.61 8.65	5 0H53	Co and Mn resonance scattering detectors.	C.T.Hibdon, PR 79, 747.
	$\sigma_{\rm t}~(42~{\rm Mev})$	2.44	50H71	Be (d,n) . $C^{12}(n,2n)$ detector.	R.H.Hildebrand, C.E.Leith, PR 80 , 842.
55 26 29	τ	2.94 ^ÿ	50B76		G.L.Brownell, C.J.Maletskos, PR 80 , 1102.
56 26 30	f	- 8.42	50D52	From $\Delta f(CO - Fe^{56}) = 9.80$ and $f(CO) = 1.38$.	H.E.Duckworth, R.S.Preston, PR 79 , 402.
57 26 31	Fe(th n,γ)	$E_{\gamma}(max) \sim 7.8$	50H51	Photo plates. D _{7P} .	B.Hamermesh, PR 80, 415.

Nuclear Data, National Bureau of Standards Circular 499

27 COBALT CO

27	-Co
28	-Ni

1000					
Co	Resonance Γ_n/Γ	E _o = 115 ev 0.94	50H54	See Al ²⁷ .	S.P.Harris, et al., PR 79 , 11.
	Resonance	E _o = 120 ev	49R16	This value supersedes 115 ev.	L.J.Rainwater, PR 76, 161.
	$\sigma_{a}^{}(\text{pile }n)$	38 osc	50071	Based on $\sigma_{\rm a}$ (B) = 710. No self-screening correction. No chem.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	σ _t (0.080-1 Mev)	curve	50BB4	$\sigma_{\rm t}$ = 3 – 8 with \sim 20 peaks.	J.M.Blair, W.F.Stubbins, ANL-4437.
	New reference f	or data reported in	50W9	Co ⁶⁰ .	M.A.Waggoner, et al., PR 80, 480.
58 27 31 9•3 ^h	$ au_1$	9.2 ^h	50082	Produced by Co ⁵⁹ (γ,n); Szilard- Chalmers separation.	D.Christian, D.S.Martin, Jr., PR 80 , 1110.
60 27 33	No $eta\gamma$ angula	r correlation	50B60		J.R.Beyster, M.L.Wiedenbeck, PR 79 , 728.
5.2 ^y	$ au_2$	5.26 ⁹ ±0.17	50B76		G.L.Brownell, C.J.Maletskos, PR 80, 1102.
	e -	∼ 50 kev a	50D59	Intensity about 30% of principal mode of decay. 10.7 ^m activity had decayed.	M.Duquesne, et al., Compt Rend. 231 , 693.

28 NICKEL Ni

Ni	$\sigma_{a}^{}$ (pile n)	4.8	OSC	50071	Self screening correction; no chem. Used $\sigma_{\rm a}({\rm B})$ = 710.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	σ_{a} (pile n)	4.37	osc	50H62	Used $\sigma_{a}(B) = 710$.	S.P.Harris, et al., PR 80, 342.
	$\sigma_{\rm t}^{}(42~{\rm Mev})$	2.51		50H71	Used $C^{12}(n,2n)C^{11}$ detector.	R.H.Hildebrand, C.E.Leith, PR 80 , 842.
	New reference	for data :	reported	in BOF10	N1 ⁵⁷ .	G.Friedlander, et al., PR 80, 30.
	New reference	for data :	reported	in 50824	N1 ⁵⁸ , N1 ⁶⁰ , N1 ⁶² .	W.C.Koehler, et al., PR 79 , 395.
58 28 30	f	- 8.01		50D52	Averaging f's from $\triangle f(C_2H_5-N1^{58})$ and $\triangle f(COH-N1^{58})$.	H.E.Duckworth, R.S.Preston, PR 79, 402.
59 28 31	auCo K X-ray	~8 x 10 [!]	y pc	50W58	N1 (pile n, γ); chem. τ based on $\sigma[N1^{58} (pile n, \gamma)] = 4.6.$	H.W.Wilson, PR 79 , 1032.
60 28 32	f	- 8.60		50D57	From $\triangle f(S1^{30}-N1^{60}) = 2.90$ and a newer value of $f(S1^{30}) = -5.70$.	H.E.Duckworth, et al., PR 79 , 188.
61 28 33	μ	< 0.25	S	50K55	From broadening in excess of Doppler effect.	K.G.Kessler, PR 79 , 167.
63 28 35	au	61 ^{y *}		50W59	N1 (pile n, γ); chem. *Based on $\sigma[N1^{62}(n, \gamma)] = 14.8$ of 49P4.	H.W.Wilson, PR 79, 1032.

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951 15 966962 O - 51 - 3

29	COPPER Cu				29-Cu
Cu	Relative isotop 63 65	ic abundances 68.98% 31.02%	50H81		R.F.Hibbs, Y-648.
	Resonance 10 Γ_n/Γ	0 ³ - 10 ⁴ ev 0.95	50H54	See Al ²⁷ .	S.P.Harris, et al., PR 79 , 11.
	$\sigma_{a}^{}\left(\mathrm{pile}~\mathbf{n} ight)$	3.6 OSC	50C71	Self-screening correction, no chem. Based on $\sigma_{a}(B) = 710$.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63 , 1175.
	$\sigma_{_{\mathbf{a}}}^{}$ (pile \mathbf{n})	3.71 osc	50H62	Based on $\sigma_{a}(B) = 710$.	S.P.Harris, et al., PR 80, 342.
	$\sigma_{t}^{}$ (42 Mev)	2.540	50H71	$C^{12}(n,2n)C^{11}$ detector.	R.H.Hildebrand, C.E.Leith, PR 80, 842.
	$\sigma_{t}^{}(270 \text{ Mev})$	1.145	50D55	Be (350 Mev p,n). Bi-f detector.	J.DeJuren, PR 80, 27.
	$\sigma_{\rm t}$ (280 Mev)	1.19	50F56	Be(340 Mev p,n). Scin, recoilp's	R.Fox, et al., PR 80, 23.
	σ(90 Mev n,p or	d) curves	50H 6 3	Be(190 Mev <i>d</i> , <i>n</i>). Angular and energy distributions.	J.Hadley, H.York, PR 80, 345.
	New reference for	r data reported in	50R12	Cu ⁶⁴ .	J.H.Reynolds, PR 79, 789.
63,65 29 34,36	σ[Cu ⁶³ (n,γ)]/σ[Cu ⁶⁵ (n,γ)] 2.3 ms	50R51	Pile n's. Products of Cu ⁶⁴ and Cu ⁶⁶ determined in ms.	J.H.Reynolds, PR 79 , 789.
64 29 35	τ	12.80 ^h	50R62	From different exposures for equal blackening of photoplate.	E.Rabinowitz, Proc. Phys. Soc., Lond., A63, 1040.
	γ	1.38 a	50K51	$\gamma\!/\beta^+$ = 0.032. Special tech- nique for β^+ emitters.	H.E.Kubitschek, PR 79, 23.
	Cu(7,n)12.88 ^h Cu threshold = 10.2	3	50J59	Based on 10.9 for Cu^{63} . E ₀ ~19.0 Mev, Γ ~6.0 Mev.	H.E.Johns, et al., PR 80, 1062.
65 29 36	σ(~0.03 Mev n,	γ)5.05 ^m Cu 0.065	50H84	Based on $\sigma(th n, \gamma) 5.05^{m}Cu =$ 1.8 of 47533. Sb-Be n's.	V.Hummel, B.Hamermesh, ANL-4476, 54; FR 82, 67 (1951).
	σ(fast n,γ)5.05 E _n = 0.150 0.300 0.500	^m Cu 30 mb 20 mb 13 mb	50170	L1(p,n). Based on $\sigma(\tan n,\gamma) = 2.05$. Smooth curve using 20 kev resolution.	R.L.Henkel, H.H.Barschall, PR 80, 145.
29 66 37	τ	5.18 ^m	50087	Electrolytically pure Cu used.	A.G.W.Cameron, L.Katz, PR 80, 904.

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

16

.

•

30	Z	INC	Zn
U U	-		<u> </u>

30)-	Ζ	n
3	1-	G	а

Zn	σ_{a} (pile <i>n</i>)	1.09	OSC	50071	No chem. correctio	NO son. H	self-scree Based on σ_{a}	en1ng (B) = 710	F.C.W.Colmer, Phys. Soc.,	D.J.L1ttler, Lond., A63,	, Proc. 1175.
	$\sigma_{\rm t}^{}(42~{\rm Mev})$	2.62		50H71	Be(d ,n).	C ¹²	(n,2n) det	ector.	R.H.Hildebran PR 82 , 842.	nd, C.E.Leit)	n,
30 32	au γ	9.33^h 0.0418 K/L > 6	sl;ce ⁻ .4	50165	Other val Log ft =	ues (= 4.7	as in 49H4 for β^+ .	12.	R.W.Hayward,	PR 79 , 541.	
65 30 35	γ	1.114 a _K = 2.	sl;ce ⁻ 28 x 10 ⁻⁴	50W59	a _k seems M1.	to in	ndicate E2	8 and/or	M.A.Waggoner, 420.	et al., PR	80,
68 30 38	σ(~0.03 Mev n,	y)52 ^m Zn 0.033		50H84	Used σ(th Sb-Be n	<i>n,γ</i>) 's.) = 1.09 of	47833.	V.Hummel, B.H ANL-4476, 54;	[amermesh, PR 82 , 67 (19	951).

31 GALLIUM Ga

Ga	Resonance Γ_/Γ	$10^2 - 10^3 \sim 0.95$	ev	50H54		S.P.Harris, et al., PR 79 , 11.
31 33	No 45 ^m β activ	vity obser	ved	50M70	Zn(p,n).	A.Mukerji, P.Preiswerk, Helv. Phys. Acta. 23 , 516.
66 31 35	τ β ⁺ 40% γ	9.2 ^h 0.4 0.9 1.44 4.20* 1.05 2.76 3.3	S S S S S S	50M70	Zn (p, n) . * Fermi plot straight, but log ft = 7.9. (1.05γ) (2.76 γ) coincidences. No (4.20β) (1.05 γ) coinci- dences. (Compare 50L55 below).	See above.
	au K 34% β^{+} 2% 7% 4% 87% <0.4% γ 100%* 70%*	9.45 ^h 0.403 0.878 1.4 4.144 5.17 ? 1.03 2.75 4.8	Sπ Sπ Sπ Sπ S; pe ⁻ , C S; pe ⁻ S; pe ⁻ , C	SOL55 compt	K capture to one or more levels 4.144 β^{\dagger} has straight Fermi plot. No (4.144 β^{\dagger}) (1.03 γ) coincidences. (Compare 50M70 above). *Relative intensities. [$\gamma\gamma$ coincidences not discussed] Auger line at 7.34 kev but no conversion lines.	L.M.Langer, R.D.Moffat, PR 80, 651.
	γ	1.06 2.75 3.25 4.27	scin scin scin scin	50H74	1.06 γ and 2.75 γ of about equal intensity.	R.Hofstadter, J.A.McIntyre, PR 80, 631.
					(Ga continued on next page)	

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

31	GALLIUM	Ga (cc	ontinued)			31-Ga 32-Ge
68 31 37	τ K β^{+} γ	68 ^m 0.8 1.88 1.10	50M70 s s	 β's have allowed shape. Conclude spin for Ga⁶⁶ = 1; parity same as Zn⁶⁸. K capture indicated by Auger electrons. 	See Ga ⁶⁴ , 50M70.	

32	GERMANIUM	Ge				
Ge	$\sigma_{a}^{}(pile n)$	2.64	osc	50H62	Based on $\sigma_{a}(B) = 710$.	S.P.Harris, et al., PR 80, 342
	$\sigma_{\rm t}^{}$ (120 ev)	14.0		50H59	Detected Co resonance n's.	C.T.Hibdon, ANL-4552, 5.
70 32 38	σ (th n,γ)11 ^d Ge	4		50R66	Cd ratio of ~ 30 .	S.A.Reynolds, ORNL-867, 24.
71 32 39	τ Κ	11 ^d		50R66	$\operatorname{Ge}^{70}(n,\gamma)$ Ge^{71} . No isomer was found.	See above.
74 32 42	$\sigma(t h {m n}, \gamma) 82^{ t m} ext{Ge}$	0.5		50R66	Enriched Ge ⁷⁴ . Cd ratio = 20.	See above.
75 32 43	$ \begin{array}{c} \tau \\ \beta \\ \gamma ? \sim 10\% \end{array} $	79 ^m 1.3 ∼0.25	a	50R66	Ge ⁷⁴ (n,γ) Ge ⁷⁵ . Possible $\beta\gamma$ coincidences, but not certain due to short τ .	See above.
76 32 44	σ(th n ,γ) 59 ^s Ge 12 ^h Ge	0.015 0.30		50R66	Enriched Ge ⁷⁶ . Cd ratio of 3.2 for 12 ^h activity.	See above.
77 32 45 59 ⁸	τ	57 ⁸		50R66	p 40 ^h As.	See above.
12 ^h	au eta^{T} γ weak $\dot{\gamma}$	12 ^h 1.8 ∼0.3 ∼0.6	a a a	50R66	p 40 ^h As. Soft $\gamma\gamma$ coincidences. No (hard γ) (soft γ) coinci- dences. $\beta\gamma$ coincidences.	See above.

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

33	ARSENIC	As				33-As 34-Se
As	σ_{a} (pile n)	4.9	osc (50C71	Self-screening correction; no chem. Based on $\sigma_{a}(B) = 710$.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63 , 1175.
	Resonance Γ_{n}/Γ	$E_o = 10^2 - 10^3$ ~0.72	ev {	50H54	See Al ²⁷ . Resonance in As ⁷⁵ .	S.P.Harris, et al., PR 79, 11.
	Resonance	E _o = 43 ev	ŧ	50H88	Evidence of higher energy resonances.	S.P.Harris, ANL-4552, 5.
	New reference	e for data repo	orted in f	50M25	As ⁷¹ .	J.Y.Mei, et al., PR 79 , 19.
72 33 39	β ⁺ 25 55 125 625 195	0.27 0.67 1.84 2.50 3.34	sl 8 sl sl sl sl	501155	Spectrum of 3.34 β indicates Δ I= 2, yes. Evidence for some γ 's with E > 1 Mev. Other γ 's same as in 50M25. Could not see any 0.637 γ .	J.Y.Mei, et al., PR 79 , 19.
73 33 40	$\frac{\tau}{\gamma}$	~90 ^d 0.052	sl;ce ⁻	50M55		See above.
74 * 33 41	eta intensity	7	4	42E4	Intensity of 1.40 β , as well as 0.72 β , should be 15%.	* Correction to Table.
	β ⁺ β ⁻ 53 % 47 % γ	0.96 0.82 1.45 0.593	sl s sl sl sl;pe ⁻	50M55	β ⁻ /β ⁺ ~2.	See As ⁷² , 50M55.
75 33 42	σ(∼0.03 Mev	' π,γ)26.8 ^h As 1.2	ŧ	50H87	Based on $\sigma(\tan n, \gamma) = 4.2$ of 47833. SD - Be n's.	V.Hummel, B.Hamermesh, ANL-4515, 40; PR 82, 67 (1951).
78 ? 33 45 ?	7 ₂	~40 ^m	Ę	50849	Fission. Probably d $\sim 2^{h}$ Ge, but As ⁷⁹ assignment also possible.	R.A.Brightsen, et al., FR 81 , 298(A) (1951).

34 SELENIUM Se

Se	$\sigma_{a}^{(pile n)}$	12.2 05	sc 50H62	Based on $\sigma_a(B) = 710$.	S.P.Harris, et al., PR 80, 342.
	$\sigma_{\rm a}({\rm pile}n)$	11.4 05	sc 50C71	No self-screening correction; no chem. Based on σ_a (B) = 710.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
75 34 41	$\begin{array}{c} \tau \\ \gamma & \textbf{0.0247} \\ \textbf{0.0662} \\ \textbf{0.0808} \\ \textbf{0.0968} \end{array}$	128 ^d 0.1212 0.2801 0.1362 0.3050 0.1988 0.4019 0.2652	50C57	No β^{\dagger} found using magnetic field and counters. The eleven γ^{\dagger} s are fitted into five levels in As ⁷⁵ .	J.M.Cork, et al., PR 79 , 889.
77 34 43	т е	17.4 ⁸ 0.165 a	50F62	(Se continued on part page)	A.Flammersfeld, C.Ythier, Z.Naturforsch., 5a, 401.
				(Se continued on next page)	

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951

34	SELENIUM S	ie (cor	ntinu	ed)		34-Se 35-Br
79? 34 45?	τ e- Νο γ	3.9 ^m 0.09	a	50F62	Se(fast and slow n). Acti- vation σ too large for 6.6 ^m Nb. Probably e not β since τ is so small.	A.Flammersfeld, C.Ythier, Z. Naturforsch., 5a, 401.
6.5 × 10 ^{4 ^y}	β No γ	0.160	a	50P76		G.W.Parker, priv. comm., quoted in NNES Vol. 9, 2020.
	β ~	0.150	a	50K43		S.Katcoff, BNL 39, 59, quoted in NNES Vol. 9, 2020.
81 34 47	τ	18 ^m		50 F6 2	Discrepancies in previous results probably due to presence of 3.9 ^m Se ^{79 ?} activity.	A.Flammersfeld, C.Ythier, Z. Naturforsch., 5a, 401.
3 5	BROMINE Br					
Br	$\sigma_{a}(pile n)$	8.7	osc	50071	Self-screening correction. No chem. Based on $\sigma_{\rm a}({\rm B})$ = 710.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	$\sigma_{\rm a}^{}({\rm pile}n)$	8.83	osc	50H62	Thick target. Based on $\sigma_{\rm a}$ (B)=710	S.P.Harris, et al., PR 80, 342.
	$\sigma_{\rm t}$ (~0.006–10 er	r) g rap h		50E57	Best fit given by $\sigma_t = 6.2 \pm 1.1E^{-1/2}$.	P.A.Egelstaff, B.T.Taylor, Nature 166 , 825.
	$\sigma_{t}^{}$ (42 Mev)	2.93		50H71	From $\sigma(CH_2Br_2) = 7.361$, $\sigma(H) = 0.203$, $\sigma(C) = 1.089$. $C^{12}(n, 2n)C^{11}$ detector.	R.H.Hildebrand, C.E.Leith, PR 80, 842.
	M(Br ⁷⁹) / M(Br ⁸¹) M(Br ⁷⁹) / M(Br ⁸¹)	* 0.9752 ** 0.9752	2 Mic 21 Mic	50856	*for Br ⁷⁹ Cl ³⁵ /Br ⁸¹ Cl ³⁵ pair. **for Br ⁷⁹ Cl ³⁷ /Br ⁸¹ Cl ³⁷ pair.	D.F.Smith, et al., PR 79 , 1007.
	New reference for	r data repo	rted in	50R7	Br ⁸⁰ .	D.West, P.Rothwell, Phil. Mag. 41, 873.
	New reference for	data repo	rted in	50R12	Br ⁸⁰ , Br ⁸² .	J.H.Reynolds, PR 79, 789.
79 * 35 44	σ' \$			49H5 47833	Table should read: $(th n, \gamma) 18^{m}Br$ 8.9 $49H5$ 8.1 47833 $(th n, \gamma) 44^{h}Br$ 3.0 $49H5$ 2.8 47833	*Correction to Table.
79,81 35 44,46	σ[Br ⁷⁹ (n,γ)]/σ[j	Br ⁸¹ (n,γ)] 3.86	ms	50R51	Pile <i>n</i> 's. Products of Br ⁸⁰ and Br ⁸² determined in ms.	, J.H.Reynolds, PR 79 , 789.
81 35 46	σ (pile n,γ)35.5	^h Br 4.3		50C78	Based on σ (Co) = 34. Value used in 50C23 was σ (Co) = 22.	J.W.Cobble, ORNL-785, 45.
82 35 47	τ	35.87 ^h		50069	Pile n. Ion-exchange column techniques.	J.W.Cobble, R.W.Atteberry, PR 80, 917.
					Concernance of the second seco	

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951 20

6	KR	YP ⁻	TON	K
---	----	-----------------	-----	---

36	KRYPTON Kr				36-KR
Kr	Relative isotop: 78 0.354% 80 2.27% 82 11.56%	lc abundances 83 11.55% 84 56.90% 86 17.37%	50N51		A.O.Nier, PR 79 , 450.
	$\sigma_{\mathbf{a}}$ (pile <i>n</i>)	30	50M88	From sum of isotopic values listed below.	J.Macnamara, H.G.Thode, PR 80, 296.
	$\sigma_{s}^{}$ (th n)	7.2	50 H6 0	Boron absorption and self- absorption indicate resonance near thermal energies.	S.P.Harris, PR 80, 20.
36 ⁸⁰ 44	$\sigma(\texttt{pile } \textbf{n}, \gamma)$	95	50M66	From relative abundance changes upon irradiation in Chalk River pile.	See Kr, 50M86.
	$\sigma(pile n, \gamma)$ 2.13	10 ^{5 y} Kr 12.5	50 R54	From ms peak found in Kr ex- tracted from long irradiated Br.	J.H.Reynolds, PR 79, 886.
36 45	$\begin{array}{c} \tau_1 \\ \gamma \end{array}$	10 ⁸ 0.193 a	50 K62	See Rb ⁸¹ , 50K62. d 5 ^h Rb ⁸¹ .	D.G.Karraker, D.H.Templeton, PR 80, 646.
	τ ₂ Κ X-гау	2.1 x 10^{5 y} a	50R54	Counting rate found as function of gas pressure.	See Kr ⁸⁰ , 50R54.
82 36 46	$\sigma(\texttt{pile } n, \gamma)$	45	50M66	See Kr ⁸⁰ , 50M66.	See Kr, 50M66.
83 36 47	$\sigma(\text{pile }n,\gamma)$	205	50M88	See Kr ⁸⁰ , 50M66.	See Kr, 50M66.
84 36 48	$\sigma(\texttt{pile } n, \gamma)$	0.1-2	50M66	See Kr ⁸⁰ , 50M66.	See Kr, 50M66.
85 36 49 4.36 ^h	$β^{-}$ 84% γ 16% (0.149γ)β coinc	0.817 s 0.149 s; ce ⁻ $\alpha_{\rm g} = 0.051$ 0.300 s; ce ⁻ idences	50884	Log ft = 5. E2, M1 mixture for 0.149 γ . Decay scheme predicts 0.67 β , Δ I = 2, yes. 4.4 ^h Kr ⁸⁵ $p_{1/2}$ ~ 10'Kr ⁸⁵ 0.300 $g_{9/2}$	1.Bergström, S.Thulin, PR 79, 537. 0.817
					$\frac{p_{3/2}}{10.149} = \frac{1}{5/2}$ Stable Rb ⁸⁵
~ 10 ^y	β 0 .7% γ	$\begin{array}{ccc} {\bf 0.15} & {\bf a}\beta\gamma \\ {\bf 0.695} & {\bf sl} \\ {\bf 0.54} & {\bf a,scin} \end{array}$	50Z51	0.695 β spectrum indicates $\Delta I = 2$, yes; log ft = 9.	H.Zeldes, et al., PR 79 , 901.
	$\sigma(\texttt{pile } \textbf{\textit{n}}, \gamma)$	0-15	50M66	See Kr ⁸⁰ , 50M66.	See Kr, 50M66.
86 36 50	σ(pile n,γ)	0 - 2	50M66	See Kr ⁸⁰ , 50M66.	See Kr, 50M66.

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

21

37	RUBIDIUM	Rb				37-Rb 38-Sr
Rb	Relative isoto 85 72.15 %	01c abund 87 2 9	ances 7.85%	50N51		A.O.Nier, Pr 79, 450.
8 1 37 44	τ κ β ⁺ γ	4.7 ^h 0.990 0.95	sπ ì2 a ∽	50K62	Br (40 MeV α); ms; chem. D 13 ^s Kr ⁸¹ (0.193 γ). β^{\dagger} : K X-ray: γ = 0.1: 1: 0.6, assuming half the X-rays belong to daughter.	D.G.Karraker, D.H.Templeton, PR 80, 646.
82 37 45	$ au$ K eta^{*} γ strong	6.3 ^h 0.670 0.7 1.2	a,sπ γ 2 a a	50K62	Br (18 Mev α); ms; chem. β^{+} : K X-ray: γ = 0.12; 1:0.9.	See above.
83 37 46	τ K	107 ^d		50K62	Br (40 Mev α ,2n); ms; chem. Particles: K X-ray: γ ~0.3: 1: 2. No attempt to find 1.88 ^h Kr daughter.	See above.
84 37 47	$ \begin{array}{c} \tau \\ \mathbf{K} \\ \beta^{\dagger} \\ \mathbf{e}^{-} \\ \gamma \end{array} $	34 ^d 1.53 0.37 0.85	Sπ Sπ a.	50K62	Br (18 Mev α, n); ms; chem. β^{\dagger} : K X-ray: $\gamma = 0.15:1: \sim 0.6$. Not sure if any e's were β 's; if so β^{-} branch $\sim 3\%$ or less.	See above. Note also A.Flammersfeld, Z.Naturforsch. 5a, 687.
	$ \begin{array}{c} \tau \\ \mathbf{K} \\ \boldsymbol{\beta}^{\dagger}, \boldsymbol{\beta}^{\dagger} \\ \boldsymbol{\gamma} \end{array} $	38 ^d 1.3 0.8	a	50882	Kr (20 Mev α and 10 Mev d); chem; also Br (α, n) . $\beta^{\dagger}/\beta^{-} = 6.2.$	W.C.Beckham, M.L.Pool, PR 80, 125(A).
86 37 49	$ \begin{array}{c} \beta_1 \\ \beta_2 \\ \gamma \end{array} $	0.72 1.80 1.076	sl; $\beta\gamma$ sl sl;pe	50M67	β_1^- shape ~allowed. β_2^- shape $\Delta I = 2$, yes. Suggested spins 2-; 1,2, or3 +; 0 +.	H.R.Muether, S.L.Ridgway, PR 80 , 750.
38	STRONTIUM	Sr				

Sr	$\sigma_{t}^{} (120 ev) \\ \sigma_{t}^{} (345 ev)$	13.5 13.0	50H53	Thin Co and Mn foils used as resonance scattering detectors.	C.T.H1bdon, PR 79 , 747.
	$\sigma_{t}^{}$ (42 Mev)	2.99	50H71	From σ of SrC0 = 8.150, C = 1.092, and 0 = 1.353. C ¹² (n,2n)C ¹¹ detector.	R.H.Hildebrand, C.E.Leith, PR 80, 842 .
	$\sigma_{a}^{}$ (pile n)	1.35	osc 50C71	No chem.; no self-screening correction. Used $\sigma_{\rm a}({\rm B})$ = 710.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63 , 1175.
				(Sr continued next page)	

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951

38	STRONTIUM	Sr (c	ontin	ued)		38-S 39-Y 40-Z
87 38 49	au	2.80^h 0.390 $\alpha_{\rm K} = 0.$.25,K/L=	50M68 = 6.9	See Y ⁸⁷ , 50M88.	L.G.Mann, P.Axel, PR 80, 759.
90 38 52	τ β ⁻	19.9 ^y 0.54		50P56 50L52	Fission product Sr. Shape indicates $\triangle I = 2$, yes; additional correction \land used. Log ft = 9.2.	R.I.Powers, A.F.Voigt, PR 79 , 175. L.J.Laslett, et al., PR 79 , 412
39	YTTRIUM Y					
87 39 48 14 ^h	τ K β ⁺ 2% e ⁻	14 ^h 1.1 0.374	sl;sci	50M68 n	50% of 14 ^h activity goes to 80 ^h ground state. 0.374 ce ⁻ in remainder.	L.G.Mann, P.Axel, PR 80 , 759.
80 ^h	au K $eta^{\dagger} < 1\%$ γ γ (2.8 ^h Sr)	80.0 ^h 0.485 $\alpha_{\rm K} = 0.$ 0.390	0033	50M68	Proposed decay scheme: <u>2.8^hSr⁸⁷</u> 0.485 0.390 Stable Sr ⁸⁷	See above. 80 ^h x ⁸ 7 312 D 112 8 912
89 39 50	Ι μ	1/2 negative	S ; S	50K69		H.Kuhn, G.K.Woodgate, Proc. Phys. Soc., Lond., A63 , 830.
90 39 51	ß	2.24		50L52	Log ft = 9.3 with Λ correction. See also Sr ⁹⁰ , 50L52.	L.J.Laslett, et al., PR 79 ,412
95 39 56	τ	10.5 ^m		50 K44	Zr ⁹⁶ (γ, p).	J.D.Knight, priv. comm. quoted in NNES, Vol. 9, 2028.
40	ZIRCONIUM	Zr				_
75	σ (pile n, γ)	0.25	osc	50071	Chem. Based on σ (B) = 710.	F.C.W.Colmer. D.J.Littler. Proc.

Zr	$\sigma_{a}^{}(pile n,\gamma)$	0.25	osc	50C71	Chem. Based on $\sigma_{a}(B) = 710$.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
90 40 50	ſ	-7.58		50D57	From $\Delta f(S1^{30}-Zr^{90}) = 1.88$ and $f(S1^{30}) = -5.70$.	H.E.Duckworth, et al., PR 79 , 188.
97 40 57	$ec{arphi}$	17.0^{h} 1.91 0.749 $\alpha = 0.02$	sl sl;pe ⁻ 15	50B 5 4	$Zr^{96}(n,\gamma)$, and fission. Log ft = 7.1. No $\beta\gamma$ coincidences; γ assigned to $60^{8}ND^{97}$, q.v.	W.H.Burgess, et al., PR 79 , 104.
	ß	1.9	a	49550	Fission.	F.Suzor, Ann. Phys., Paris, 4, 269.
Nuclear Da	ta, National Bur	eau of Sta	andards	Circula	r 499 Supplement 2, Jul	y 1950 - January 1951 23

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951

Nb	$\sigma_{a}^{}(pile n)$	1.26	OSC	50C71	No chem. No self-screening correction. Based on $\sigma_{\rm a}({\rm B})$ = 710.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63 , 1175.
	$\sigma_{a}^{}(\text{pile }n)$	1.51	osc	50H62	Based on $\sigma_{a}(B) = 710$.	S.P.Harris, et al., PR 80, 342.
	σ_{t} (120 eV) σ_{t} (345 eV)	7.24 7.16		50H53	Thin Co and Mn foils used as resonance scattering detectors.	C.T.H1bdon, PR 79 , 747.
95 41 54 35 ^d	β γ	0.163 0.771 α = 0.0	sl sl;ce ⁻ 0018,K/L^	50F65 ~2.3	Proposed decay scheme: <u>35^dNb⁹⁵ g</u> 9/2 0.163	C.Y.Fan, PR 81, 300(A)(1951).
						g 7/2
					Stable	Mo ⁹⁵
96 41 55	au eta	22.9 ^h 0.75	sl	50B43	$eta\gamma$ coincidences indicate eta followed by 3 γ 's in cascade.	G.E.Boyd, B.H.Ketelle, ORNL-795, 44; ORNL-870, 37.
	NO 1.119 γ			, 50BB2	See Tc ⁹⁶ , 50M21.	G.E.Boyd, priv. comm.
97 41 56 60 ^{\$}	$\begin{matrix} \tau_{_{1}} \\ \gamma_{_{1}} \end{matrix}$	60 ^s 0.747	sl;pe ⁻	50B54	d 17 ^h Zr, p 74 ^m ND; chem. Proposed decay scheme:	W.H.Burgus, et al., PR 79 , 104.
76 ^m	$ au_2 \ eta^2$	74 ^m 1.267 log ft	sl = 5.4	50B54	$\frac{17^{h}Zr^{97}}{60^{8}Nb^{97}}$	No $\gamma\gamma$ coincidences. $\beta\gamma_{2}$ coincidences. No (1.91 β) γ coincidences
	γ_2	0.665 a∼0.0	sl;pe 015		_74_Nb / - /	1.267 0.665 Stable Mo ⁹⁷
	ß	1.35	a	49850	Fission.	F.Suzor, Ann. Phys., Paris, 4, 269.
99 41 58	$\frac{\tau}{\beta}$	2.5 ^m 3.2	a	50D54	Mo ¹⁰⁰ (<23 Mev γ, p); chem.	R.B.Duffield, et al., PR 79 , 1011.
				-		

Nuclear Data, National Bureau of Standards Circular 499

41 NIOBIUM Nb

Supplement 2, July 1950 - January 1951

41-Nb

.

42	MOLYBDENU	MO NO				42-Mo
Mo	$\sigma_{\rm a}^{}({\rm pile}n)$	3.04	osc	50H62	Based on σ_{a} (B) = 710.	S.P.Harris, et al., PR 80 , 342.
	$\sigma_{_{\mathbf{a}}}$ (pile n)	2.95	osc	50C71	No chem. Self-screening correction. Based on $\sigma_{a}(B) = 710.$	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63 , 1175.
	σ _t (0.0025 – 10	ev) graph		50E57	Results from 0.25 to 10 ev fitted by $\sigma_{t} = 6.4 + 0.43E^{-1/2}$.	P.A.Egelstaff, B.T.Taylor, Nature 166 , 825.
	$\sigma_{t}^{}$ (120 ev) $\sigma_{t}^{}$ (345 ev)	6.78 5.55		50H53	Thin Co and Mn foils used as resonance scattering detectors,	C.T.Hibdon, PR 79 , 747.
	σ _t (0.01 - 1.15	Mev) graph		50842		W.F.Stubbins, ANL-4515, 8.
	σ _t (42 Mev n)	3.11		50H71	$C^{12}(n,2n)C^{11}$ detector. Be (d,n) .	R.H.Hildebrand, C.E.Leith, PR 80 , 842.
96 42 54	f	- 6.67		50D57	From $\Delta f(C_2 - Mo^{96}) = 9.88$ and $f(C_2) = 3.213$.	H.E.Duckworth, et al., PR 79 , 188.
99 42 57	$ \begin{array}{c} \beta_1^- \sim 20\% \\ \beta_2^- \sim 80\% \\ \beta_3^- ? \text{ weak } \\ \gamma_1 \\ \gamma_2 \end{array} $	0.445 1.23 < 0.2 0.040 0.140	sl sl sl;ce ⁻ sl;ce ⁻ ,j	50B91	Mo(d, p). Proposed decay scheme: $67^{h}Mo^{99}$ 0.445 0.367	M.E.Bunker, R.Canada, PR 80 , 961 and PR 81 , 299(A) (1951). See also Tc ⁹⁹ , 50B91.
	γ_3 γ_4 10 %* γ_5 100 %* γ_6 14 %*	.K/L = 9 0.181 K/L = 5 0.367 0.741 0.780	sl;ce ⁻ ,) sl;pe ⁻ sl;pe ⁻ sl;pe ⁻	pe	6 ^h Tc ⁹⁹	0.780 0.780 0.040 0.181
	*Relative val	ues			~3 x 10	^{5^yTc⁹⁹}
	F	1.25	a	49850	Fission.	F.Suzor, Ann. Phys., Paris, 4, 269.
100 42 58	f	- 6.14		50D57	From $\triangle f(C_2 H - Mo^{100}) = 12.47$ and $f(C_2 H) = 6.336.$	H.E.Duckworth, et al., PR 79 , 188.
	σ (\sim 0.03 MeV r	n,γ)14 ^m Mo 1.4		50H87	Based on $\sigma(\operatorname{th} n, \gamma) = 0.5$ of 47833. Sb - Be neutrons.	V.Hummel, B.Hamermesh, ANL-4515, 4; PR 82, 67 (1951).
	$\sigma(\gamma, n)$ maximum $\sigma(\gamma, p)$ increas $E_{\gamma} = 23$ MeV	n at Ε ~ sed up ^γ to	17 Mev	50D54	$\sigma(\gamma, p)/\sigma(\gamma, n) \sim 100$ times greater than statistical theory of nuclear reactions predicts.	R.B.Duffield, et al., PR 79 , 1011.

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951

43	TE	CHNE	TIUN	Tc
----	----	------	------	----

43-Tc 44-Ru

					11 // 4
95 43 52	τ	60 ^d	50BB2		G.E.Boyd, priv. comm.
62	γ	0.0390 sl;ce	50M73	Proposed decay scheme:	H.A.Medicus, P. Preiswerk, PR 80,
				97 % 20 ^h Tc ⁹⁵	0.039 3% g _{9/2}
96 43 53	$\frac{\tau}{\gamma}$	4.25 ^d 1.65 scin 1.89 scin 2.39 scin	50B43	Same decay scheme as 50M21 (See Tc ⁹⁶) except for these crossovers. 0.312 γ practi- cally completely converted.	G.E.Boyd, B.H.Ketelle, ORNL-870, 37; also G.E.Boyd, priv. comm.
	au	4.20 ^d	50069	4π ic. Ion exchange separation.	J.W.Cobble, R.W.Atteberry, PR 80, 917.
99 43 56 5•9 ^h	γ	0.140 K/L=9 sl;	50B91 pe ⁻ ,ce ⁻	See Mo ⁹⁹ , 50B91.	M.E.Bunker, R.Canada, PR 80, 961.
∼3 × 10 ^{5 y}	au	$2.12 \times 10^{5^{9}}$	50J61	$\mathrm{NH}_{\mathrm{H}}\mathrm{TcO}_{\mathrm{H}}$ solution used.	A.H.Jaffey, et al., PR 81 , 299(A) and PR 81 , 741.
	au	2.2×10^{5} ^y	50P73	Used pertechnetate compound with tetraphenyl arsonium chloride.	G.W.Parker, ORNL-870, 45.
	I	9/ 2 S	50K66		K.G.Kessler, W.F.Meggers, PR 80, 905.

44 RUTHENIUM Ru

Ru *	Relative abunda:	nces	[44	4E1]	Reference should be 43E6 not 44E1	*Correction	to Table.
	σ_{a} (pile n)	6.30	osc 50	он62	Sample \sim 150 mg/cm ² .	S.P.Harris	, et al., PR 80, 342.
	$\sigma_{t}^{}(120 \text{ ev})$ $\sigma_{t}^{}(345 \text{ ev})$	6.51 6.70	50	0H53	Thin Co and Mn foils used as resonance scattering detectors.	C.T.Hibdon	, PR 79 , 747.
	New reference fo	r data re	ported in 50	iom26	Ru ⁹⁷ .	J.Y.Mei, e	t al., PR 79, 4 29.
103 44 59	$ \begin{array}{c} \tau \\ \beta_1 \\ \beta_2 \\ \gamma_1 \\ \end{array} \\ \gamma_2 \end{array} $	39.8 ^d 0.217 0.698 0.0400 _K /L+1 0.498	50 sl sl;ce ⁻ ,pe ⁻ M=0.20 sl;ce ⁻ ,pe ⁻	- -	Ru(pile n, γ); chem. β spectra do not yield straight-line Fermi plots. No $\gamma\gamma$ coinci- dences. No $\beta\gamma_1$ coincidences. γ_2 follows β_1 . See decay scheme below.	E.Kondalah	, FR 79, 891.
-	$ \begin{array}{ccc} \beta_1 & 94\% \\ \beta_2 & 6\% \\ \gamma_1 \\ \gamma_2 \end{array} $	0.222 0.684 0.0404 0.494 $\alpha_{\rm K} = 5$ ${\rm K/L} = 0$	sl 50 sl;ce sl;ce .5x10 ⁻³ 3.5	0M53 -	Suggested decay scheme: <u>42^dRu¹⁰³</u> 0.222 0.684 <u>57^mRh¹⁰³</u> Stable	J.Y.Me1, e 1 0.494 0.0404 Rh ¹⁰³	t al., PR 79 , 429. og ft $(\beta_1) = 8.3$ og ft $(\beta_2) = 5.6$

Nuclear Data, National Bureau of Standards Ciscular 499 Supplement 2, July 1950 - January 1951

45	RHODIUM Rh			45-Rh 46-Pd
Rh	Resonance $E_0 = 1.28 \text{ ev}$ Γ_n / Γ 0.043	50H54	See Al ²⁷ , 50H54.	S.P.Harris, et al., PR 79 , 11.
103 45 58 57 ^m	τ 56 ^m γ 0.0404 sl;ce κ/L < 1 e 0.0369	50M53	Decay of Pd ¹⁰³ ; chem. Proposed decay scheme: 42 ^d Ru ¹⁰³ 0.222	J.Y.Me1, PR 79, 429.
			0.684 57 ^m Rh ¹⁰³ Stable	0.494 X 0.0404 Rh ¹⁰ 3
Stable	I 1/2 S μ - 0.11 [*]	50K45	* Assuming perfect L-S coupling. Sign doubtful.	H.Kuhn, G.K.Woodgate, Nature 166, 906.
	σ(~0.03 Mev n,γ)4.34 ^m Rh 0.20	50H84	Based on σ (th n, γ) = 12 of 47833. SD-Be n 's.	V.Hummel, B.Hamermesh, ANL-4476, 54;.PR 82, 67 (1951).
105 45 60	$ au$ 36.8 ^h $ar{eta}$ \sim 0.6 a γ 0.3 a	50M77	Ru(pile $n, \gamma\beta$); chem. No $\beta\beta$ or $\gamma\gamma$ coincidences. Very few β 's coincident with 0.3 γ .	C.E.Mandeville, E.Shapiro, PR 80 , 125(A).
106 45 61	$\begin{array}{ccc} \gamma_{1} & & \alpha_{\rm K} = 5.4 \ {\rm x} \ 10^{-3} \\ \gamma_{2} & & \alpha_{\rm K} < 2.5 \ {\rm x} \ 10^{-3} \end{array}$	50M86	Conversion coefficients suggest E2 for γ_1 and $\gamma_2 \text{.}$	F.Metzger, PR 79, 398.
	$\gamma\gamma$ angular correlation curve	50B59	Curve not analyzed.	J.R.Beyster, M.L.Wiedenbeck, PR 79 , 411.

46 PALLADIUM Pd

Pd	$\sigma_{\rm a}^{}({\rm pile}{\it n})$	10.3	osc 50H62	Thick target. Based on $\sigma_{\rm a}({\rm B})$ =710.	S.P.Harris, et al., PR 80, 342.
	$\sigma_{a}^{}(\text{pile }n)$	10.0	osc 50C71	Self-screening correction; no chem. Based on $\sigma_{\rm a}$ (B) = 710.	F.C.W.Colmer, D.J.Littler, Proc. Phys., Soc., Lond., A63, 1175.
	$\sigma_{\rm t}^{~(120~{\rm ev})}$ $\sigma_{\rm t}^{~(345~{\rm ev})}$	5.95 5.78	50H53	Thin Co and Mn foils used as resonance scattering detectors.	C.T.Hibdon, PR 79 , 747.
	Resonances E _o	80 ev 180 ev	50H88	Evidence of higher energy resonances.	S.P.Harris, ANL-4552, 5.
46 ¹⁰⁸ 62	$\sigma(\sim$ 0.03 Mev	n,γ)13.1 ^h P 1.3	d 50H87	Based on $\sigma(\text{th } n, \gamma) = 11$ of 47833. Sb-Be n's.	V.Hummel, B.Hamermesh, ANL-4515, 40; PR 82, 67 (1951).
46 ¹¹⁰ 64	f	- 5.40	50D52	From \triangle f (Pd ¹¹⁰ - Mn ⁵⁵) = 2.70 and f (Mn ⁵⁵) = -8.10.	H.E.Duckworth, R.S.Preston, PR 79, 402.

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951

.

47 SILVER	Aq
-----------	----

47-Ag

Ag	$\sigma_{t}^{}$ (42 Mev)	3.23	50H71	Be (d,n) . $C^{12}(n,2n)$ detector.	R.H.Hildebrand, C.E.Leith, PR 80, 842.
	$\sigma(\gamma, n)$ curve for $p/n = 0.023$ for 1	$F = E_{\gamma} = 10 - 22$ $E_{\gamma} = 10 - 20.8$	50D56	Angular distribution of photo-protons given.	B.C.Diven, G.M.Almy, PR 80, 407.
	Resonances E _o 5.1 ~15	Γ _n /Γ 0.038 ~0.071	50H54	See Al ²⁷ .	S.P.Harris, et al., PR 79 , 11.
	New reference for	r data reported in	49G24	Ag ¹⁰⁵ , Ag ¹¹⁰ .	J.R.Gum, M.L.Pool, PR 80, 315.
105 47 58	κ, no β ⁺ Pd K X-ray		50G54	γ/X-ray ~2.	J.R.Gum, M.L.Pool, PR 80, 315.
	γ weak weak	0.064 0.220 0.278 0.340 0.437	50M61	Rh(α,2n), Fd(d); chem. Two weak lines maybe in another K capture branch.	J.Y.Mei, et al., PR 79 , 1010.
106 47 59	γ	0.515 0.722 1.04 1.54	50M81	$\operatorname{Rh}(a,n)$, $\operatorname{Pd}(d)$; chem.	See above.
107 47 60 44.3 ^{\$}	τ	44 ⁸	50 W73	$\operatorname{Ag}^{\operatorname{107}}(\gamma,\gamma)$. Followed seven half-lives.	E.J.Wolicki, et al., PR 81. 319(A) (1951).
Stable	Level for 44 ^s Ag	by Ag ¹⁰⁷ (γ,γ) 1.28	50W73	Threshold < 0.8.	See above.
	σ(~0.03 Mev n,	y)2.3 ^m Ag 2.1	50H 84	Based on $\sigma(\tan n, \gamma) = 44$ of 47S33. SD-Be n's.	V.Hummel, B.Hamermesh, ANL-4476, 54; PR 82, 67 (1951).
108 47 61	$\begin{array}{ccc} & & & & & & \\ & & & & & & \\ & & & & & $	2.4 ^m 0.83 scin 1.47 scin 0.188 scin 0.420 scin 0.615 scin	50063	Proposed decay scheme: 2.33 ^m Ag ¹⁰⁸ 0.83 0.188 1.47 0.420 Stable	M.Goodrich, ORNL-940, 22.
109 47 62 39•2 ^{\$}	au	40 ^S	50W73	$\operatorname{Ag}^{\operatorname{log}}(\gamma,\gamma)$. Followed seven half-lives.	See Ag ¹⁰⁷ , 50W73.
Stable	Level for 40 ^s Ag	by Ag ¹⁰⁹ (γ,γ) 1.21	50W73	Threshold <0.8.	See Ag ¹⁰⁷ , 50W73.
	σ(0.12-0.60 Me	$v n, \gamma) 24^{s} Ag$	50H70	Results \sim twice those in 50Ad. (Ag continued on next page)	R.L.Henkel, H.H.Barschall, PR 80, 145.

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951 28

48 CADMIUM Cd

Cd,Cd ¹¹³ *	Reference			[47D2]	47D2 should read 47D12.	*Correction to table.
Cd	New reference	e for data	reported	in 49P24	Cd ¹¹¹ , Cd ¹¹³ .	W.G.Proctor, PR 79, 35.
48 105 57	β [*] κ γ	1.5	a	50054	57 ^m activity produced by Pd(α), Cd(fast n); chem; not by Ag(d), Cd(slow n). $\gamma/K \sim 1$.	J.R.Gum, M.L.Pool, PR 80, 315.
109 48 61	au K, X-rays No eta , no γ	470 ^d		50 <mark>0</mark> 54	Ag(d), Pd(a); chem.	See above.
	auK	~250 ^d		50060	$\operatorname{Cd}^{108}(\operatorname{pile} n, \gamma)$.	J.M.Cork, et al., PR 79 , 938.
					(Od continued on next page)	

Nuclear Data, National Bureau of Standards Circular

47-Ag 48-Cd . •

48	CADMIUM C	d_(co	ntinu	ed)		48-Cd
110 48 62	f	- 5.57		50D52	From $\Delta f(Cd^{110} - Mn^{55}) = 2.53$ and $f(Mn^{55}) = -8.10$.	H.E.Duckworth, R.S.Preston, PR 79 , 402.
48 112 48 ⁶⁴	$\sigma(\texttt{pile } n,\gamma)5^{y}Cd$	113 0.020		50BB6	Based on $\sigma(\text{pile } n, \gamma) 43^{d} \text{Cd}^{115} = 0.14$. Enriched Cd ¹¹² .	P.R.Bell, et al., ORNL-940, 30.
	f -	- 5.36		50D52	From $\Delta f(Cd^{112} - Fe^{56}) = 3.06$ and $f(Fe^{56}) = -8.42$.	See Cd ^{ll0} , 50D52.
113 48 65	au eta X-rays ~10 %	5.1 ^y 0.5	a	50063	Cd ¹¹² (<i>d</i> , <i>p</i>); chem.	W.L.Carss, et al., PR 80 , 1028.
	au	3.5 ^y		50BB6	$\operatorname{Cd}^{112}(n,\gamma)\operatorname{Cd}^{113}$.	P.R.Bell, et al., ORNL-940, 30.
	β ⁻ 80% 20% γ2-3%	0.580 0.350 0.270	scin scin scin	50BB5	$\operatorname{Cd}^{112}(\operatorname{pile} n, \gamma).$	P.R.Bell, et al., ORNL-865, 21 and PR 79 , 418(A).
114 '48 66	$Cd(n,\gamma)$ $E_{\gamma}(max)$	~8.0		50H51	No line structure. Curve still rising below 3 Mev. D ₂ 0 loaded emulsions.	B.Hamermesh, PR 80 , 415 and ANL-4447.
	$\begin{array}{c} \operatorname{Cd}(n,\gamma) \\ \mathrm{E}_{\gamma}(\max) \end{array} \gamma$	~8.5		50W61	Peak \sim 5 Mev may be due to several levels. Dy p in ic.	R.Wilson, PR 80, 90.
	$\begin{array}{c} \operatorname{Cd}(\operatorname{th}\boldsymbol{n},\boldsymbol{\gamma})\\ \mathrm{E}_{\boldsymbol{\gamma}}(\max) \end{array}$	7.5		50M74	Organic D loaded emulsions. Broad peak \sim 5 Mev. Some indication of peak \sim 3 Mev.	C.H.Millar, et al., Can. J. Res., 28A , 475.
48 43 ^d	${}^{ au}_{eta}$	42.6 ^d 1.46	æ	50C60	Enriched Cd ¹¹⁴ (pile n, γ).	J.M.Cork, et al., PR 79 , 938.
	β 1% * 99% γ $\gamma\gamma$ coincidences	0.38 1.41 1.10	а <i>Бу</i> а а <i>Бу</i>	50G59	Cd(pile n); chem. after one month. *Assuming 0.38 β followed by 1.10 γ .	P.S.Gill, et al., PR 80 , 284.
	$\begin{array}{ccc} \beta^{-} & \sim 1.4 \% \\ \gamma & \text{weak} \\ & \text{strong} \\ & \text{weak} \\ \text{No} & (1.67 \beta) \gamma \text{co} \end{array}$	0.8 0.48 0.94 1.28 incidence	aβy scin scin scin s	50 E5 8	Some $300^{d}Cd^{109}$ was present. $\sim 0.007\%$ of the disintegra- tions lead to $4.5^{h}In^{115}$.	D.Engelkemeir, ANL-4526, 92.
:	ß	1.59	scin	50BB5	$Cd^{ll4}(n,\gamma)$.	P.R.Bell, et al., ORNL-865.
	No $eta \gamma$ angular	correlat	ion	49021		R.L.Garwin, PR 76 , 1876.
	No $eta \gamma$ angular	correlat	ion	50B 60		J.R.Beyster, M.L.Wiedenbeck, PR 79 , 728.
					(Cd continued on next page)	
Nuclear Da	ta, National Bur	eau of St	andards	Circula	ar 499 Supplement 2, Jul	ly 1950 - January 1951 30

48	40 CADMIUM CU (COILLINUEU)									
115 48 67 2.33 ^d	au	2.35 ^d 0.3625 0.4237 0.5254	s;ce ⁻ s;ce ⁻ s;ce ⁻	50060	Cd^{114} (pile n,γ). The ten γ 's (reported here and in 50C22) are fitted into six levels in In^{115} .	J.M.Cork, et al., PR 79 , 9	38.			
	γ	0.336 0.522	sl;pe ⁻ sl;pe ⁻	50D60	Cd(pile n, γ). Less intense pe's found with E < 0.5.	E.B.Dale, J.D.Kurbatov, PF 126(A).	₹ 80,			
116 48 68	f	- 5.00		50D52	From $\triangle f(Cd^{116} - N1^{58}) = 3.01$ and $f(N1^{58}) = -8.01$.	H.E.Duckworth, R.S.Preston PR 79, 402,	l.9			

49 INDIUM In

? 49 ?	au γ In K X-ray	2.5 ⁸ 0.152	scin pc	50072	In (pile n).	E.C.Campbell, J.H.Kahn, ORNL-865, 16.
112 49 63 23 ^m	au	21.5^m 0.154 $\alpha \sim 9$		50C76		S.A.Chowdary, unpublished Thesis, Purdue University, 1949. Quoted in 50G66 below.
9 ^m	τ	10 ^m		50C76		See above.
	Confirm 21.5 ^m excited state to ground sta	activity , 10 ^m act te.	to ivity	50G66	Transition formed ions separated in electric field.	G.J.Goldsmith, E.Bleuler, J. Phys. Coll. Chem., 54 , 717.
114 49 65	Confirm 72 ^s ac ground state.	tivity to)	50G66	See above.	See above.
115 49 66 4.5 ^h	γ	0.336	sl;pe ⁻	50D60	Cd(pile n, γ).	E.B.Dale, J.D.Kurbatov, PR 80, 126(A).
\sim stable	τ_{β}	6 x 10 ^{14 y} 0.63	a	50M76		E.A.Martell, W.F.L1öby, PR 80 , 977.
	Levels for 4.5 1.0	^h In by In 8,1.47,1.	(γ,γ) 60	50S46		E.J.Schillinger, èt al., PR 81 , 318(A)(1951).
	σ(~0.03 Mev n	,γ)54.31 ^m 1.05	In	50H84	Based on $\sigma(\tanh n, \gamma) = 145$ of 47833. Sb-Be n's.	V.Hummel, B.Hamermesh, PR 82, 87(1951).
	σ(0.015-1 Mev 0	π,γ)13 [°] I . 14 - 0.09	'n	50H70	L1(p,n).	R.L.Henkel, H.H.Barschall, PR 80, 145.
116 49 67 54.31 ^m	γ	0.1374 0.1712	S S	50K48	In(pile n).	H.B.Keller, ANL-4437.

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951 966962 O - 51 - 5

48-Cd

.

50	IIN Sn				50-Sn
Sn	$\sigma_{a}^{}(\text{pile }n)$	0.70 osc	50C71	Based on $\sigma_{\rm a}$ (B) = 710. No chemical analysis of sample.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63 , 1175.
	$\sigma_{t}^{}$ (270 Mev)	1.87	50D55	Be(350 Mev p,n). Bi-f detector.	J.DeJuren, PR 80, 27.
	σ _t (280 Mev)	1.83	50F56	Be(340 Mev p,n). Recoils p's, scin.	R.Fox, et al., PR 80 , 23.
112 50 62	σ(pile n,γ) 30 ^m Sn 112 ^d Sn	0.02 1.3	50N52		C.M.Nelson, et al., ORNL-828.
113 50 63 112 ^d	No eta^{+} with E $_{eta}$ No γ	> 0.05	50N52		See above.
115 50 65	μ	-0.9134 I	50P51	$ \frac{\nu(\text{Sn}^{115})}{\nu(\text{Na}^{23})} [\text{SnCl}_2] $ = 1.2362 ± 0.0001.	W.G.Proctor, PR 79, 35.
116 50 66	$\sigma(\text{pile } n, \gamma)$ 14.	5 ^d Sn 6 mb	50N52		See Sn ¹¹² , 50N52.
	f .	- 5.35	50D52	From $\Delta f(Sn^{116} - Ni^{58}) = 2.66$ and $f(Ni^{58}) = -8.01$.	H.E.Duckworth, R.S.Preston, PR 79, 402.
117 50 67 14.5 ^d	γ	0.157 sl;ce ⁻ K/L=2.2	50 H 66		R.W.Hayward, PR 79, 542.
	γ	0.159 s;ce K/L = 2.2 0.162 s;ce $\alpha_{\rm K}$ = 0.1	50M52	Proposed decay scheme: <u>14.5^dSn¹¹⁷</u> 0.159 E5, M4 3/2 0.162 M1 1/2 Stable Sn ¹¹⁷	J.W.Mihelich, R.D.Hill, PR 79, 781.
	γ	0.152 sl;ce [−] K⁄L = 2.4	50N52		See Sn ¹¹² , 50N52.
stable	μ	- 0.9951 I	50P51	$\nu (\text{Sn}^{117}) / \nu (\text{Na}^{23})$ [SnCl ₂] = 1.3468 ± 0.0001.	See Sn ¹¹⁵ , 50P51.
119 50 69 ≥ 100 ^d	$\frac{\tau}{\gamma}$	~250 ^d 0.069 s;ce K/L = 1.5	50M52	Propose second γ of low conversion to explain probable M4 of 0.069 γ . See Sn ¹¹⁷ .	J.W.M1helich, R.D.Hill, PR 79 , 781.
	$rac{ au}{\gamma}$	245 ^d 0.064 K/L = 0.82 *	50N52	Energy may be low due to source thickness. *Corrected for self-absorption in source.	See Sn ¹¹² , 50N52.
stable	μ	- 1.0411 I	50P51	$\frac{\nu (\text{Sn}^{119}) / \nu (\text{Na}^{23})}{= 1.4090 \pm 0.0001.} \text{[SnCl}_2\text{]}$	See Sn ¹¹⁵ , 50P51.
120 50 70	σ(pile n,γ) 27 ^h Sn long Sn	0.03 0.001	50N52		See Sn ¹¹² , 50N52.
Nuoloss D	to National D	took of Standard	Circul	(Sn continued on next page)	1950 - January 1951 32
Nuclear Da	ta National Ku	reau or stanuarus	$C_{II}C_{UI}$		$I \neq I \neq J = I = I = I = I \neq J = I = J = J = J = J = J = J = J = J =$

Nuclear Data, National Bureau of Standards Circular 499

51 ANTIMONY Sb

SЪ	$\sigma_{a}^{}(\text{pile }n)$	8.15	osc	5 <mark>0H6</mark> 2	Based on $\sigma_a(B) = 710$. Sample $\sim 400 \text{ mg/cm}^2$.	S.P.Harris, et al., PR 80, 342.
	$\sigma_{a}^{(pile n)}$	7.6	OSC	50071	Based on σ_{a} (B) = 710. Self- screening correction applied. No chem.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63 , 1175.
	Resonance Γ_n/Γ	E _o ∼10 ev ~0.21		50H54	See Al ²⁷ .	S.P.Harris, et al., PR 79 , 11.
120 51 69 16.6 ^m	au Sb (γ,n)	16.4 ^m threshold =	9. 3	50J59		H.E.Johns, et al., PR 80 , 1062.
			_		(Sb continued on next page)	

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

· "
	ANTIMONY	SD (cc	ontinued)		51-St
121 51 70	σ(∼0.03 Mev	n,γ)2.8 ^d Sb 2.8	50H87	Based on $\sigma(\tanh n, \gamma) = 6.8$ of 47833. Sb-Be n's.	V.Hummel, B.Hamermesh, ANL-4515, 39; PR 82, 67.
	μ	3.3422	I 50057	$\nu (\text{Sb}^{121}) / \nu (\text{Na}^{23})$ [HSbCl ₆] = 0.90469 ± 0.00004.	V.W.Cohen, et al., PR 79 , 191.
	μ	3.7094	I 50C70	$\nu (\text{Sb}^{121}) / \nu (\text{Na}^{23}) $ [sbcl ₃] = 1.0041 ± 0.0003.	T.L.Collins, PR 79 , 226(A).
122 51 71	Sb (y,n)	threshold =	9.3 50J59		H.E.Johns, et al., PR 80 , 1062.
51 72	μ	2.5335	I 50C57	ν (Sb ¹²³)/ ν (Na ²³) [HSbCl ₆] = 0.8442 ± 0.0001.	See Sb ¹²¹ , 50C57.
124 51 73 60 ^d	$ \begin{array}{c} \beta_5 \\ \beta_4 \\ \beta_3 \\ \gamma_7 \end{array} \\ \begin{array}{c} \gamma_5 \\ \gamma_4 \end{array} $	0.95 1.69 2.291 2.291 $\alpha = 0.00$ 0.653 0.730	sl 50L51 sl sl;pe ⁻ ,ce ⁻ 016 * sl;pe ⁻ sl;pe ⁻	Spectral shape of β_{3}^{-} indicates Δ I=2 yes. No β^{+} or K capture found. Auger electrons could be attributed to ce ⁻ of γ_{1}^{-} . * If assume γ_{1}^{-} follows all β 's. α indicates E1.	L.M.Langer, et al., PR 79 , 808 and 80 , 126(A).
	$eta_3 \gamma_7$ coincide	ences	50B62	Graph of angular correlation; b = -0.27.	J.R.Beyster, M.L.Wiedenbeck, PR 79 , 169.
131 51 80	τ	23.2 ^{m*}	50P72	p 25 ^m Te ¹³¹ . Fission; chem.	A.C.Pappas, PR 81 , 299(A)(1951) and [*] verbal report.
132 ? 51 81	τ	2.2 ^{m*}	50P72	Probable identification by energy considerations. Fission; chem.	See above.
133 51 82	Τ	4.5 ^{m*}	50P72	p 60 ^m Te ¹³³ . Fission; chem.	See above.
134,135 ? 51 83,84	Τ	~50 ⁸	50P72	Probable identification by energy considerations. Fission; chem.	See above.

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

however

Te	$\sigma_{a}^{}(\text{pile }n)$	5.82	osc	50H62	Based on $\sigma_{a}(B) = 710$.	S.P.Harris, et al., PR 80 , 342.
123 * 52 71	μ			49M47	$\mu(\text{Te}^{123})/\mu(\text{Te}^{125})$ in <i>Table</i> should read $\mu(\text{Te}^{125})/\mu(\text{Te}^{123})$.	*Correction to Table.
125 * 52 73	γ_1			49H27	$\alpha \sim_1$ in <i>Table</i> should read $\alpha > 100$.	*Correction to Table.
	γ_2	0.0354 α _K = 7-	pc 11	50F60	Measured relative heights of K X-rays and $\gamma{\rm 's}$ with pc. E2,M1.	G.Friedlander, et al., PR 80 , 1103.
128 * 52 76	Relative abund	ance		48W9	31.78% in <i>Table</i> should read 31.72%.	*Correction to Table.
132 52 80	au	77.7 ^h		50P70	Fission; chem; yield.	A.C.Pappas, C.D.Coryell, PR 81 , 329(A) (1951).
133 52 81	τ	66 ^m		50P70	Fission; chem; yield.	See above and PR 81 , 299(A).
134 52 82	τ	44 ^m		50P70	Fission; chem; yield.	See Te ¹³² , 50P70.

53 IODINE I

I	New reference i	for data re	ported i	n 50R12	I ¹²⁸ .	J.H.Reynolds, PR 79 , 789.
	$\sigma_{a}^{}(pile n)$	7.4	osc	50071	Based on $\sigma_{\rm a}$ (B) = 710. No chem. Self-screening correction.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	$\sigma_{a}^{}$ (pile n)	9.23	osc	50H62	Sample~250 mg/cm ² . Based on $\sigma_{\rm a}$ (B) = 710.	S.P.Harris, et al., PR 80 , 342.
	$\sigma_{\rm t}^{}({\rm 42~Mev})$	3.51		50H71	Derived from $\sigma_t (CH_2I_2) = 8.52$. C ¹² (n,2n) detector.	R.H.Hildebrand, C.E.Leith, PR 80 , 842.
	Resonances \mathbf{E}	~20-30 ~ 0.31	ev	50H54	See Al ²⁷ .	S.P.Harris, et al., PR 79 , 11.
127 53 74	σ(~0.03 Mev n,	♡)24.99 [™] I 2.2		50H87	Based on $\sigma(\operatorname{th} n, \gamma) = 6.3$ of 47S33. Sb-Be n's.	V.Hummel, B.Hamermesh, ANL-4515, 40, PR 82, 67.
131 53 78	$ \begin{array}{ccc} \beta_1^- & 15\% \\ \beta_2^- & 85\% \\ \gamma_6^- & .1\% \\ \gamma_1\gamma_2^- \ {\rm coincider} \\ {\rm No}\ \gamma_1\gamma_3^- \ {\rm coinc} \end{array} $	0.315 0.600 0.73 nces idences	sl sl sl;sci	50B44 In	$\begin{array}{l} \gamma_{1} \text{ does not follow } \beta_{1}^{-} \\ \tau\left(\gamma_{1}\right) \leq 10^{-3} \overset{\mu s}{.} \\ \tau\left(\gamma_{2} \text{ and } \gamma_{3}\right) \leq 2 \ge 10^{-4} \overset{\mu s}{.} \end{array}$	R.E.Bell, PR-P-7, 22, Chalk River.
	No $eta\gamma$ angular	r correlat	ion	50B60		J.R.Beyster, M.L.Wiedenbeck, PR 79 , 728.
132 53 79	ß	1.50	a	49S50	Fission product.	F.Suzor, Ann. Phys., Paris, 4, 289.
					(I continued on next page)	

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

, 35

⁵²⁻Te 53-1

•

53	IODINE I	(continued)						53-1 54-Xe
133 53 80	τ	22.4 ^h	50P70	Fission;	chem;	yield.	A.C.Pappas, C.D.Coryell, 329(A) (1951).	PR 81,
134 53 81	τ	52.5 ^m	5 0P70	Fission;	chem;	yield.	See above.	

54 XENON Xe

Хе	$\sigma_{a}^{(pile n)}$	37	50M66	From sum of isotopic values listed below.	J.Macnamara, H.G.Thode, PR 80, 296.
	σ_{s} (th n)	4.3	50H60	Boron absorption and self absorp- tion indicate resonance about 11ev	S.P.Harris, PR 80 , 20.
	Relative isoto 124 0.096 % 126 0.090 % 128 1.919 % 129 26.44 % 130 4.08 %	pic abundances 131 21.18% 132 26.89% 134 10.44% 136 8.87%	50N51		A.O.Nier, pr 79 , 450.
128 54 74	$\sigma(extsf{pile} \ n,\gamma)$	0-5	50M66	From relativeabundance changes on irradiation in Chalk River pile.	See Xe, 50M66.
129 54 75	$\sigma(\texttt{pile } n, \gamma)$	40	50 M66	See above.	See Xe, 50M66.
130 54 76	σ (pile n, γ)	0-5	50M88	See above.	See Xe, 50M66.
54 77 12 ^d	$rac{ au}{\gamma}$	12.0 ^d 0.1629 sπV2;ce ⁻ K/L = 2.34, L/M =	50B67 3.4	No lines for γ 's of 0.80, 0.284, 0.364. 0.177 γ of 49C13 may be due to 1.25 ^d Te ¹³¹ .	I.Bergström, PR 80 , 114.
stable	$\sigma(\texttt{pile } n, \gamma)$	120	50M66	See Xe ¹²⁸ , 50M66.	See Xe, 50M66.
132 54 78	$\sigma(\texttt{pile} ~ \texttt{n}, \gamma)$	0-5	50M88	See above.	See above.
133 54 79 ∼2 ^d	γ_{1}	2 ^d 0.232	50K58	Fission product Xe was highly purified from other gases including Kr.	B.H.Kettle, et al., PR 80 , 485.
5•27 ^d	β^{-} γ_{1}	0.345 0.081	50B65	Fission product Xe. Log ft = 5.6. [See above.]	I.Bergström, S.Thulin, PR 79, 538.
	γ_2	α _K - 2.9, N L - 5 0.232 K/L = 2.2	•9	[Only one γ of 0.081. Values of 0.0824 and 0.0836 from 49T4 in Suppl. 1 were from K and L lines of same γ .]	
134 54 80	$\sigma(pile n, \gamma)$	0-5	50M66	See Xe ¹²⁸ , 50M66.	See Xe, 50M88.
136 54 82	σ (pile n, γ)	0-5	50M66	See above.	See above.

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

.

55	CESIUM	Cs
----	--------	----

55-Cs 56-Ba

Cs	σ_{a} (pile n)	35.8 osc	50H62	Based on $\sigma_{a}(B) = 710$.	S.P.Harris, et al., PR 80, 342.
134 55 79	Crossover 1.96 <10 ⁻⁴ photons/	γ intensity disintegrat:	50W55 Lon	Detected Be (γ, n) by Szilard- Chalmers in ethyl iodide.	R.Wilson, PR 79 , 1004.
	$\begin{array}{c} \beta_2^- \\ \gamma_2^- & 0.560 \\ & \alpha_{\rm K} = 0.0082 \\ \gamma_4^- & 1.363 \\ & \alpha_{\rm K} = 0.00082 \\ \gamma_6^- & 1.03 \end{array}$	$\begin{array}{ccc} 0.651 & \text{sl} \\ \gamma_{3} & 0.602 \\ & \alpha_{\text{K}}=0.00 \\ \gamma_{5} & 0.799 \\ & \alpha_{\text{K}}=0.00 \\ \gamma_{7} & 1.17 \end{array}$	50W59 053 * 0255 * } sl;ce	$\beta_3 \gamma_4$ coincidences observed. *Assuming $\beta_3 / \beta_2 = 26.5 / 73.5.$ γ_6 and γ_7 may be in a K-capture branch or due to an impurity.	M.A.Waggoner, et al., PR 80,420.
	No $eta\gamma$ angular	correlation	50827		R.Stump, S.Frankel, PR 79, 243(A).
	No $ ot\!$	correlation	50B60		J.R.Beyster, M.L.Wiedenbeck, PR 79 , 728.
	γγ angular corr indicates I = ?	elation *,4,2,0	50B59	*Suggest I for highest level is 4,5, or 6.	J.R.Beyster, M.L.Wiedenbeck, PR 79, 411.
135 55 80	au eta No γ , no X-ray	2.9 x 10 ^{6 ^y} 0.19	50255	Fission product. $ au$ from assay and counting rate.	H.Zeldes, et al., ORNL-286.
137 55 82	β_2^{τ} γ	0.518 0.663 α _K = 0.097	50W63	β spectrum indicates $\Delta {\rm I}{=}2,$ yes. $\alpha_{\rm K}$ determined by two methods, and indicates M4.	M.A.Waggoner, PR 80, 489.

56 BARIUM. Ba

Ва	New reference for	r data re	ported in	50D4	Ba ¹³¹ .	E.L.Zimmerman, et al., PR 80, 908.
	$\sigma_{a}^{}$ (pile n)	1.25	OSC	50C71	No self-screening correction. No chem. Based on $\sigma_{a}(B) = 710$.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63 , 1175.
	$\sigma_{t}^{}$ (120 ev) $\sigma_{t}^{}$ (345 ev)	5.76 6.05		50H53	Thin Co and Mn foils used as resonance scattering detectors.	C.T.Hibdon, PR 79, 747.
	$\sigma_{\rm t}$ (40 Mev)	3.6		50H71	Derived from $\sigma_t (BaCO_3) = 8.73$. $C^{12}(n, 2n)$ detector.	R.H.Hildebrand, C.E.Leith, PR 80, 842.
131 56 75	γ Other γ's 0.18	0.213 - 0.22 ?	sl;pe ⁻	50D58	Pile activated Ba(NO ₃) ₂ was purified and Cs removed chem- ically. Ba ¹³³ allowed to decay.	E.B.Dale, et al., PR 80, 763. See also PR 80, 908.
135 56 79	I	3/2	S .	50A51	Used 3 different enriched samples and natural Ba. Linear isotope shift for even masses. Great even-odd shift; different for Ba I and Ba II.	0.H.Arroe, PR 79 , 836.
137 56 81	I	3/2	S	50A51	See above.	See above.

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

I. The second second

57	LANTHANUM	La				58 – Ce 59 – Pr
La	$\sigma_{a}^{}(\text{pile }n)$	9.0	OSC	50H62	Based on $\sigma_{a}(B) = 710$.	S.P.Harris, et al., PR 80, 342.
	$\sigma_{\rm t}({ m 120~ev}) \ ({ m 345~ev})$	5.86 4.94		50H53	Co and Mn resonant scattering detectors; thin foils.	C.T.Hibdon, PR 79 , 747.
138 57 81	γ	0.545 1.06	scin scin	50850	Very pure sample. No γ 's with $E_{\gamma}^{>}$ 0.1 in natural Pr or Ce.	P.R.Bell, J.M.Cassidy,ORNL-782.
140 57 83	La(th n,γ)	$E_{\gamma}(\max) =$	8.0 Dyp	50H51	γ intensity max. at 4.6.	B.Hamermesh, PR 80, 415.

58 CERIUM Ce

Ce	σ _a (pile n) < 0.92 50071	Impure sample; partial chem. Based on $\sigma_{a}(B) = 710$.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	No $E_{\gamma} > 0.1$ in natural Ce 50B50		P.R.Bell, J.M.Cassidy, ORNL-782.
141 58 83	$\begin{array}{ccccccc} \tau & & \mathbf{32.5^d} & & 50 \text{F58} \\ \beta_2^- & 66 \% & 0.442 & \text{sl} \\ \beta_3^- & 33 \% & 0.581 & \text{sl} \\ \gamma & & 0.145 & \text{sl;pe}, \text{ce} \\ & & \alpha = 0.25 - 0.7 \end{array}$	β 's have allowed shapes, but log ft = 7.0, log ft = 7.7. No 0.137 γ ; 0.316 γ due to Pa ²³³ impurity. $\beta_2\gamma$ coincidences.	M.S.Freedman, D.W.Engelkemeir, PR 79 , 897.
58 86	$\begin{array}{cccc} \tau & 290^{d} & 50K50 \\ \gamma & 0.0340 & 0.0537 \\ & 0.0413 & 0.0809 & 0.1005 \\ & 0.0468 & 0.0950 & 0.1345 \end{array} $ s; ce ⁻		H.Keller, ANL-4515, 6.

59 PRASEODYMIUM Pr

Pr	Resonance Γ_{n}/Γ	E _o = 10 ? 0.94	50H54	See Al ²⁷ .	S.P.Harris, et al., PR 79 , 11.
	No $E_{\gamma}^{>}$ 0.1 in n	atural Pr	50850		P.R.Bell, J.M.Cassidy, ORNL-782.
140 59 81	au :	3.5 ^m	49P5		M.L.Perlman, PR 75 , 988.
	Little or no K		50 F 66		G.Friedlander, priv. comm.
142 59 83	au $ar{eta}$ au	19.1 ^h 0.636 sl 2.154 sl 1.576 sl;pe ⁻ V's found	50J56	Proposed decay scheme: <u>18.9^hPr¹⁴² 2-</u> 0.64 4% <u>1 or 2+</u> 2.15 96% <u>1.57</u> 0+ Stable Nd ¹⁺²	E.N.Jensen, et al., PR 80, 862. Spectral shape of 2.15 β indicates $\Delta I = 2$, yes. Λ correction made.
	$(\mathbf{K} + \boldsymbol{\beta}^{\dagger}) / \boldsymbol{\beta}^{-} < 0_{\bullet}$	0052	50R64		J.R.Reynolds, ANL-4515, 23.
				(Pr continued on next page)	

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

57 - La

.

.

59 PRASEODYMIUM Pr (continued)

144 59 85	$rac{ au}{\gamma}$	17 ^m 0. 061	s;ce ⁻	50K50		H.Keller, ANL-4515, 5.
	β γ	2.87 2.60	а а/Зү	50M78	2% of eta 's of \sim 0.42 Mev in coincidence with 2.60 γ .	C.E.Mandeville, E.Shapiro, PR 79 , 243(A).

60 NEODYMIUM Nd

Nd	$\sigma_{\rm a}^{}({\rm pile}~n)$	52	osc	50H62	Based on $\sigma_{a}(B) = 710$.	S.P.Harris, et al., PR 80, 342.
	No $E_{\gamma} > 0.1$ in	natural N	1d	50B50		P.R.Bell, J.M.Cassidy, ORNL-782
60 147 67	γ	0.0915 K/L = 0.534 *	s;ce 2.5 s;ce	50 <u>E</u> 55	Proposed decay scheme: * <u>11.0^dNd¹⁴⁷</u> 0.534 0.091 4 ^y Pm ¹⁴⁷	W.S.Emmerich, J.D.Kurbatov, FR 81, 300(A) (1951) and *verbal report. Observed β e ⁻ coincidences; no γ X or $\gamma\gamma$ coincidences.
	New reference	for data	in 50M7		Nd ¹⁴⁷ .	C.E.Mandeville, E.Shapiro, PR 79 , 391.

61 PROMETHIUM Pm

62 SAMARIUM Sm

Sm	Relative isotopic abundances 144 2.87 % 150 7.36 % 147 14.94 % 152 26.90 % 148 11.24 % 154 22.84 % 149 13.85 %	50H81		R.F.H1bbs, Y-648.
	Resonance $E_{o} = 10 \text{ ev}$ Γ_{n}/Γ 0.66	50H54	See Al ²⁷ . Resonance assigned to Sm ¹⁵² .	S.P.Harris, et al., PR 79 , 11.
	lpha activity assigned to Sm ¹⁴⁷	49D32		A.J.Dempster, ANL-4355.
	α activity assigned to Sm ¹⁺⁷	50W65	From α counts in Sm samples enriched in Sm ¹⁴⁷ .	B.Weaver, PR 80, 301.
	Sm α found in Sm ¹⁴⁷ separated from Pm ¹⁴⁷	50R56	$E_a \sim 2$. Ion exchange separa- tion.	J.O.Rasmussen, et al., PR 80 , 475.
153 62 91	$eta\gamma$ delay of 3.0 x 10 ^{-3 μ_{8}} γ_{2} and γ_{3} follow delay	50M64	K/L~1 for γ_3 suggests it precedes $\gamma_2.$	F.K.McGowan, PR 80 , 482.
•				

Nuclear Data, National Bureau of Standards Circular 499 966962 O - 51 - 6

63	EUROPIUM	Eu				63-Er 64-Gd	65-Ть 66-Dy 67-Но
147 63 84	τ e 5 %* 7 30 %* 30 %* K,L X-rays	54 ^d ~0.4 0.4 1.0	50W64 s a a	Produced by Sm(10 Mev p); ion exchange chem. *%relative to K X-ray.	G.Wilkinson, 491.	H.G.Hicks,	PR 80,
149 63 86	τ e ⁻ γ K,L X-rays	14 ^d ~0.1 ~1	50W64 s a	Produced by Sm(10 Mev p); 1on exchange.	See above.		
150 63 87	$\overset{\tau}{\beta^{\star}}$	15 ^h 1.8	50W64 S	See above. No E > 0.5 . Yield $\sim 1/3$ that of 9.2 ^h Eu ¹⁵² .	See above.		
152,154 63 89,91	τ	~7.5 ^y	50H82	Observed activity for 560 days.	R.E.Hein, ISC	-110, 7.	

64 GADOLINIUM Gd

Gd	$σ_{a}^{}$ (pile π)	37,600	OSC	50071	Based on $\sigma_{a}(B) = 710$.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	New reference f	or data rej	ported in	50H18	Gd ¹⁵¹ , Gd ¹⁵³ .	R.E.Hein, A.F.Voigt, PR 79, 783.

65 , TERBIUM Tb

Тъ	4 ^h α activity assigned to Tb	149	ms	50R56	Produced by Gd(150 Mev ρ); 1on exchange.	J.O.Rasmussen, et al., FR 80 , 475.
161 65 96	$\overset{ au}{eta}$	7.2 ^d 0.50	a	50H18	Produced by Gd (n,γ) ; ion exchange.	R.E.Hein, A.F.Voigt, PR 79, 783.

66 DYSPROSIUM Dy

			4
	(4
			4
			· · · · · · · · · · · · · · · · · · ·
	(4
	/	4 · · · · · · · · · · · · · · · · · · ·	4 · · · · · · · · · · · · · · · · · · ·
	(
			4
	/	1 · · · · · · · · · · · · · · · · · · ·	4
			4
		1 · · · · · · · · · · · · · · · · · · ·	4
			4
· · · · · · · · · · · · · · · · · · ·			4
	·		4
			4
			4

67 HOLMIUM Ho

Но	σ _t (0.026-0.5 ev) graph	50850	Paramagnetic scattering observed. Bent crystal spect.	T.E.Stephenson, T.Arnette, ORNL-782, 48.
166 67 99	γ $\beta\gamma$ delay of 1.7 E_{β} >0.6	0.0812 s x 10 ^{-3^{#s}}	50K48	0.080 γ follows delay.	H.B.Keller, ANL-4437, 22. F.K.McGowan, PR 80 , 923.

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

•

68	ERBIUM Er				68-Er 70-Yb 69-Tm 71-Lu
165 68 97	τ Κ 100% Ho K,L X-rays	10.0 ^h	50 B85	Produced by Ho ¹⁶⁵ (10 Mev p,n); 1on exchange. No β or β^{\dagger} .	F.D.S.Butement, Proc. Phys. Soc., Lond., A63 , 775.
171 68 103	γ	0.1126 0.1176 0.1253	s 50K48 s s		H.B.Keller, ANL-4437, 22.

69	THULIUM Tm		
169	Relative isotopic abundance 50L53	Upper limit for other isotopes	C.R.Lagergren, M.E.Kettner,
69 100	100%	is 0.04%.	PR 80, 102.
170	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Measured K X-ray and γ peak with pc.	L.G.Elliott, PR-P-7, 20,
69 101		K:L:M=0.22:1:0.22.	Chalk River.
	No evidence for γ^{*} s of 0.198, 50E52	Upper limits 6×10^{-4} , 1×10^{-3} ,	L.G.Elliott, R.E.Bell,
	0.360, 0.550 found by 50G16	2×10^{-3} quanta/disintegration.	PR-P-8, 17, Chalk River

70 YTTERBIUM Yb

? 70 ?	au 0.5 ⁸ au 0.45 YD K X-ray	50C72 scin		E.C.Campbell, J.H.Kahn, ORNL-865, 16.
169 70 99	$\begin{array}{ccccccc} \gamma & \textbf{0.023} & \text{scin} & \textbf{0.130} \\ \hline \textbf{0.064} & \text{scin} & \textbf{0.177} \\ \textbf{0.063} & \text{s} & \textbf{0.198} \\ \textbf{0.093} & \text{s} & \textbf{0.307} \\ \textbf{0.109} & \text{s} \\ \textbf{Tm} \text{ K,L X-rays} \\ \textbf{X} \gamma \text{ delay of } \textbf{0.80}^{\mu\text{s}} \end{array}$	s 50849 s s	0.023 γ interpreted as 0.021 γ and 0.024 γ combined. Only X-rays precede delay.	A.W.Sunyar, J.W.Mihelich, PR 81, 300(A) (1951) and verbal report.
	γ delay of 0.658 $^{\mu extsf{s}}$	50F63		E.W.Fuller, Proc. Phys. Soc., A63, 1044.

71 LUTETIUM Lu

		1
		2
		1
		e
		•
COLUMN TWO IS NOT THE OWNER OF THE OWNER.		

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951

72	HA	FN	IUM	Hf
----	----	-----------	-----	----

Hf	$\sigma_{a}^{}(\texttt{pile }n)$	110	OSC	50071	Based on $\sigma_{a}^{}$ (B) = 710.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	$\sigma_{a}^{}(\text{pile }n)$	171	osc	50462	Based on $\sigma_{a}(B) = 710$.	S.P.Harris, et al., PR 80, 34 2.
	σ _t (120 ev) (345 + 2400 ev) (2300 ev)	15.0 15.8 14.9		50H89	Used Co, Mn, and V resonance scattering detectors.	C.T.Hibdon, ANL-4552, 5.
	Resonance Γ_{n}/Γ	E ₀ =< 10 0.17	ev	50H54	See Al ²⁷ . $\Gamma_{n} \sim \Gamma_{\gamma}$ at 7.7 ev.	S.P.Harris, et al., PR 79 , 11.
174 72 102	$\sigma(pile n, \gamma)$ ^	~2000	08C	50M81	Enriched material used.	C.O.Muehlhause, ANL-4552, 7.
177 72 105	σ(p1le n,γ) ^	~500	osc	50M81	Enriched material used.	See above.
179 72 107	19 ^s activity as	signed to	o Hf ¹⁷⁹	50M81	Enriched material used.	See above.
181 72 109	τ	45 ^d		50R66	Followed 270 days with ic.	S.A.Reynolds, ORNL-867, 30.
	${\rm Hf}^{175}$ suggested of 0.345 γ	as sour	ce	50 <u>0</u> 51	γ_2 , γ_3 , γ_5 follow $20^{\mu s}$ delay; <10 % of ~ 0.345 γ does.	M.Deutsch, A.Hedgran, PR 79 , 400.
	γ_2, γ_5 follow 2 in cascade	0 ^{µs} dela;	y	50P62	Coincidence spectrometer studies.	W.W.Pratt, PR 80 , 289.
	$ \begin{array}{c} \beta^{-} \\ \gamma_{2} \\ \gamma_{3} \\ \gamma_{4} \\ \gamma_{5} \\ \gamma_{6} \end{array} $	0.410 0.133 0.136 0.345 * 0.481 0.615	s1 s1;ce s1;ce s1;ce s1;ce s1;ce s1;ce	50E56	Proposed decay scheme: $\frac{46^{d}Hf^{181}}{\beta}$ 0.410 $\tau = 22^{\mu s}$ $\tau = 0.012^{\mu s}$ γ_{1} 0.133 γ_{2} 0.133 $\tau = 0.002^{\mu s}$ γ_{3} 0.481 γ_{5} Stable Ta ¹⁸¹	 L.G.Elliott, R.E.Bell, PR-P-7, 22. Coincidences observed with two sl's. * Also observed 0.342 γ which is converted in Lu.
	0.481 γ delayed	11 x 10 ⁻²	βµs	50861	Above decay scheme proposed with γ_3 and γ_4 interchanged.	W.C.Barber, PR 80 , 332.

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

.

73	TANTALUM	Та				73-Ta
Та	$\sigma_{a}(pile n)$	21	osc	50071	Based on $\sigma_{a}(B)$ = 710.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	$\sigma_{t}^{}$ (42 Mev)	4.20		50H71	Be (d,n) . C ¹² $(n,2n)$ detector.	R.H.Hildebrand, C.E.Leith, PR 80, 842.
	Resonance Γ_n/Γ	E_=4.0 0.12	ev	50H54	See Al ²⁷ .	S.P.Harris, et al., PR 79 , 11.
176 73 103	γ .	~1.3	a	50W67	Only new values or those dif- fering from 49W13 are listed. d 80 ^m W, q.v.	G.Wilkinson, PR 80 , 495.
177 73 104	τ	2.2 ^d		50W67	See above.	See above.
178 73 105	9.35 ^m activity	assigned	to Ta ¹⁷⁸	50W67	d 21 ^d W, q.v. See also 50W1.	See above.
	τ_2 K β^{\dagger} 3% e γ	2.1 ^h ~1 0.1 1.3-1.5	s;a s;a a	50W67	Produced by Lu(19 Mev α, n), Hf(10 Mev p, n); chem. Assignment from yields. Not d 21 ^d W. [No mention of prev- iously reported 15.4 ^d Ta ¹⁷⁸ .]	See above.
179 73 106	τ e γ weak	~600 ^d 0.1 0.7	s;a a	50W67	Produced by Lu(19 Mev α, n), Hf(10 Mev p, n); chem. W parent has $\tau \leq 1^{h}$.	See above.
180 73 107	τ β strong weak γ strong weak X-rays	8.15 ^h 0.60 0.70 0.092 0.103	sπ sπ sπ sπ crit a	50B48	Produced by Ta (22 Mev γ, n). β^{\dagger} in less than 10 ⁻³ % of disintegrations. 0.092 γ converted in Hf. $\gamma\gamma$, $\beta\gamma$, $e^{-\gamma}\gamma$ coincidences.	W.L.Bendel, et al., PR 81, 300(A) (1951).
	$T_{a}(\gamma,n)$ t	hreshold	= 8.0	50 J 59	σ curve for E $_{\gamma}$ = 8 - 20 Mev.	H.E.Johns, et al., PR 80, 1062.
182 ? 73 109	$ au$ X or γ	0.33 ⁸ 8 - 11 ke	ev scin	50G60	Suggest low energy IT with $\alpha_{\rm L}$ large. Ta(pile n's).	M.Goodrich, E.C.Campbell, PR 79 , 418.
182 73 109 117 ^d	$\overset{ au}{eta}$	115 ^d 0.52 1.1		50S18	σ for Ta (d,p) reported in Supplement I.	K.H.Sun, et al., PR 78 , 338(A).
	ß	0.525	S	50 J8 2	At least three eta components present.	S.Jnanananda, J. Sci. Industr. Res. 8B, 147, (1949).
	γ spectrum from \sim 0.22 to \sim 1.2	1 3 Mev		50051	24 γ 's found, mostly from K conversion lines only.	F.E.O'Meara, PR 79 , 1032.
73 112	τ β_ e	46 ^m 1.7 ∽0.075	DC	50D54	Produced by W^{186} (23 Mev γ, p). 0.075 e ⁻ line also found in 1.85 ^m W ¹⁸⁵ , q.v.	R.B.Duffield, et al., PR 79, 1011.

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951

/3	IANIALUM	la				73-Ta
Ta	$\sigma_{a}^{}(\text{pile }n)$	21	osc	50C71	Based on $\sigma_{a}(B) = 710$.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63, 1175.
	$\sigma_{\rm t}^{}$ (42 Mev)	4.20		50H71	Be (d,n) . C ¹² $(n,2n)$ detector.	R.H.Hildebrand, C.E.Leith, PR 80, 842.
	Resonance Γ _n /Γ	E ₀ =4.0 0.12	ev	50H54	See Al ²⁷ .	S.P.Harris, et al., PR 79 , 11.
176 73 103	γ	~1.3	a	50W67	Only new values or those dif- fering from 49W13 are listed. d 80 ^m W, q.v.	G.Wilkinson, PR 80. 495.
177 73 104	au	2.2 ^d		50W67	See above.	See above.
178 73 105	9.35 ^m activity	assigned	to Ta ¹⁷⁸	50W67	d 21 ^d W, q.v. See also 50W1.	See above.
	$\begin{array}{c} \tau_2 \\ \mathbf{K} \\ \boldsymbol{\beta}^{\dagger} & 35 \\ \mathbf{e}^{-} \\ \boldsymbol{\gamma} \end{array}$	2.1 ^h ~1 0.1 1.3-1.5	s;a s;a a	50W67	Produced by Lu(19 Mev a,n), Hf(10 Mev p,n); chem. Assignment from yields. Not d 21 ^d W. [No mention of prev- iously reported 15.4 ^d Ta ¹⁷⁸ .]	See above.
1 79 73 106	$ au$ e $^-$ γ weak	~600 ^d 0.1 0.7	s;a a	50W67	Produced by Lu(19 Mev a,n), Hf(10 Mev p,n); chem. W parent has $\tau < 1^{h}$.	See above.
180 73 107	τ β strong weak γ strong weak X-rays	8.15 ^h 0.60 0.70 0.092 0.103	sπ sπ sπ sπ crit a	50 B 48	Produced by Ta (22 Mev γ, n). β^{\dagger} in less than 10^{-3} % of disintegrations. 0.092 γ converted in Hf. $\gamma\gamma$, $\beta\gamma$, $e^{-\gamma}$ coincidences.	W.L.Bendel, et al., PR 81, 300(A) (1951).
	$Ta(\gamma,n)$	threshold	= 8.0	50J59	σ curve for E $_{\gamma}$ = 8 - 20 Mev.	H.E.Johns, et al., PR 80 , 1062.
182 ? 73 109	$ au$ X or γ	0.33 ⁸ 8 - 11 ke	ev scin	50G60	Suggest low energy IT with α_{L} large. Ta(pile n's).	M.Goodrich, E.C.Campbell, PR 79 , 418.
182 73 109 117 ^d	τ β	115 ^d 0.52 1.1		50S18	σ for $\operatorname{Ta}(d,p)$ reported in Supplement I.	K.H.Sun, et al., PR 78, 338(A).
	B ⁻	0.525	s	50 J 62	At least three eta components present.	S.Jnanananda, J. Sci. Industr. Res. 88, 147, (1949).
	γ spectrum fro \sim 0.22 to \sim 1.	m 23 Mev		50051	24 γ 's found, mostly from K conversion lines only.	F.E.O'Meara, PR 79, 1032.
185 73 112	τ β_ e-	46 ^m 1.7 ∼0.075	рс	50 D54	Produced by W^{186} (23 Mev γ, p). 0.075 e ⁻ line also found in 1.85 ^m W ¹⁸⁵ , q.v.	R.B.Duffield, et al., PR 79, 1011.

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951

74	WOLFRAM	W			74-W
W	$\sigma_{a}^{}(\text{pile }n)$	20	osc 50C71	Based on $\sigma_{a}(B) = 710$.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63 , 1175.
	$\sigma_{a}^{}(\text{pile }n)$	24	0sc 50H62	Based on $\sigma_{a}(B) = 710$.	S.P.Harris, et al., PR 80, 342.
	$\sigma_{t}^{}$ (42 Mev)	4.31	50H71	Be (d,n) . $C^{12}(n,2n)$ detector.	R.H.Hildebrand, C.E.Leith, PR 80, 842.
	$\sigma_{t}^{}$ (270 Mev)	2.61	50D55	Be(350 Mev p,n). B1-f detector.	J.DeJuren, PR 80, 27.
	Resonance Γ_n/Γ	$E = \sim 15$ ~ 0.81	ev 50H54	See Al ²⁷ . Resonance in W ¹⁸⁶ , q.v.	S.P.Harris, et al., PR 79 , 11.
176 74 102	$\frac{\tau}{\beta^{+}} \sim 0.5\%$ e $\frac{\gamma}{K,L} X-rays$	80 ^m ~2 ~0.1 ~0.2 ~1.3	50W67 a a a	Produced by Ta(50 Mev <i>p,6n</i>); chem. p 8.0 ^h Ta. [Bohr-Wheeler E _{dis} ~1]	G.Wilkinson, PR 80, 495.
178 74 104	au Other prope	21.5 d erties as in S	50W67 50W1	Produced by Ta(25 Mev p,4n); chem. Previously assigned to Ta ^{178,179} .	See above.
179 74 105	τ ₂ e K,L X-rays	5.2 ^m	50W67	Produced by Ta(20 Mev p,3n). Ratio of 5.2 ^m and 30 ^m activities in various bombardments same.	See above.
182 74 108	Resonances E _o	4.2,14, 21.5,88,124	50S43 ev	n transmission curves. Many resonances above 200 ev. Fast chopper.	W.Selove, W.E.Woolf, ANL-4437, 69; PR 82, 345 (1951).
183 74 109	Resonances E _o	7.8,28,49	5084 3 ev	n transmission curves. Many resonances above 100 ev.	See above.
184 74 110	Resonances E _o	190,2600 ?	50H88 ev	n transmission curves.	S.P.Harris, ANL-4552, 5.
185 74 111	$\tau_{\underline{l}}$	1.85 ^m ~0.075	50D54 pc	Produced by W ¹⁸⁶ (23 Mev γ , n). γ highly converted. See Ta ¹⁸⁵ .	R.B.Duffield, et al., PR 79, 1011.
186 74 112	Resonances E _o	19.5,225	50S43 ev	n transmission curves. More resonances above 1 kev. [See also W, 50H54 above.]	See W ¹⁸² , 50S43.
187 74 113	$W(th n, \gamma)$	$E_{\gamma}(\max) = 9.0$	Dур 50H51	Max. at 4.8 and three lesser peaks at 5.4, 6.0, 6.6.	B.Hamermesh, PR 80, 415.

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951 44

.

·

.

76	OSMIUM	0s			
185 76 109	K γ ~85 % ~15 %	0.648 0.878	50B51 sl;pe ⁻ ,ce ⁻ sl;pe ⁻ ,ce ⁻	No $\gamma\gamma$ coincidences. Produced by Os(pile n). No β^{\dagger} .	M.E.Bunker, et al., PR 79 , 610 and 80 , 126(A).
191 76 115	$\beta \gamma$	~0.14 0.041 0.128	sl 50B51 sl;ce ⁻ sl;pe ⁻ ,ce ⁻	Produced by Os(pile n). γ's highly converted. [Authors assign activity to Os ¹⁹³].	See above.
193 76 117	β No γ	1.10	sl 50B51	Produced by Os(pile <i>n</i>). [Authors assign activity to Os ¹⁹¹].	See above.
	$eta \ \gamma \ eta \gamma \ eta \gamma \ \phi \gamma \ delay of$	1.05 0.065 f 5.7 x 10 ^{-3^{µs}}	s 50M80 s;ce	[Author assigns activity to Os ¹⁹¹].	F.K.McGowan, PR 79 , 404.

77	IRIDIUM	r				
191 77 114	Ι μ	3/2 positive	S S	50875	Most probable value; possibly 5/2; not 1/2. $ \mu $ small.	P.Brix, et al., Naturwiss. 37, 397.
193 77 116	Ι μ	3/2 positive	S S	50875	Value of μ is a few tenths of a nuclear magneton.	See above.
194 77 117	γ_{3} 0.14 % γ_{4} 2 x 10 ⁻⁴ %	1.67 < Ε _γ 2.23 < Ε _γ	< 2,23	50 W55	γ_3 result shows γ_1 follows γ_2 if γ_1 and γ_2 are E2 and γ_3 is E4.	R.Wilson, PR 79 , 1004.

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

.

78	PLATINUM	Pt				78-Pt 79-Au
Pt	σ _t (120 ev) (345 ev)	12.6 11.9		50H53	Thin Co and Mn foils used as resonance scattering detectors.	C.T.Hibdon, PR 79, 747.
	$\sigma_{a}^{}(\text{pile }n)$	15	OSC	50C71	Based on $\sigma_{a}(B) = 710$.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63 , 1175.
194 ? 78 116	Ρt(γ, n)	threshold	= 6.1	50P67	See Tl ²⁰⁵ , 50P67.	R.W.Parsons, C.H.Collie, Proc. Phys. Soc., Lond., A63 , 839.
198 78 120	σ (\sim 0.03 Mev	n,γ)29 ^m Pt 0.280		50H84	Relative to $\sigma(\th n, \gamma)$ value of 47833. Sb-Be n's.	V.Hummel, B.Hamermesh, ANL-4476; PR 82 , 67.

79 GOLD Au

.10

$197_{19} = 117_{117} = 117_{$	Au	Resonances $\underline{E_o}$ $\frac{\sigma_o \Gamma^2}{4.87}$ $\frac{\Gamma_n / \Gamma}{638}$	50T57	Data suggest J = 1.	J.Tittman, et al., PR 80 , 903.
196 Au (γ, n) threshold = 8.1 50P67 See T1 ²⁰⁵ , 50P67. R.W.Parsons, C.H.Collie, P. Phys. Soc., Lond., A63, 83 197 118 $\sigma(\sim 0.03$ Mev $n, \gamma)$ 2.69 ^d Au 50H64 Relative to $\sigma(th n, \gamma)$ value of 47S35. Sb-Be n's. V.Hummel, B. Hamermesh, ANL-PR 82, 67. 198 $\sigma(slow n, \gamma)$ 3.3 ^d Au 50H59 Relative to $\sigma(th n, \gamma)$ value of 47S35. Sb-Be n's. R.D. Hill, PR 79, 413. 198 $\sigma(slow n, \gamma)$ 3.3 ^d Au 50H59 $(-6, 100\% E_{\gamma} < 0.411 s)$ SOH59 R.D. Hill, PR 79, 413. 198 γ 0.690 scin 50H59 $(-4.11 \gamma delayed by 3.5 x 10^{-2} M^3; follows 0.411 \gamma.$ R.W.Pringle, S.Standil, PR 762. γ 0.690 scin 50H59 $(-4.11 \gamma delayed by 3.5 x 10^{-2} M^3; follows 0.411 \gamma.$ R.W.Pringle, S.Standil, PR 762. γ 0.690 scin 50H59 $(-4.11 \gamma delayed by 3.5 x 10^{-2} M^3; follows 0.411 \gamma.$ R.W.Pringle, S.Standil, PR 762. γ 0.690 scin 50H59 $(-4.11 \gamma delayed by 3.5 x 10^{-2} M^3; follows 0.411 \gamma.$ R.W.Pringle, S.Standil, PR 762. γ 0.391 sl 50H59 Soff5 Soff5 R.D. Hill, J.W.Mihelich, PR 79. 199 120 τ 3.3 ^d 50H56 Produced by successive ther		4.8 0.14 >345 >0.9	50H54	See Al ²⁷ .	S.P.Harris, et al., PR 79 , 11.
197 19 $\sigma(\sim 0.03 \text{ Mev } n, \gamma) \ge .69^d \text{Au}$ 50H84Relative to $\sigma(\text{th } n, \gamma)$ value of 47533. SD-Be n's.V.Hummel, B.Hamermesh, ANL- PR 82, 67.198 	196 79 117	Au (γ, n) threshold = 8.1	50P67	See Tl ²⁰⁵ , 50P67.	R.W.Parsons, C.H.Collie, Proc. Phys. Soc., Lond., A63, 839.
198 79 $\sigma(slow n, \gamma)3, 3^d Au$ 1.6 x 10450H59 1.6 x 104R.D. H11, PR 79, 413.72.7d γ 50-100 % Ey <50M71<<0.411 γ delayed by $3.5 x 10^{-2} \mu^{s}$, follows 0.411 γ .R.D. H11, PR 79, 413.70.690 scin 1.100 scin50P63<R.W. Pringle, S. Standil, PR 	197 79 118	σ(~0.03 Mev π,γ)2.69 ^d Au 1.5	50H84	Relative to $\sigma(\th n, \gamma)$ value of 47833. Sb-Be n's.	V.Hummel, B.Hamermesh, ANL-4476, PR 82, 67.
$\frac{\tau}{\gamma} = \frac{2.7^{d}}{50-100 \% E_{\gamma}} \ll 0.411 \text{s}}{50M71} \approx \frac{(< 0.411 \gamma \text{ delayed by}}{3.5 x 10^{-2 \mu \text{s}}; \text{ follows } 0.411 \gamma}, \text{K. P. Meyer, et al., HPA 23,} \\ \frac{\gamma}{\gamma} = \frac{0.690 \text{ scin}}{1.100 \text{ scin}} = 50P63 \\ \frac{\beta^{T}}{\gamma} = \frac{0.961 \text{ sl}}{0.411} = \frac{50F65}{\sqrt{u} = 0.029} \\ \frac{\alpha_{L}}{\alpha_{L}} = 0.012 \\ K'L = 2.1 50H56 \\ \text{Au}(\text{th } n, \gamma) = E_{\gamma}(\text{max}) = 9.2 \text{Dyp} = 50H51 \\ \frac{\gamma}{\gamma} = \frac{3.3^{d}}{\sqrt{1 + 2}} = \frac{50H56}{\sqrt{u} = 0.585} \\ \frac{\gamma}{\gamma_{u}} \approx 67 \frac{0.050}{\sqrt{v}_{y}} \approx 67 \frac{0.050}{\sqrt{v}_{y}} = \frac{50H56}{\sqrt{1 + 2}} \\ \frac{\gamma}{\gamma_{u}} \approx 3.3 \frac{0.050}{\sqrt{v}_{y}} = \frac{50H56}{\sqrt{1 + 2}} \\ \frac{\gamma}{\gamma_{u}} \approx 3.3 \frac{0.050}{\sqrt{v}_{y}} = \frac{50H56}{\sqrt{1 + 2}} \\ \frac{\gamma}{\gamma_{u}} \approx 67 \frac{0.050}{\sqrt{v}_{y}} = \frac{50H56}{\sqrt{1 + 2}} \\ \frac{\gamma}{\gamma_{u}} \approx 3.3 \frac{0.02085}{\sqrt{v}_{y}} = \frac{50H56}{\sqrt{1 + 2}} \\ \frac{\gamma}{\gamma_{u}} \approx 3.3 \frac{0.2085}{\sqrt{v}_{y}} = \frac{50H56}{\sqrt{1 + 2}} \\ \frac{\gamma}{\gamma_{u}} \approx 3.3 \frac{0.2085}{\sqrt{v}_{y}} = \frac{50H56}{\sqrt{1 + 2}} \\ \frac{\gamma}{\gamma_{u}} \approx 3.3 \frac{0.2085}{\sqrt{v}_{y}} = \frac{1000}{\sqrt{1 + 2}} \\ \frac{\gamma}{\gamma_{u}} \approx 3.3 \frac{0.2085}{\sqrt{v}_{y}} = \frac{1000}{\sqrt{1 + 2}} \\ \frac{\gamma}{\gamma_{u}} \approx 3.3 \frac{0.2085}{\sqrt{v}_{y}} = \frac{1000}{\sqrt{1 + 2}} \\ \frac{\gamma}{\gamma_{u}} \approx 3.3 \frac{0.2085}{\sqrt{v}_{y}} = \frac{1000}{\sqrt{1 + 2}} \\ \frac{\gamma}{\gamma_{u}} \approx 3.3 100$	198 79 119	$\sigma(\text{slow } n, \gamma) 3. 3^{d} \text{Au}$ 1.6 x 10 ⁴	50H59		R.D.H111, PR 79 , 413.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		τ 2.7^d γ 50-100 % E _{γ} << 0.411 s	50M71	<< 0.411 γ delayed by 3.5x 10 ^{-2 μ} ; follows 0.411 γ .	K.P.Meyer, et al., HPA 23 , 517.
$ \begin{array}{c} \beta^{7} & 0.961 & s1 \\ \gamma & 0.411 \\ a_{K} = 0.029 \\ K/L = 2.1 \\ & 50H56 \end{array} \\ \begin{array}{c} Au (th n, \gamma) & E_{\gamma} (max) = 9.2 \\ \gamma & 3.3^{d} \end{array} \\ \begin{array}{c} 50H56 \\ Froduced by successive thermal \\ n capture. \end{array} \\ \begin{array}{c} R.D. Hill, J.W.Mihelich, PR 79, \\ B. Hamermesh, PR 80, 415. \\ Produced by successive thermal \\ n capture. \end{array} \\ \begin{array}{c} R.D. Hill, J.W.Mihelich, PR 79, \\ B. Hamermesh, PR 80, 415. \\ Produced by successive thermal \\ n capture. \end{array} \\ \begin{array}{c} R.D. Hill, J.W.Mihelich, PR 79, \\ B. Hamermesh, PR 80, 415. \\ Produced by successive thermal \\ n capture. \end{array} \\ \begin{array}{c} R.D. Hill, J.W.Mihelich, PR 79, \\ Probably follows 0.050 \\ \gamma_{2} \\ \gamma_{3} \\ \gamma_{5} \\ \gamma_{3} \\ \gamma_{5} \\$		γ 0.690 scin 1.100 scin	50P63		R.W.Pringle, S.Standil, PR 80, 762.
$199 \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$β^{-}$ 0.961 s1 γ 0.411 $α_{K} = 0.029$ $α_{K} = 0.012$	50F65		C.Y.Fan, PR 81 , 300(A) (1951).
199 τ 3.3 ^d 50H51 B. Hamermesh, PR 80, 415. γ_{9} 120 τ 3.3 ^d 50H56 Produced by successive thermal n capture. R.D. Hill, J.W. Mihelich, PR 275. γ_{2} 0.050 $50H59$ No 0.230 γ_{6} found. Other lines are Auger e ⁻¹ 's. γ_{4} probably follows 0.050 γ_{2} . R.D. Hill, PR 79, 413.		K/L = 2.1	50H56		R.D.Hill, J.W.Mihelich, PR 79, 275.
199 τ 3.3 ^d 50H56 Produced by successive thermal $n capture$. R.D. Hill, J.W. Mihelich, PR 275. γ_{9}^{2} 0.050 50H59 No 0.230 γ_{6} found. Other lines are Auger e ⁻¹ 's. γ_{4} probably follows 0.050 γ_{2} . R.D. Hill, PR 79, 413.		Au(th n, γ) $E_{\gamma}(\max) = 9.2 D\gamma p$	50H51		B.Hamermesh, PR 80, 415.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	199 79 120	τ 3.3 ^d	50H56	Produced by successive thermal n capture.	R.D.Hill, J.W.Mihelich, PR 79, 275.
		$\begin{array}{cccc} \gamma_{2} & & 0.050 \\ \gamma_{4} & \sim 67 \% & & 0.1585 \\ & & & & K/L = 0, 37 \\ \gamma_{5} & \sim 33 \% & & 0.2085 \\ & & & & & K/L \sim 5 \end{array}$	50159	No 0.230 γ_6 found. Other lines are Auger e ⁻¹ s. γ_4 probably follows 0.050 γ_2 .	R.D.H111, PR 79 , 413.

•

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951

46

0

•

80-Hg 80 MERCURY Ha Hg Relative isotopic abundances 50N51 A.O.Nier, PR 79, 450. 198 10.03% 13.24% 201 199 16.86% 202 29.84% 200 23.16% 204 6.86% σ_a (pile n) \sim 380 osc 50H62 Based on $\sigma_{1}(B) = 710$. S.P.Harris, et al., PR 80, 342. σ_ (280 Mev) 2.80 50F56 Be (340 Mev p, n). Scin; recoil p's. R.Fox, et al., PR 80, 23. σ_{n} (Rn- α -F n's) 0.25 50L63 See B1, 50L63, for method. K.Lintner, Acta Physica σ_{n,2n} (Ra-α-Be n's) Austriaca 3, 352. 0.07 80 65^h117 0.077 50F55 Proposed decay scheme: H.Frauenfelder, et al., PR 79,1029. 23^hHg¹⁹⁷ 25 ^h 0.164 sl;ce γ_1 0.164 7.4 SAu197 $\tau = 7 \times 10^{-3^{\mu s}}$ $a \sim 20, K/L = 0.45$ 0.133 0.133 sl;ce γ_2 0.275 65^hHg¹⁹⁷ $a \sim 2$, K/L = 0.39 0.275 sl;ce γ_{3} Stable Au γ_1 and γ_2 converted in Hg. K/L = 3.4200? 80 120 $Hg(th n, \gamma) = E_{\gamma}(max) = 8.0 D\gamma p$ 50H51 B. Hamermesh, PR 80, 415. See T1²⁰⁵, 50P67. $\operatorname{Hg}(\gamma, \mathbf{n})$ threshold = 6.6 50P67 R.W.Parsons, C.H.Collie, Proc. Phys. Soc., Lond., A63, 839. 80 122 Hg²⁰² enriched to 97%. $\sigma(\text{pile } n, \gamma) 43.5^{d} \text{Hg}$ 50L62 W.S.Lyon, ORNL-788, 24. 3.8 80 124 Hg²⁰⁴ enriched to 89%. $\sigma(\text{pile } n, \gamma) 5.5^{\text{m}} \text{Hg}$ 50L62 See above. 0.47 80 125 5.66^m 50L62 See above. ß 1.75 а

81 THALLIUM TI

T1	Resonance Γ_n/Γ	E = 260 ev 0.52	50H54	See Al ²⁷ . Probably resonance in Tl ²⁰³ .	S.P.Harris, et al., PR 79 , 11.
	σ_{a} (Rn-a-F n's) $\sigma_{n,2n}$ (Ra-a-Be	0.22 n's) 0.59	50L63	See B1, 50L63, for method.	K.Lintner, Acta Physica Austriaca 3, 352.
204 81 123	ß	0.762 sl	50E52	Shape indicates $ riangle I$ = 2, yes.	L.G.Elliott, R.E.Bell, PR-P-8, 16, Chalk River.
	Τι(n,γ) Ε _γ	(max) = 6.54	50K49	Pair spectrometer.	B.B.Kinsey, PR-P-7-GP, 41, Chalk River.
				(T1 continued on next page)	

Nuclear Data, National Bureau of Standards Circular 499 966962 O - 51 - 7 Supplement 2, July 1950 - January 1951

.

81 THAL	LIUM TI (contin	ued)			82-Pb
204 ? 81 123 T1 (γ,	n) threshold = 7.3	50P67	n's detected by activity induced in ethyl iodide.	R.W.Parsons, C.H.Collie, Phys. Soc., Lond., A63,	Proc. 839.
206 81 125 Tl(n,	$Y) \qquad \mathbb{E}_{\gamma}(\max) = 6.23$	50K49	Pair spectrometer.	See Tl ²⁰⁴ , 50K49.	
208 Angul 81 127 and 2	ar correlation between 0.58 .62 γ 's gives spins 4,2,0	50P59	Disagrees with conversion coeff. results of 50M27.	H.E.Petch, M.W.Johns, FR 80), 478.

82 LEAD Pb

Pb	New reference for data reported in	50H16	Pb ²⁰⁶ , ²⁰⁷ , ²⁰⁸ .	J.A.Harvey, PR 81, 353.
	$\sigma_{a}^{}(pile n) \qquad 0.28 osc$	50C71	Based on $\sigma_{\rm a}$ (B) = 710.	F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63 , 1175.
	$ \begin{array}{c c} \sigma_{t} (300-750 \ \text{kev}) \text{graph} \\ \hline E_{\circ} (\text{kev}) & \sigma_{\circ} & J & \overline{\Gamma} (\text{kev}) \\ \hline 350 & 4 & 1/2 & \sim 10 \\ 525 & 3/2 & \sim 10 \\ 720 & 3.7 & 3/2 & \sim 10 \end{array} $	50P60)	Better resolution than in 49B31. P-neutrons probably responsible for all three resonances which are attributed to levels in Pb ²⁰⁹ .	R.E.Peterson, et al., PR 79, 935.
	$\sigma_{t}^{}$ (270 Mev) 2.84	50D55	Be(350 Mev p,n). Bi-f detector.	J.DeJuren, PR 80, 27.
	$\sigma_{ m t}$ (280 MeV) 2.89	50F56	Be(340 Mev p,n). Recoil p's.	R.Fox, et al., PR 80, 23.
	$\sigma_{a} (Rn - \alpha - F n's) 0.04$ $\sigma_{n,2n} (Ra - \alpha - Be n's)$ 0.25	50L63	See Bi, 50L63, for method.	K.Lintner, Acta Physica Austriaca 3 , 352.
204 82 122	$\gamma\gamma$ angular correlation	50S59	Shows spin memory for 0.3 $^{\mu s}$.	A.W.Sunyar, et al., PR 79 , 181.
68 ^m	Mass assignment questioned 66 ^m activity from Pb + <i>n</i>	50G64	Paraffin slowed n's. Activity decreased 10% by Cd shield.	K.Geiger, Z.Naturforsch. 5a ,401
206 82 124	σ _t (15-750 kev) graph	50P60	Radio-lead used. Many peaks.	See Pb, 50P60.
	$Pb^{207}(\gamma,n)$ threshold = 6.9	50P67	See Tl ²⁰⁴ ? Natural Fb used.	R.W.Parsons, C.H.Collie, Proc. Phys. Soc., Lond., A63, 839.
207 82 125	μ 0.5837 I	50P51	ν (Pb ²⁰⁷)/ ν (Na ²³) [Pb (C ₂ H ₃ O ₂) ₂] = 0.7901 ± 0.0001.	W.G.Proctor, PR 79, 35.
	Levels	50P60	Spacing \sim 50 kev above 7 Mev.	See Pb, 50P60.
	$Pb^{208}(\gamma,n)$ threshold = 8.1	50P68	Pb ²⁰⁸ extracted by Soddy.	R.W.Parsons, et al., Proc. Phys. Soc., Lond., A63 , 915.
	$Pb^{206}(n,\gamma) = E_{\gamma}(max) = 6.74$	50K49	Natural Pb used.	B.B.Kinsey, PR-P-7-GP, 41, Chalk River.
209 82 127	Levels from Pb $({m n},\gamma)$ resonances	50P60	Effect of Pb ²⁰⁶ subtracted. $\sigma_{\rm t}({\rm Pb}^{207})$ assumed smooth.	See PD, 50P60.
210 82 128	au 25 ^y	50W72	Followed 250 days with ic.	F.Wagner, Jr., ANL-4490, 5.
			(Pb continued on next page)	

Nuclear Data, National Bureau of Standards Circular 499Supplement 2, July 1950 - January 195148

82	LEAD	Pb	(conti	nued)		83-Bi 85-A
212 82 130	ß		0.590	S	50254	A.S.Zavelskii, et al., Izv. Akad. Nauk, SSSR, Ser. Fiz. 12, 673; Chem. Abst. 44, 4343a.

83	BISMUTH	Bi
----	---------	----

Bi	σ _a 0.033	50E53	Danger coeff. method and osc.	C.Eggler, D.J.Hughes, ANL-4476,40
	σ _a (Rn-α-F n's) 0.06 σ _{n,2n} (Ra-α-Be n's) 0.26	50 1 63	E _n (max) =~3.7 and ~13,resp. Sources placed at center of Bi sphere and <i>n</i> densities measured in surrounding water	K.Lintner, Acta Physica Austriaca 3, 352.
208 83 125	$B1^{209}(\gamma_{\bullet n})$ threshold = 7.2	50P67	See Tl ²⁰⁵ .	R.W.Parsons, C.H.Collie, Proc. Phys. Soc., Lond., A63 , 839.
209 83 126	μ 4.10 S	50K59		F.M.Kelly, et al., PR 80, 295.
	$\sigma(\th n, \gamma) 5^{d} Bi 0.016$	50E53	Disagreement with absorption value felt to be real.	See B1, 50E53.
	σ(th π,γ/3)138 ^d Po 0.021	50071		F.C.W.Colmer, D.J.Littler, Proc. Phys. Soc., Lond., A63 , 1175.
214 83 131	No fine structure found in conversion lines	50L58	In old apparatus lines had "individual plateaus which we took for unresolved lines".	G.D.Latyshev, J. Exp. Theor. Phys. USSR 20, 192; Guide to Russ. Sci. Lit. 3, 288.

84 PO

LON	IUM	Ро
-----	-----	----

211 ? 84 127	Long range α 9.1 $3 \times 10^{-5} \alpha$'s per dis. of AcC'	50A61	Suggests possibility of assign- ment to AcA, AcC', or Rn ²¹⁵ .	P.Avignon, J. Phys. Radium, (8) 11, 521.
213 84 129	a 8.34 ic	50H52	Details of work reported in 47H2.	F.Hagemann, et al., PR 79, 4 35.
214 84 130	τ 1.637 x 10 ^{-4 s}	50D53	20 channel time analyzer.	G.von Dardel, PR 79 , 734.

85 ASTATINE At

$\begin{array}{c} 215 \\ 85 \\ 130 \end{array} \begin{array}{c} \alpha \\ 2.3 \times 10^{-6} \\ \alpha's \end{array}$	8.04 ic per dis. of AcA	50A61	Range = 7.40 cm.	P.Avignon, J. Phys. Radium, (8) 11, 521.

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951

82-Ph 84-Po

86	RADON Rn			86-Rn 89-Ac 87-Fr 90-Th 88-Ra 91-Pa
		······		
87	FRANCIUM Fr			
88	RADIUM Ra		1	
89	ACTINIUM Ac		I	
227 89 138	au 22.0	y 50H79	Sample produced by $\operatorname{Ra}(n,\gamma)$ compared to Ra standard.	J.M.Hollander, R.F.Leininger, PR 80, 915.
	au 27.7	y 50W72	Followed for 250 days with ic.	F.Wagner, Jr., ANL-4490, 5.
90	THORIUM Th			
Th	$\sigma_{\rm t}^{}$ (42 Mev) 5.03	50H71	Be (d,n) . C ¹² $(n,2n)$ detector.	R.H.Hildebrand, C.E.Leith, PR 80 , 842.
229 90 139	au 7340	^y ±160 50H52	Produced by U^{233} decay; chem. a's same as in 46H20.	F.Hagemann, et al., PR 79 , 435.
231 90 141	$\operatorname{Th}^{232}(\gamma,n)$ thresh	old = 6.0 50P67	n's detected by activity in- duced in ethyl iodide.	R.W.Parsons, C.H.Collie, Proc. Phys. Soc., Lond., A53 , 839.
90 143	β ⁻ 1.23 No γ, no pe ⁻	sl 50B68	Falling off in Fermi plot below 500 kev; above that, linear. Secondary e found; attributed to bremsstrahlung.	M.E.Bunker, et al., PR 80, 468.
234 90 144	σ (pile $n, \gamma \beta$) 23.7 ^m Pa 1.7 -	50H76 •1.8		B.G.Harvey, B.I.Parsons, PR 80, 1098.
91	PROTACTINIUM P	a	•	
Pa	New reference for data	reported in 48J10	Pa ²³² .	A.H.Jaffey, E.K.Hyde, PR 79. 280

$\begin{array}{c} 231 \\ 91 \\ 140 \end{array} \gamma \qquad \begin{array}{c} 27 \text{ kev} \qquad 49835 \end{array} \text{ Reported as e^- in Table.} \qquad *Correction to the second $	to Table.
$\begin{array}{c} \gamma & 0.0289, 0.0406, 0.0581, \\ 91 & 142 \\ 91 & 142 \\ 0.0757, 0.0871, 0.1045, \\ 0.2726, 0.3015, 0.3131, \\ 0.3420, 0.3765, 0.3999, \\ 0.4164 \\ \text{Auger e}'s \end{array} \qquad \begin{array}{c} 50 \text{K54} \\ \gamma' \text{s fitted into five levels in} \\ y' s fitted in$	J.M.Cork, PR 79 ,
β ~ ~0.530 sl 50F58 Conversion lines at 0.050, M.S.Freedman, 0.061,0.0775,0.192,0.221,0.288. PR 79, 897.	n, D.W.Engelkemeir,
235 τ 23 ^m 50H76 Produced by Th ²³⁴ (pile n); 12 B.G. Harvey, H 91 144 1098.	B.I.Parsons, PR 80,

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951

.
92	URANIUM	U			92-U 93-Np 94-Pu
U	$\sigma_{t}^{}(42 \text{ Mev})$	5.12	50H71	Be (d,n) . $C^{12}(n,2n)$ detector.	R.H.Hildebrand, C.E.Leith, PR 80 , 842.
	$\sigma_{\rm t}$ (270 Mev)	3.29	50D55	Be(350 Mev p,n). B1-f detector.	J.DeJuren, PR 80, 27.
	$\sigma_{\rm t}$ (280 Mev)	3.14	50F56	Be(340 Mev p,n). Scin, recoil p's	R.Fox, et al., PR 80, 23.
233 92 141	a	4.80	50H52		A.H.Jaffey, priv. comm. quoted by F.Hagemann, et al., PR 79 , 435.
235 92 143	I	5/2 s	50810	Enriched U^{235} . I = 5/2 fits data considerably better than I = 7/2.	G.L.Stukenbroeker, J.R.McNally, Jr., AECD-2797.
238 92 146	Resonance $\frac{E_{o}}{11 \text{ ev}} \frac{\sigma_{o}}{9200}$		50A58	B absorption, resonance acti- vation experiments. Evidence for higher levels.	H.L.Anderson, PR 80 , 499. Work done in 1940.
	U(γ,n)	threshold = 5.8	50P67	n's detected by activity in- duced in ethyl iodide.	R.W.Parsons, C.H.Collie, Proc. Phys. Soc., Lond., A63, 839.

93 NEPTUNIUM Np

238 93 145	$\begin{array}{cccc} \beta_{1}^{-} & 53 \ \% \\ \beta_{2}^{-} & 47 \ \% \\ \text{No K} \\ \beta^{+} / \beta^{-} \leqslant 10^{-3} \\ \gamma \end{array}$	0.258 sl 50F53 1.272 sl 0.043 sl;ce ⁻ $a_{L} = 2.5, a_{M} = 0.37$ 0.047 sl;ce ⁻ $a_{L} = 2.8, a_{M} = 0.14$ 0.103 sl;ce ⁻	Produced by Np ²³⁷ (pile n); chem. Proposed decay scheme: 210 ^d Np ²³⁸ 0.258 53% 1.272 47% 1.030 0.983 49% 51%	M.S.Freedman, et al., PR 79, 410. Both β 's have allowed shape 0.258 β : log ft = 6 1.272 β : log ft = 6.4
	51% 49%	$a_{\rm L} = 0.041, a_{\rm M} = 0.026$ 0.983 sl; pe $a_{\rm K} = 0.012$ 1.030 sl; pe $a_{\rm K} = 0.012$	0.103 0.103 0.047 0.047 0.047 92 ^y	$\frac{\beta_{1} (L X-ray), \beta_{2} (L X-ray),}{(L X-ray) (L X-ray), \beta_{1} (1.03 \gamma)}$ coincidences. $\overline{Pu^{238}}$

94 PLUTONIUM Pu

240 94 146	a	5.16	ic	50T54	$Pu^{239}(n,\gamma);$ chem.	S.Thompson, et al., PR 80 , 1108.
241 94 147	τ a ~3 x 10 ⁻³ % σ(n,γ) Pu ²⁴²	14 ^{y*} 4.91 ~250	ic	50T54	$Pu^{239}(n,\gamma;n,\gamma)$, chem. *Estimated from growth of Am ²⁴¹ .	See above.
242 94 148	τ _a a	~5 x 10 ^{5^y 4.88}	10	50T54	n bombardment of Pu ²³⁹ and Am ²⁴¹ ; ms, chem.	See above.
Nuclear Da	ta, National B	ureau of S	tandar ds	Circula	ar 499 Supplement 2, Ju.	ly 1950 - January 1951 51

.

•

95 AMERICIUM Am

					T T T T T T T T T T T T T T T T T T T	
238 ? 95 143	τ ce ⁻ X-rays	~1.2 ^h	a a	50861	Pu ²³⁹ (17 Mev d,3n?).	K.Street, Jr., et al., PR 79, 530.
239 95 144	a ∼0.01%	5.77	ic	50861	Former value was 0.1%	See above.
240 95 145	Confirm 50 ^h : No a's	assignment t	0 Am ²⁴⁰	50861	Pu^{239} (10 Mev <i>d</i> , <i>n</i>), not from Pu^{239} (9 Mev <i>p</i> , γ).	See above.
241 95 146	au $\sigma(n,\gamma)$ Am ²⁴²	475 ^y * ∼100		50861	* Unpublished value of Cunningham, Thompson, Lohr.	See above.
242 95 147 16 ^h	β ⁻ γ Pu, Am, Cm L	0.628 0.038 0.052 $\alpha \sim 1$ X-rays	sπ√2 sπ√2; c sπ√2; c	50052 e ⁻ e	Am (n, γ) . Pu ²⁺² found by ms in long irradiation of Am. Tentative branching ratio: β : L capture: IT = 60: 20:20. Bent crystal spec, for X-rays.	G.D.0'Kelley, et al., PR 80, 293.
~ ₄₀₀ у	$\begin{array}{l} \tau \\ a \\ \sigma (n, \gamma) \operatorname{Am}^{243} \end{array}$	~100 ^y ~4000		50861	From ms analysis of Am and growth of Cm ²⁴² and Np ²³⁸ .	See Am ²³⁸ ?, 50861.
	ß	0.580	Sπ√2	50052		See Am ²⁴² , 50052.
243 95 148	τ_a $\sigma(n,\gamma) \operatorname{Am}^{244}?$	${\sim_{10}}^{4^{y}}_{5.21}$ ~50	ic	50861	$\begin{array}{l} \mathrm{Am}(n,\gamma;n,\gamma); \;\;\mathrm{ms.} \;\; \mathrm{p}\;\;\mathrm{of}\;\;\mathrm{Np}^{239}.\\ \mathrm{No}\;\;\mathrm{Cm}^{243}\;\;\mathrm{found}\;\;\mathrm{in}\;\;\mathrm{aged}\;\;\mathrm{Am}^{243};\\ \mathrm{therefore}\;\;\tau_{\beta}^{}>10^{39}. \end{array}$	K.Street, Jr., et al., PR 79 , 530.
244 ? 95 149?	τ	~25 ^m		50861	$\operatorname{Am}^{243}(n,\gamma)$?	See above.

96 CURIUM Cm

96 243 96147	τ a	~100 ⁵ 85% 5.79 15% 5.89	7) îc) îc	50T52	Daughter of 4.6^{h} Bk. Differential pulse analysis of a 's.	S.G.Thompson, et al., PR 80 , 781.
	ms	identification of	isotope	50R55	$\operatorname{Am}^{241}(n,\gamma\beta) \operatorname{Cm}^{242}(n,\gamma);$ chem.	F.L.Reynolds, et al., FR 80 , 467.
244 96 148	ms	identification of	'isotope	50R55	Am ²⁺¹ (successive <i>n</i> capture, $\gamma\beta$) and Cm ²⁺³ (<i>n</i> , γ); chem.	See above.

97 BERKELIUM Bk

98 CALIFORNIUM Cf

Nuclear Data,	National Bureau of	Standards Circul	ar 499	Supplement 2, Ju.	ly 1950 -	January 195	1 52

List of Fission and Spallation Papers

Fission Yields

G.B.Cook, AERE - C/R - 424. L.E.Glendenin, ANL - 4526, 91. R.H.Goeckermann, I.Perlman, Phys. Rev. 76, 628.

M.G. Inghram, D.C. Hess, Jr., J.H. Reynolds, Phys. Rev. 76, 1717. M.G. Inghram, R.J. Hayden, D.C. Hess, Jr., Phys. Rev. 79, 271. J. Macnamara, H.G. Thode, Phys. Rev. 80, 471. J. Macnamara, C.B. Collins, H.G. Thode, Phys. Rev. 78. 129. J.Niday, A.Turkevich, Phys. Rev. 80, 136. A.C.Pappas, C.D.Coryell, Phys. Rev. 81, 329(A). K.Way, N.Dismuke, AECD - 2817.

Sn^{121,123} from U²³⁵. Cs¹³⁸ from 11²³³ Yield curve for Bi(190 Mev d, f). Mo⁹⁹ from $Pb^{204,208}(d, f)$. Cs from U²³⁵. Rare earths from U²³⁵. Xe, Kr from spontaneous fission of U²³⁸. Xe¹³³ from U²³⁵. Yield curve for Th(fast n,f). Masses 129 to 134 from U^{235} . Summary of data as of June 1949.

Fission Yields: Theoretical

D.L.Hill, Phys. Rev. 80, 330(A). J.Jungerman, Phys. Rev. 80, 285. T. Yasaki, O. Miyatake, Phys. Rev. 79, 740 and 80, 754.

Fission Fragments: Ranges and Energies

Mean ranges in air for $U^{235}(th n, f)$.
Energy distribution for Pu ²³⁹ (th n,f).
Energy distribution for U^{233} , U^{235} (th n,f).
Energy distribution for $U^{235}(2.5 \text{ and } 14 \text{ Mev n}, f)$.
Energy distribution for U ²³⁵ ,U ²³⁸ ,Th ²³² ,Bi ²⁰⁹ (45 Mev and 90 Mev n,f).
Estimate of fragment energies not producing ionization.
Energy loss by fragments along range.
Ranges in Al, Cu, Ag, Au for U ²³⁵ (th n and fast n,f).
Energy distribution for spontaneous fission of U ²³⁸ .

Fission Cross Sections

S.Biswas, A.P.Patro, Ind. J. Phys. 23, 97.	$\sigma[U^{235}(0.025 \text{ ev } n, f)] = 526.$
U.Facchini, E.Gatti, Nuovo Cim. 7, 589; Helv. Phys. Acta 23, 556.	$\sigma[U^{235}(0.025 \text{ ev } n, f)] = 551.$
C.Haenny, P.Lerch, O.Rochat, Helv. Phys. Acta 21, 186 and 22, 609.	$\sigma[U^{235}(0.025 \text{ ev } n, f)] = 580.$
Office of Classification, AEC, TID-235.	$\sigma[U^{235}(0.025 \text{ ev } n, f)] = 545.$
J.Jungerman, Phys. Rev. 79, 632 and 79, 198(A).	Excitation functions for a,f and d,f for Au, Bi, Th ²³² , U ^{235,238} .

(Continued on next page)

.

Nuclear Data, National Bureau of Standards Circular 499

List of Fission and Spallation Papers - Continued

Ternary Fission and Long Range a's

K.W.Allen, J.T.Dewan, Phys. Rev. 76, 181.	Three particles from U(slow n, f).
K.W.Allen, J.T.Dewan, Phys. Rev. 80, 181.	Long range α 's from $U^{233,235}$, $Pu^{239}(slow n, f)$.
F.K.Goward, E.W.Titterton, J.J.Wilkins, Nature 164, 661.	Three particles from $U^{238}(\gamma, f)$.
L.Rosen, A.M.Hudson, Phys. Rev. 78, 533.	Three particles from $U^{235}(slow n, f)$.
E.W.Titterton, F.K.Goward, Phys. Rev. 76, 142.	Long range a's from $U^{238}(\gamma, f)$.
E.W.Titterton, T.A.Brinkley, Phil. Mag. 41, 500.	Long range a's from U^{238} , $Th^{232}(\gamma, f)$.

Fission: Delayed n's

L.G.Creveling, J.R.Hood, M.L.Pool, Phys. Rev. 76, 946.	Th^{232} .
K.H.Sun, R.A.Charpie, F.A.Pecjak, B.Jennings, J.F.Nechaj,	U ²³⁸ , Th ²³² .
A.J.Allen, Phys. Rev. 79, 197 and 79, 3.	

Fission: Miscellaneous and General

R.Batzel, G.T.Seaborg, Phys. Rev. 79, 528.	Fission of medium weight elements.
T.W.Bonner, AECD - 3110.	Prompt n spectrum from U ²³⁵ (th n,f) from 0.05 to 0.7 Mev.
Office of Classification, AEC, TID-235.	Prompt n spectrum from $U^{235}(th n, f)$ is given by sinh $\sqrt{2E}e^{-E}$. E in Mev in laboratory system.
H.W.Koch, J.McElhinney, E.L.Gasteiger, Phys. Rev. 79, 329.	Photofission thresholds for U ^{233,235,238} , Pu ²³⁹ , Th ²³² .
N.O.Lassen, Phys. Rev. 79, 1016.	Total charges of fragments in gaseous and solid media.
N.Sugarman, Phys. Rev. 79, 532.	Photofission of Bi.
J.M.C.Scott, E.W.Titterton, Phil. Mag. 41, 918.	Search for p.

Spallation: Reactions, Products, and Yields

F.O.Bartell, A.C.Helmholz, S.D.Stoftky, D.B.Stewart, Phys. Rev. 80, 1006.	Yields from Cu(190 Mev d).
H.H.Hopkins, Phys. Rev. 77, 717.	Yields from As(190 Mev d).
M.Lindner, I.Perlman, Phys. Rev. 78, 499.	Yields from Sb(380 Mev α) and Sb(190 Mev d).
C.H.Millar, A.G.W.Cameron, Phys. Rev. 79, 182.	Li ⁸ found from § 27 Mev γ on Br, Ag, I.
S.C.Wright, Phys. Rev. 79, 838 and 77, 742(A).	σ's for Li ⁸ production from 340 Mev p and 190 Mev d on C, N, Ne, A, Kr, Xe.

List of Journals, Volumes and Numbers, Surveyed for Supplement 2, July 1950 to January 1951

Journal	Abbreviation Used	Volume, Numbers
Annalen der Physik	Ann. Phys., Lpz.	7, Nos. 7,8.
Annales de Physique	Ann. Phys., Paris	5, July-Dec.
Australian Journal of Scientific Research	Australian J. Sci. Res.	3, March - Sept.
Canadian Journal of Research	Can. J. Research	28A, Nos. 4-6
Comptes rendus hebdomadaires des seánces de l'academie des sciences	Comptes rendus	231, Nos. 1 - 24
Experientia	Experientia	6, Nos. 1-8
Guide to Russian Scientific Periodical Literature	Guide to Russ. Sci. Lit.	3, Nos. 7-12
Helvetica Physica Acta	Helv. Phys. Acta HPA **	23, Nos. 5
Indian Journal of Physics	Indian J. Phys.	33, Nos. 5-12
Journal of American Chemical Society	J. Am. Chem. Soc.	72, Nos. 7-12
Journal de physique et le radium	J. de phys. et rad.	Series (8), 11, Nos. 7-12
Journal of Chemical Physics	J. Chem. Phys.	18, Nos. 7-12
Journal de chimie physique et de physico-chimie biologique	J. Chimie Physique	47 , Nos. 7 - 10
Nature	Nature	166, Nos. 4209 - 4235
Die Naturwissenschaften	Naturwiss.	37, Nos 13-22
Nuclear Science Abstracts	NSA	4, Nos. 13-24
Nuovo Cimento	Nuovo Cim.	7, Nos. 4-6
Philosophical Magazine	Phil. Mag.	41, Nos. 318-323
Physica	Physica	16, Nos. 6-9
Physical Review	Phys. Rev. PR **	79. Nos. 1-6 80, Nos. 1-6
Proceedings of the Cambridge Philosophical Society	Proc. Camb. Phil. Soc.	46, Nos. 3,4
Proceedings of the Physical Society	Proc. Phys. Soc., Lond.	A63, Nos. 367-371
Proceedings of the Royal Society of London	Proc. Roy. Soc.	A202, Nos. 1068 - 1071 A203, Nos. 1072 - 1075 A204, No. 1976
Research	Research	3, Nos. 7-12
Zeitschrift für Naturforschung	Z. Naturforsch.	5a, Nos. 7-9
Zeitschrift für Physik	Z. Phys.	128, Nos. 2,3

* All numbers are inclusive. All dates are 1950 ** These abbreviations are used in the body of the supplement

Nuclear Data, National Bureau of Standards Circular 499

Additions to Old References

Supplement 2

The following is a list of better references for data already reported in either the *Table* or in *Supplement 1*. It is recommended that the new reference be written into the appropriate reference list under the old key number.

For convenience, all 1950 reference numbers were included in the Supplement 1 table of references. Thus additions to 1950 references need only be inserted by the reader into Supplement 1.

Reference Key Used Previously	New Reference
1946	
46H10	E. K. Hyde, NNES 14B. Paper 19.15; AECD-2457.
1947	
47H2	F. Hagemann, L. I. Katzin, M. H. Studier, G. T. Seaborg, A. Ghiorso, Phys. Rev. 79, 435.
1948	
48H10	F. Hagemann, L. I. Katzin, M. H. Studier, G. T. Seaborg, A. Ghiorso, Phys. Rev. 79, 435 and 79, 534.
48J10	A. H. Jaffey, E. K. Hyde, Phys. Rev. 79, 280.
48R10 48S29	H. T. Richards, R. V. Smitn, C. P. Browne, Phys. Rev. 80, 524.
1949	
49C3	M. F. Crawford, A. L. Schawlow, F. M. Kelly, W. M. Gray, Can. J. Res. 28A, 558.
49D11	J. A. Miskel, E. der Mateosian, M. Goldhaber, Phys. Rev. 79, 193.
49D30	E. der Mateosian, M. Goldhaber, Phys. Rev. 79, 192.
49H42	R. W. Hayward, Phys. Rev. 79, 541.
49J4	G. H. Jenks, F. H. Sweeton, J. A. Ghormley, Phys. Rev. 80, 990.
49M49	C. H. Millar, A. G. W. Cameron, M. Glicksman, Can. J. Res. 28A, 475.
49N10	C. N. Nelson, B. H. Ketelle, G. E. Boyd, ORNL-828.
49P4	H. S. Pomerance, Phys. Rev. 76, 195.
49P7	W. G. Proctor, Phys. Rev. 79, 35.
49W13	G. Wilkinson, Phys. Rev. 80, 495.
1950	
50D4	E. L. Zimmerman, E. B. Dale, D. G. Thomas, J. D. Kurbatov, Phys. Rev. 80, 908.
50F10	G. Friedlander, M. L. Perlman, D. Alburger, A. W. Sunyar, Phys. Rev. 80, 30.
50G9	L. Gross, D. R. Hamilton, Phys. Rev. 80, 484.
50022	L. S. Germain, Phys. Rev. 80, 937.

Nuclear Data, National Bureau of Standards Circular 499

Additions to Old References - Continued

Supplement 2

Reference Key Used Previously	New Reference
1950	
50H5	S. P. Harris, Phys. Rev. 89, 20.
50H10	E. L. Hudspeth, C. P. Swann, N. P. Heydenburg, Phys. Rev. 80, 643.
50H18	R. E. Hein, A. F. Voigt, Phys. Rev. 79, 783.
5011	M. G. Inghram, R. J. Hayden, D. C. Hess, Phys. Rev. 79, 271.
50J4	J. V. Jelley, Phil. Mag. 41, 1199.
50M7	C. E. Mandeville, E. Shapiro, Phys. Rev. 79, 391.
50M9	A. J. Moses, D. S. Martin, Jr., Phys. Rev. 79, 467.
50M25	J. Y. Mei, A. C. G. Mitchell, C. M. Huddleston, Phys. Rev. 79, 19.
50M26	J. Y. Mei, C. M. Huddleston, A. C. G. Mitchell, Phys. Rev. 79, 429.
50R7	D. West, P. Rothwell, Phil. Mag. 41, 873.
50R12	J. H. Reynolds, Phys. Rev. 79, 789.
50 S 24	W. C. Koehler, E. O. Wollan, C. G. Shull, Phys. Rev. 79, 395.
50W6	W. D. Whitehead, N. P. Heydenburg, Phys. Rev. 79, 99.
50W9	M. A. Waggoner, M. L. Moon, A. Roberts, Phys. Rev. 80, 420.
50T1	S. G. Thompson, A. Ghiorso, G. T. Seaborg, Phys. Rev. 80, 781.
50W17	G. Wilkinson, Phys. Rev. 79, 1014.
50Z2	A. Zucker, W. W. Watson, Phys. Rev. 80, 966.

References Omitted from Table

41M6	J.	H.	Manley,	L.	J.	Haworth,	E.	A.	Luebke,	Phys.	Rev.	59,	109(A).
41M7	B.	\mathbf{F}_{\bullet}	Murphey	, A	• 0•	Nier, Pl	hys.	Re	ev. 59, '	771.			
41M8	s.	M1	llman, P	, Ki	usch	n, Phys. 1	Rev	60	, 91.				

1

1949		1950 - Cont	tir
49D32	A. J. Dempster, ANL-4355.	B 50B58	
49E 6	K. W. Erickson, LA-980.	50B59	ŭ
49G21	R. L. Garwin, Phys. Rev. 76, 1876.	50860	
491150	A. O. Hanson, R. F. Taschek, J. H. Williams.	00200	
101100	Rev. Mod. Phys. 21. 635.	50B61	V
A OR 1 6	I I Rainwater Dhye Rev 75 181(A)	50B62	J
451(10	L. O. Kaliwaber, Thys. Rev. 76, 101(A).		
49850	F. Suzor, Ann. Phys., Paris 4, 269.	50B63	F
		50B64	1
1050		50B65	
A 50451	O. H. Arroe. Phys. Rev. 79, 836.	50B66	4
50A52	L. W. Alvarez, UCRL-739.	EODOR	
50A53	R. K. Adair, Phys. Rev. 79, 1018.	DUBO7	
50A54	W. R. Arnold, Phys. Rev. 80, 34.	50600	r
50A55	W. R. Arnold, Phys. Rev. 79, 170.	50869	T
50A56	K. W. Allen, J. T. Dewan, Phys. Rev. 80, 181.	50B70	Ċ
50A57	L. W. Alvarez, Phys. Rev. 80, 519.	50B71	(
50A58	H. L. Anderson, Phys. Rev. 80, 499.		
50A59	R. E. Adamson, Jr., W. W. Buechner, W. M.		
	Preston, C. Goodman, D. M. Van Patter,	50B72	1
50480	Phys. Rev. 80, 985.	50B73	F
DOAUG	Drug Pey of 176(A)	50B74	E
50461	P. Avignon, J. de phys. et rad. (8) 11 521.		
50462	A. Y. Abramov, Doklady Akad, Nauk, SSSR 73.	50B75	F
001100	#921; NSA 4. #6435.	FORRA	
50A63	K. W. Allen, PR-P-8,3,4.	50876	C
50A64	R. Ashapa, G. Grimm, CUD-53, 24.	50B77	F
		00271	•
B 50BB1	J. M. Blair, R. E. Holland, ANL-4515.	50B78	J
50BB2	G. E. Boyd, priv. comm.	50B79	A
50BB3	BNL-74 (AS-4).		
50BB4	J. M. Blair, W. F. Stubbins, ANL-4437.	50B80	V
50BB5	P. R. Bell, J. M. Cassidy, R. C. Davis,		
	ORNL-865, 21; Phys. Rev. 79, 418(A).	50B81	C
50BB6	P. R. Bell, J. M. Cassidy, R. C. Davis,	50B82	4
	G. G. Kelley, ORNL-940, 30.		
50B43	G. E. Boyd, B. H. Ketelle, ORNL-870, 37;	50B83	4
	ORNL-795, 44.	50B 84	I
50B44	R. E. Bell, PR-P-7, 22.		
50B45	G. L. BOYG, Priv. COMM.	50B85	ł
50B47	G = F = Boyd = 0RNI = 870, 36	50000	~
50B48	W. L. Bendel, H. Brown, R. A. Becker.	50891	ں بر
00-10	Phys. Rev. 81. 300(A) (1951).	00201	1
50B49	R. A. Brightsen, K. Shure, C. Fisher,		
	C. D. Coryell, Phys. Rev. 81, 298(A) (1951).	0 50053	~
50B50	P. R. Bell, J. M. Cassidy, ORNL-782.	000000	C
50B51	M. E. Bunker, R. Canada, A. C. G. Mitchell,	50051	~
	Phys. Rev. 79, 610 and 80, 126(A).	50054	G
50B52	J. A. Bruner, L. M. Langer, Phys. Rev. 79, 606.	50055	E
50B53	J. M. Blair, J. R. Wallace, Phys. Rev. 79, 28.	50 C 56	h
50B54	W. H. Burgus, J. D. Knight, R. J. Prestwood,	50057	V
FORES	Mys. Rev. 79, 104.		
DORDD	A. Sperduto, Phys. Rev. 70 282	50058	J
50856	R. E. Bell, L. G. Elliott. Phys. Rev. 70, 282.		
50B57	P. R. Bell. W. H. Jordan. Phys. Rev. 70 392.	50059	. T
50207		rt Challe Di	
	† Progress Repo	rt, Unalk Rive	r

1950 - Cont	inued
B 50B58	I. B. Berlman, Phys. Rev. 79, 411.
50B59	J. R. Beyster, M. L. Wiedenbeck, Phys. Rev. 70 411.
50B60	J. R. Beyster, M. L. Wiedenbeck, Phys. Rev. 79, 728.
50B61	W. C. Barber, Phys. Rev. 80. 332.
50B62	J. R. Beyster, M. L. Wiedenbeck, Phys. Rev.
FOR	D D Ball I M Cassidar Dhua Bay we 107
50B00	F. A. Dell, J. M. Cassidy, Phys. Rev. 79, 173.
DUB04	I. Dergström, G. Thulin, Phys. Rev. 79, 537.
50805	1. Bergstrom, S. Inulin, Phys. Rev. 79, 038.
20800	A. R. Drosi, H. Zeides, B. H. Reteile, Phys. Rev. 79, 902.
50B67	I. Bergström, Phys. Rev. 80, 114.
50B68	M. E. Bunker, L. M. Langer, R. J. D. Moffat,
	Phys. Rev. 80, 468.
50B69	D. Bodansky, Phys. Rev. 80, 481.
50B70	C. R. Burnett, Phys. Rev. 80, 494.
50B71	G. R. Bishop, C. H. Collie, H. Halban.
002.1	A. Hedgran, K. Siegbahn, S. du Toit,
	R. Wilson, Phys. Rev. 80, 211.
50B72	I. B. Berlman, Phys. Rev. 80, 775.
50B73	F. Block, C. D. Jeffries, Phys. Rev. 80, 305.
50B74	E. Baldinger, P. Huber, R. Ricamo, W. Zünti,
	Helv. Phys. Acta 23, 503.
50B75	P. Brix, H. Kopfermann, W. V. Siemens, Naturwiss. 37, 397.
50B76	G. L. Brownell, C. J. Maletskos, Phys. Rev. 80. 1102.
50B77	H. B. Burrows, W. M. Gibson, J. Rotblat, Phys. Rev. 80, 1095.
50B78	J. G. Bayly, Can. J. Research 28A. 520.
50B79	A. S. Baxter, W. E. Burcham, E. B. Paul,
	Phil. Mag. 41. 937.
50B80	W. E. Burcham, J. M. Freeman, Phil. Mag. 41. 921.
50B81	C. A. Barnes, A. P. French, Nature 166, 145.
50B82	W. C. Beckham, M. L. Pool, Phys. Rev. 80, 125 (A).
50B83	W. O. Bateson, Phys. Rev. 80, 982.
50B 84	L. E. Beghian, M. A. Grace, H. Halban,
	Proc. Phys. Soc., Lond., A63, 913.
5 OB 85	F. D. S. Butement, Proc. Phys. Soc., Lond., A63, 775.
50B89	C. K. Bockelman, Phys. Rev. 80, 1011.
50B91	M. E. Bunker, R. Canada, Phys. Rev. 80, 961 and 81, 299(A) (1951).
C 50053	 C. Y. Chao, A. V. Tollestrup, W. A. Fowler, C. C. Lauritsen, Phys. Rev. 79, 108.
50C54	G. F. Chew, Phys. Rev. 79, 219.
50055	B. Cork. Phys. Rev. en 321
50055	L H Cuffey Dhys Ray 20 100
EOGER	We in currey, ruys. Rev. /9, 100.
50057	W. S. Koski. Phys. Rev. 70 191.
50058	J. M. Cock. W. C. Rutledge. C. E. Branvan.
00000	A. E. Stoddard, J. M. Le Blanc, Phys. Rev.
50059	J. H. Coon, Phys. Rev. 80, 488.

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

C	50060	J. M. Cork, W. C. Rutledge, A. E. Stoddard, C. E. Branyan, J. M. Le Blanc, Phys. Rev.	E 50E51	J. R. 110
:		C. E. Branyan, J. M. Le Blanc, Phys. Rev.		110
:		070		
:	* * * * *	79, 938.	50E52	L. G.
	50061	J. M. Cork, W. C. Rutledge, A. E. Stoddard,	50E53	C. Eg
		W. J. Childs, J. M. Le Blanc, Phys. Rev.	50E54	L. G.
		80, 286.	50E55	W. S.
ę	50062	D. Christian, D. S. Martin, Jr., Phys. Rev.		81,
		80, 1110.	50E56	L. G.
ę	50063	W. L. Carss, J. R. Gum, M. L. Pool, Phys.	50E57	P. A.
		Rev. 80, 1028.		825
Ę	50C64	J. M. Cassidy, P. R. Bell, Phys. Rev. 79, 418.	50E58	D. En
ę	50065	T. L. Collins, Phys. Rev. 80, 103.		
ļ	50066	J. N. Cooper, W. E. Taylor, J. C. Harris,	F 50F51	M. Fr
		G. R. Grove, Phys. Rev. 80, 131(A).		Rev
ę	50067	A. G. W. Cameron, L. Katz, Phys. Rev. 80, 904.	50F52	E. G.
Ę	50068	M. Ceccarelli, G. Quareni, A. Rostagni,	50F53	M. S.
		Phys. Rev. 80, 909.		Phy
ę	50069	J. W. Cobble, R. W. Atteberry, Phys. Rev.	50F54	G. D.
		80, 917.		Phy
Ę	50070	C. H. Collie, H. Halban, R. Wilson, Proc.	50F55	H. Fr
		Phys., Soc., Lond., A63, 994.		W.
5	50C71	F. C. W. Colmer, D. J. Littler, Proc. Phys.,	50F56	Ř. Fo
		Soc., Lond., A63, 1175.		Phy
Ę	50072	E. C. Campbell, J. H. Kahn, ORNL-865, 16.	50F57	G. Fr
ţ	50C74	C. D. Curling, J. O. Newton, Nature 166, 339.		A.
Ę	50C75	J. Crussard, Nature 166, 825.	50F58	M. S.
ę	50076	S. A. Chowdary, Thesis, Purdue Univ., 1949.		79,
ę	50077	G. Charpak, F. Suzor, J. de phys. et rad. 11,	50F59	U. Fa
		633.		556
Ę	50078	J. W. Cobble, ORNL-795, 45.	50F60	G. Fr
				Gol
n f	50D51	M. Deutsch. A. Hedgran, Phys. Rev. 79, 400.	50F61	J. M.
, u	50052	H. F. Duckworth, R. S. Preston, Phys. Rev.	50F62	A. Fl
		79. 402.		5a,
F	50053	G. Von Dardel, Phys. Rev. 79, 734.	50883	E. W.
ŗ	50D54	R. B. Duffield, L. Hsiao, E. N. Sloth.	00100	104
	JUDUI	Phys. Rev. 70 1011.	50F84	L. Fe
ę	50055	J. De Juren, Phys. Rev. 80, 27.	00102	(19
ę	50D56	B. C. Diven, G. M. Almy, Phys. Rev. 80, 407.	50F65	Co Yo
9	50D57	H. E. Duckworth, R. S. Preston, K. S.	50F66	G. Fr
		Woodcock, Phys. Rev. 79, 188,	50867	A. W.
ç	50058	E. Dale, E. Richert, T. Redfield, J. Kurbatov,	00107	26.
		Phys. Bev. 80, 763.		~~~~
ę	50D59	M. Duquesne. G. Kayas. G. A. Renard. Comptes	G 50G51	E. R.
		rendus 231, 693.	0 0000-	401
F	50060	E. B. Dale. J. D. Kurbatov. Phys. Rev. 80.	50652	We He
		126(A).	00000	719
Ę	50D61	H. T. Dybvig. M. L. Pool. Phys. Rev. 80.	50653	T. Gr
		126(A).	50654	J. R.
p	50082	R. B. Day, C. Y. Chao, W. A. Fowler, J. E.	50655	G. B.
	00000	Perry, Jr., Phys. Rev. 80 131(A).	00000	Phv
	50063	J. De Juren. B. J. Mover. Phys. Rev. 80	50656	G. Gr
,		132(A).	50657	H. S
c	50064	D. B. Duncan, J. E. Perry, Jr., Phys. Rev.	00007	20
4		80. 138(A).	50658	L. Gr
		S. Devons, G. R. Lindsev, Proc. Phys., Soc.	50659	P. S.
ŗ	50D65		00000	9
Ę	50D65	Lond A63. 1202.		Phy
ţ	50D65	Lond., A63, 1202. R. B. Duffield, L. M. Langer, Phys. Rev. 81.	50660	Phy M. Go

50 - Cont	inued
50E51	J. R. Eshbach, R. E. Hillger, Phys. Rev. 80, 1106.
50E52	L. G. Elliott, R. E. Bell, PR-P-8, 16. [†]
50E53	C. Eggler, D. J. Hughes, ANL-4476, 40.
50E54	L. G. Elliott, PR-P-7, 20. [†]
50E55	W. S. Emmerich, J. D. Kurbatov, Phys. Rev.
	81, 300(A) (1951) and verbal report.
50E56	L. G. Elliott, R. E. Bell, PR-P-7, 22.*
50E57	P. A. Egelstaff, B. T. Taylor, Nature 166,
	825.
50E58	D. Engelkemeir, ANL-4526, 92.
50F51	M. Fred, F. S. Tomkins, J. K. Brody, Phys. Rev. 79, 212(A).
50F52	E. G. Fuller, Phys. Rev. 79, 303.
50F53	M. S. Freedman, A. H. Jaffey, F. Wagner, Jr.,
	Phys. Rev. 79, 410.
50F54	G. D. Freier, T. F. Stratton, L. Rosen,
	Phys. Rev. 79, 721.
50F55	H. Frauenfelder, O. Huber, A. de-Shalit,
	W. Zünti, Phys. Rev. 79, 1029.
50F56	R. Fox, C. Leith, L. Wouters, K. R. MacKenzie,
	Phys. Rev. 80, 23.
50F57	G. Friedlander, M. L. Perlman, D. Alburger,
	A. W. Sunyar, Phys. Rev. 80, 30.
50F58	M. S. Freedman, D. W. Engelkemeir, Phys. Rev.
	79, 897.
50F59	U. Facchini, E. Gatti, Helv. Phys. Acta 23,
50000	556. G. Entedlanden M. J. Deplmen G. Geberff
DUFOU	Coldbabar Phys. Rev. co. 1107
50861	J. M. Ereeman, Phil. Mag. 41 1925
50862	A. Elammersfeld, C. Ythier, Z. Naturforsch.
001 00	5e 401.
50163	E. W. Fuller, Proc. Phys. Soc., Lond., A53,
FORM	1044.
50r 04	(1051)
50F65	(1301). C V Fan. Phys. Rev. of $300(\Lambda)$ (1051).
50866	G. Friedlander, priv. com.
50F67	A. W. Fairhall. MIT Prog. Report. April 1950.
00107	26.
50G51	E. R. Gaerttner, M. L. Yeater, Phys. Rev. 79.
	401.
50G52	W. H. Guier, J. H. Roberts, Phys. Rev. 79,
	719.
50G53	T. Gráf, Phys. Rev. 79, 1014.
50G54	J. R. Gum, M. L. Pool, Phys. Rev. 80, 315.
50G55	G. R. Grove, J. N. Cooper, J. C. Harris,
	Phys. Rev. 80, 107 and 80, 131(A).
50G56	G. Groetzinger, D. Kahn, Phys. Rev. 80, 108.
50G57	H. S. Gutowsky, C. J. Hoffman, Phys. Rev.
	80, 110.
50G58	L. Gross, D. R. Hamilton, Phys. Rev. 80, 484.
50G59	P. S. Gill, C. E. Mandeville, E. Shapiro,
	Pnys. Rev. 80, 284.

50G80 M. Goodrich, E. C. Campbell, Phys. Rev. 79, 418.

† Progress Report, Chalk River

Nuclear Data, National Bureau of Standards Circular 499

59

	O Conti	inund
.95	FOCA1	Inued
ú	50001	C M Chochel Dhue Dev oc 070
	50002	D. N. OHOSHAI, PHYS. Rev. 80, 909.
	50003	re Golden R Neturionceh F. 404
	50064	R. Genger, Z. Naturiorscile 5a, 401.
	50065	E. W. Guptill, W. J. Archibald, E. S. Warren,
		can. J. Research 28A, 359.
	50066	G. J. Goldsmith, E. Bleuler, J. Phys. and
		Coll. Cnem., 54, 717.
	50G67	L. S. Goodman, T. R. Robillard, ANL-4476, 62.
	50068	R. Gurney, G. Fischer, ANL-4431 and 4437.
н	50H48	T. H. Handly, ORNL 867, 30.
	50H49	D. G. Hurst, PR-P-7-GP, 28, 39.
	50H50	D. J. Hughes, M. T. Burgy, R. R. Ringo,
		ANL-4552, 10.
	50H51	B. Hamermesh, ANL-4447, Phys. Rev. 80, 415.
	50H52	F. Hagemann, L. I. Katzin, M. H. Studier,
	0 0 11 0 10	G. T. Seaborg. A. Ghiorso, Phys. Rev. 79.
		435.
	50H53	C. T. Hibdon, Phys. Rev. 79, 747.
	50454	S. P. Harris, C. O. Muchlhause, G. E. Thomas.
	001104	Phys. Rev. 70 11.
	50455	C. T. Hibdon, C. O. Muchlhause, Phys. Rev.
	00100	To AA
	FORES	P D Hill I W. Mihelich Dhus Rev 70 275
	DUNDO	N. D. HIII, J. W. MINEICH, Phys. Rev. 79, 270.
	50007	P. H. Horrord Dhug Doy no. 400
	50858	R. W. Hayward, Phys. Rev. 79, 409.
	50859	R. D. H111, Phys. Rev. 79, 413.
	50H60	S. P. Harris, Phys. Rev. 80, 20.
	50H61	R. N. H. Haslam, L. Katz, H. J. Moody, H. M.
		Skarsgard, Phys. Rev. 80, 318.
	50H62	S. P. Harris, C. O. Muchihause, S. Rasmussen,
		H. P. Schroeder, G. E. Thomas, Phys. Rev.
		80, 342.
	50H63	J. Hadley, H. York, Phys. Rev. 80, 345.
	50H64	F. Hagemann, Phys. Rev. 79, 534 and 79, 435.
	50H65	R. W. Hayward, Phys. Rev. 79, 541.
	50H66	R. W. Hayward, Phys. Rev. 79, 542.
	50H67	M. Hamermesh, E. Eisner, Phys. Rev. 79, 888.
	50H68	D. G. Hurst, N. Z. Alcock, Phys. Rev. 80, 117.
	50H69	D. J. Hughes, M. T. Burgy, W. E. Woolf, Phys.
		Rev. 80, 481.
	50H70	R. L. Henkel, H. H. Barschall, Phys. Rev.
		80, 145.
	50H71	R. H. Hildebrand, C. E. Leith, Phys. Rev.
		80, 842.
	50H72	E. L. Hudspeth, C. P. Swann, N. P. Heydenburg,
		Phys. Rev. 80, 643.
	50H73	G. C. Hanna, Phys. Rev. 80, 531.
	50H74	R. Hofstadter, J. A. McIntyre, Phys. Rev. 80,
		631.
	50H75	P. Hänni, J. Rossel, Helv. Phys. Acta 23, 513.
	50H76	B. G. Harvey, B. I. Parsons, Phys. Rev. 80.
		1098.
	50H77	P. V. C. Hough, Phys. Rev. 80, 1069.
	50H78	S. P. Harris, C. T. Hibdon, C. O. Muehlhause.
	551110	Phys. Rev. 80, 1014.
	50H79	J. M. HOLLANDER, K. F. Leininger, Phys. Rev.
		80, 915.

1

	1950 - Cont	inued
•	H 50H80	J. R. Holt, C. T. Young, Proc. Phys., Soc.,
•		Lond., A63, 833.
	50H81	R. F. Hibbs, Y-648.
1.	50H82	R. E. Hein, ISC-110, 7.
. S. Warren,	50H83	D. C. Hess, H. Brown, C. Patterson, M. G.
		Inghram, Phys. Rev. 80, 916 and 81, 298(A)
hys. and		(1951).
	50884	V. Hummel, B. Hamermesh, Phys. Rev. 82 67
NI-4476, 62,	001104	(1951).
nd 4437.	501187	V. Hummel, B. Hamermesh, ANI-4515, 39, 40:
	501107	Dhue Ray of AT
	50400	Q D Warris ANT=4552 5
	50000	C = Hibdon ANI - 4552 F
	50009	C. I. Hibdon (0 Muchibourge ANI-4552 θ
Ringo,	20490	C. I. HIDDON, C. O. MUENIMAUSE, ANL-4552, C.
80, 415.	I 50153	ISC Progress Report - 104; 8.
Studier,	50154	ISC Progress Report - 73.
. Rev. 79,	50155	ISC Progress Report - 113 and 89.
	50156	ISC Progress Report - 130.
. E. Thomas,	T 50151	A H Laffey, E. K. Hyde, Phys. Rev. 70 290
	50.152	V B Johnson, F. Alzenberg, M. J. Wilson
hys. Rev.	20002	Laubanctain Dhys Day 70 197
	FOTEZ	Laubenstein, Flys. Rev. 79, 107.
Rev. 79. 275.	50155	B. Jonninga K. H. Sup. H. A. Loitan Dhun
79. 314.	50354	D. Jemmigs, K. H. Sun, H. A. Leiter, Phys.
•	50.755	Rev. 80, 109.
	00100	D. E. Tacabak Dhya Day 70 020
	50150	R. F. Idscher, Phys. Rev. 79, 929.
oody, H. M.	50150	L. N. Jensen, L. J. Lastett, D. J. Zarrarano,
		Phys. Rev. 80, 862.
. Rasmussen,	50J57	C. H. Johnson, H. H. Barschall, Phys. Rev.
Phys. Rev.		80, 818.
	50 J 58	J. V. Jelley, Phil. Mag. 41, 1199.
. 345.	50J59	H. E. Johns, L. Katz, R. A. Douglas, R. N. H.
and 79, 435.		Haslam, Phys. Rev. 80, 1062.
	50J60	G. H. Jenks, F. H. Sweeton, J. A. Ghormley,
		Phys. Rev. 80, 990.
V. 79. 888.	50J61	A. H. Jaffey, S. Fried, N. F. Hall, L. E.
Rev. 80, 117.		Glendenin, Phys. Rev. 81, 299(A) (1951)
Woolf, Phys.		and 81, 741.
	50J62	S. Jnanananda, J. Sci. Industr. Res. 88, 147,
vs. Rev.	50J63	C. D. Jeffries, Phys. Rev. 81, 1040. (1949).
lys. Rev.	K 50K43	S. Katcoff, BNL-39, 59 (1950). Quoted 1n
	K CONIC	NNES VOL. 9.2020.
. Heydenburg.	50844	L. D. Knight, priv. comm. 1949, quoted in
• noj dono di By	001144	NITES VOL 0 2028
		MADD VOI: SILOLOV
IVS. Rev. 00	50K45	H. Kuhn, G. K. Woodgate, Nature 166, 908.
	50K46	W. S. Koski, T. Wentink, Jr., V. W. Cohen,
Acta 02 513.		Phys. Rev. 81, 296(A) (1951).
Rev. 90	50KA7	u u Woch I McElbinney, I. A. Cunningham.
101. 00,	30R47	Phys. Rev. of 318(A) (1051)
89.	FOTAO	U = Kallar = MI = 4437 - 6.22 - 02
Muchihauco	50K48	B B Vincey $DB_{-}D_{-}n_{-}DD = 11$
muchina use,	50149	U Veller $\Lambda M = 4515$ 5
	SUKBU	R. RULTET, ANL-4010; 0.
Phys. Rev.	50K51	E Kally C Laith E Sama C Magand
	50K52	Phys. Rev. 79, 96.
+ Progress Repr	ort. Chalk Rive	r
	,	

Nuclear Data, National Bureau of Standards Circular 499 Supplement 2, July 1950 - January 1951

1950 - Cont	inued	1950 - Cont	inued
K 50K53	W. C. Koehler, E. O. Wollan, C. G. Shull, Phys. Rev. 79, 395.	M 50M55	J. Y. Mei, A. C. G. Mitchell, C. M. Phys. Rev. 79 , 19.
50K54	H. B. Keller. J. M. Cork. Phys. Rev. 79, 1030.	50M56	R. C. Mobley, R. A. Laubenstein, Phy
50K55	K. G. Kessler, Phys. Rev. 79, 167.		80, 309.
50K56	E. Kondaiah, Phys. Rev. 79, 891.	50M57	C. E. Mandeville, E. Shapiro, Phys.
50K57	H. G. Kolsky, T. E. Phipps, Jr., N. F. Ramsey,		391.
	H. B. Silsbee, Phys. Rev. 80, 483.	50M58	F. Metzger, Phys. Rev. 79, 398.
50K58	B. H. Ketelle, A. R. Brosi, H. Zeldes, Phys.	50M59	J. Miskel. Phys. Rev. 79, 403.
	Rev. 80, 485.	50M60	F. K. McGowan, Phys. Rev. 79, 404.
50K59	F. M. Kelly, R. Richmond, M. F. Crawford,	50M61	J. Y. Mei, C. M. Huddleston, A. C. C
	Phys. Rev. 80. 295.		Mitchell, Phys. Rev. 79, 1010.
50K60	B. H. Ketelle, Phys. Rev. 80, 758.	50M62	M. L. Moon, M. A. Waggoner, A. Rober
50K61	G. R. Keepin, Jr., Phys. Rev. 80, 768.		Phys. Rev. 79, 905.
50K62	D. G. Karraker, D. H. Templeton, Phys. Rev.	50M63	A. K. Mann, J. Halpern, Phys. Rev. 8
	80, 646.	50M64	F. K. McGowan, Phys. Rev. 80, 482.
50K63	R. W. Krone, S. S. Hanna, D. R. Inglis,	50M65	R. Malm, W. W. Buechner, Phys. Rev.
	phys. Rev. 80. 603.	50M66	J. Macnamara, H. G. Thode, Phys. Rev
50K64	D. N. Kundu, M. L. Pool, Phys. Rev. 80, 126(A).	50M67	H. R. Muether, S. L. Ridgway, Phys.
50K66	K. G. Kessler, W. F. Meggers, Phys. Rev. 80,		750.
	905.	50M68	L. G. Mann, P. Axel, Phys. Rev. 80.
50K67	B. B. Kinsey, G. A. Bartholomew, Phys. Rev.	50M69	H. T. Motz, R. F. Humphreys, Phys. H
	80. 918.		595.
50K68	D. W. Kerst. G. A. Price, Phys. Rev. 79, 725.	50M70	A. Mukerji. P. Preiswerk. Helv. Phys
50K69	H. Kuhn. G. K. Woodgate, Proc. Phys., Soc.,		23. 516.
	Lond., A63. 830.	50M71	K. P. Meyer, E. Baldinger, P. Huber,
			Phys. Acta 23. 517.
	I M Ispan D D Moffet II O Drice In	50M72	P. Meyer, Z. Physik 128, 451.
L SULSI	L. M. Langer, R. D. Mollat, A. C. Pilce, Ji.,	50M73	H. A. Medicus, P. Preiswerk, Phys. H
FOICO	Phys. Rev. 79, 808 and 80, 120(A).		1101.
9019S	L. J. Lastett, E. N. Jensen, A. Paskin, Phys.	50M74	C. H. Millar, A. G. W. Cameron, M. C
EDIEZ	C D Lagengran M E Kettner Dhus Rev		Can. J. Research 28A, 475.
50103	on 102	50M75	W. J. MacIntyre, Phys. Rev. 80, 1018
50154	E. E. Lampi, G. D. Freier, J. H. Williams.	50M76	E. A. Martell, W. F. Libby, Phys. Re
00104	Phys. Rev. 00 853.	50M77	C. E. Mandeville, E. Shapiro, Phys.
50155	I M Langer, R. D. Moffat, Phys. Rev. 80.		125 (A).
00100	R51.	50M78	C. E. Mandeville, E. Shapiro, Phys.
50156	F. Lüscher, R. Bicamo, P. Scherrer, W. Zünti.		243 (A).
00100	Helv Phys. Acta 23 561.	50M79	F. K. McGowan, Phys. Rev. 80, 923.
50157	R. M. Littauer, Phil. Mag. 41 1214.	50M80	C. H. Millar, A. G. W. Cameron, Phys
50158	G. D. Latyshev. J. EXD. Theor. Phys. USSE 20.		81, 316(A) (1951).
00000	192 Guide to Buss. Sci. Lit. 3 288.	50M81	C. O. Muehlhause, ANL-4552, 7.
50159	L. M. Langer, R. B. Duffield, Phys. Rev. 81.	50M82	W. Mims, H. Halban, R. Wilson, Natur
00100	298(A) (1951).		1027.
501.60	J. S. Lawson, Jr., Phys. Rev. 81, 299(A) (1951).	50M83	C. Mileikowsky, R. T. Pauli, Nature
501.61	C. Levine. G. T. Seaborg. UCRL-635.	50M84	C. O. Muehlhause, M. Hamermesh, ANL-
501.62	W. S. Lvon. ORNI-788. 24.	50M85	C. O. Muehlhause, ANL-4397, 15.
501.63	K. Lintner. Acta Physica Austriaca 3, 352.	50M86	F. Metzger, Phys. Rev. 79, 398.
501.64	A. Langsdorf, Jr., ANL-4476.	50M87	F. R. Metzger, R. D. Hill, Phys. Rev
501.65	M. Levin, W. W. Havens, Jr. J. Rainwater.		300(A) (1951).
00100	CUD-53. 7		
501.66	A. S. Langsdorf, ANL-4397, 21.	N 50N51	A. O. Nier, Phys. Rev. 79, 450.
00100		50N52	C. M. Nelson, B. H. Ketelle, G. E. E
N. FOURA	A R Mandaudilla A D Guann Dhua Barr	001100	ORNL-828.
M 50M51	C. E. Mandeville, C. P. Swain, Phys. Rev.	50N53	C. M. Nelson. B. H. Ketelle. G. E. E
ENEO	79, /8/.	501.00	ORNL-795, 43.
50M52	J. w. Minelich, K. D. Hill, Phys. Rev. 79,	50N54	H. Nabholz, P. Stoll. H. Wäffler. He
	781.	001104	Phys. Acta 23, 858.
50M53	J. Y. Mel, C. M. Huddleston, A. C. G.		
E ON E I	MILCHEIL, PHYS. Rev. 79, 429.		
50M54	A. J. MOSES, D. S. MATUIN, Jr., Phys. Rev.	0 50051	F. E. O'Meara, Phys. Rev. 79, 1032.
	79, 40%		

95	50 - Conti	inued
[50M55	J. Y. Mei, A. C. G. Mitchell, C. M. Huddleston
	FOMER	PHys. Rev. 79, 19. P. C. Mobley, P. & Leubenstein, Phys. Paul
	501100	80, 309.
	50M57	C. E. Mandeville, E. Shapiro, Phys. Rev. 79, 391.
	50M58	F. Metzger, Phys. Rev. 79, 398.
	50M59	J. Miskel, Phys. Rev. 79, 403.
	50M60	F. K. McGowan, Phys. Rev. 79, 404.
	50M61	J. Y. Mei, C. M. Huddleston, A. C. G. Mitchell, Phys. Rev. 79, 1010.
	50M62	M. L. Moon, M. A. Waggoner, A. Roberts, Phys. Rev. 79, 905.
	50M63	A. K. Mann, J. Halpern, Phys. Rev. 80, 470.
	50M64	F. K. McGowan, Phys. Rev. 80, 482.
	50M65	R. Malm, W. W. Buechner, Phys. Rev. 80. 771.
	50M66	J. Machamara. H. G. Thode. Phys. Rev. 80, 296.
	50M67	H. R. Muether, S. L. Ridgway, Phys. Rev. 80, 750.
	50M68	L. G. Mann, P. Axel, Phys. Rev. 80 759.
	50M69	H. T. Motz. R. F. Humphreys. Phys. Rev. 80
	20110-9	595.
	50M70	A. Mukerji, P. Preiswerk, Helv. Phys. Acta 23, 516.
	50M71	K. P. Meyer, E. Baldinger, P. Huber, Helv. Phys. Acta 23, 517.
	50M72	P. Meyer, Z. Physik 128, 451.
	50M73	H. A. Medicus, P. Preiswerk, Phys. Rev. 80, 1101.
	50M74	C. H. Millar, A. G. W. Cameron, M. Glicksman, Can. J. Research 28A, 475.
	50M75	W. J. MacIntyre, Phys. Rev. 80, 1018.
	50M76	E. A. Martell, W. F. Libby, Phys. Rev. 80, 977
	50M77	C. E. Mandeville, E. Shapiro, Phys. Rev. 80, 125 (A).
	50M78	C. E. Mandeville, E. Shapiro, Phys. Rev. 79,
	EOMOO	F K McCours Phys Pay 00 023
	EOMOO	C W Millen & G W Cameron Dhve Ray
	DUNOU	81, 316(A) (1951).
	50M81	C. O. Muehlhause, ANL-4552, 7.
	50M82	W. Mims, H. Halban, R. Wilson, Nature 166, 1027.
	50M83	C. Mileikowsky, R. T. Pauli, Nature 166, 602.
	50M84	C. O. Muchlhause, M. Hamermesh, ANL-4397.
	50M85	C. O. Muehlhause, ANL-4397, 15.
	50M86	F. Metzger, Phys. Rev. 79, 398.
	50M87	F. R. Metzger, R. D. Hill, Phys. Rev. 81, 300(A) (1951).
ł	50 N5 1	A. O. Nier, Phys. Rev. 79, 450.
	50N52	C. M. Nelson, B. H. Ketelle, G. E. Boyd, ORNL-828.
	50N53	C. M. Nelson, B. H. Ketelle, G. E. Boyd,
	50N54	H. Nabholz, P. Stoll, H. Wäffler, Helv.
		PHys. Acta 23, 600.

Nuclear Data, National Bureau of Standards Circular 499

61

1950 - Cont	inued	1950 - Conti	1950 - Continued		
0 50052	G. D. O'Kelley, G. W. Barton, Jr., W. W. T.	R 50R64	J. H. Reynolds, ANL-4515, 23		
	Crane, I. Perlman, Phys. Rev. 80, 293.	50R65	J. M. Robson, Phys. Rev. 81, 297(A) (1951).		
50053	0. Osberghaus, Z. Physik 128, 366.	50R66	S. A. Reynolds, ORNL-867, 24, 30.		
		50R67	G. A. Renard, Ann. Phys., Paris, 5, 25.		
P 50P51	W. G. Proctor, Phys. Rev. 79, 35.				
50P53	R. E. Peterson, H. H. Barschall, C. K.	S 50527	R. Stump, S. Frankel, Phys. Rev. 79, 243(A).		
	Bockelman, Phys. Rev. 79, 593.	50839	B. W. Sargent, A. G. W. Cameron, C. H.		
50P54	A. G. Prodell, P. Kusch, Phys. Rev. 79, 1009.		Millar, PR-P-2.		
50P55	J. A. Phillips, J. S. Lawson, Jr., P. G.	50840	W. Selove. W. Woolf. J. Richards. ANL-4397.		
	Kruger, Phys. Rev. 80, 326.	00010	82. 86.		
50P56	R. I. Powers. A. F. Voigt. Phys. Rev. 79, 175.	50841	P. H. Stelson. MIT Tech. Report # 47.		
50P57	J. L. Perkin, Phys. Rev. 79, 175.	50842	W. F. Stubbins, ANL-4515, 8.		
50P58	D. M. Van Patter, A. Sperduto, E. N. Strait,	50843	W. Selove, W. E. Woolf, ANL-4437, 69.		
	W. W. Buechner, Phys. Rev. 79, 900.	50S44	V. L. Sailor, J. J. Floyd, L. B. Borst,		
50P59	H. E. Petch, M. W. Johns, Phys. Rev. 80, 478.		Phys. Rev. 81, 298(A) (1951).		
50P60	R. E. Peterson, R. K. Adair, H. H. Barschall,	50845	L. G. Smith, Phys. Rev. 81, 295(A) (1951).		
	Phys. Rev. 79, 935.	50846	E. J. Schillinger. Jr. B. Waldman. W. C.		
50P61	G. C. Phillips, Phys. Rev. 80, 164.	00010	Miller, Phys. Rev. 81, 318(4) (1951).		
50P62	W. W. Pratt. Phys. Rev. 80, 289.	50847	E. N. Strait. D. M. Van Patter. A. Sperduto.		
50P63	R. W. Pringle, S. Standil, Phys. Rev. 80, 762.	00011	W. W. Buechner, Phys. Rev. 81, 315(A) (1951).		
50P64	V. Perez-Mendez, P. Lindenfeld, Phys. Rev.	50848	N. A. Schuster, G. E. Pake, Phys. Rev. 81.		
00.01	80, 1097.	00010	305(A) (1951).		
50P65	E. B. Paul. Phil. Mag. 41, 942.	50849	A. W. Sunvar, J. W. Mihelich, Phys. Rev. 81.		
50P66	R. V. Pound, Phys. Rev. 70, 685.	00010	300(A) (1951) and verbal report.		
50P67	R. W. Parsons, C. H. Collie, Proc. Phys.	50850	T. F. Stephenson, T. Arnette, ORNI-782, 48,		
001 07	Soc. Lond. 453 839	50851	I. Sheridan, W. Gordy, Phys. Rev. 79, 513.		
SOPAR	R W. Parsons, D. J. Lees, C. H. Collie.	50952	G A Sawver, M L. Wiedenbeck, Phys. Rev.		
501 00	Proc Phys. Soc. Lond. A62 915.	00002	70 400		
50089	T. P. Pepper, K. W. Allen, E. Almouist, J. T.	50953	C. P. Swann, C. F. Mandeville, W. D.		
001 03	Dewan, Phys. Rev. 81, 315(A) (1951).	00000	Whitehead, Phys. Rev. 79, 598.		
50P70	A. C. PADDAS, C. D. Corvell, Phys. Rev. 81.	50854	F. C. Shoemaker, J. E. Faulkner, S. G.		
00110	329(A) (1951).	00001	Kaufmann. G. M. B. Bouricius. Phys. Rev.		
50P71	F. T. Porter, C. S. Cook, Phys. Rev. 81.		79. 228(A).		
00171	298(4) (1951).	50855	A. K. Solomon, Phys. Rev. 79, 403.		
50P72	A. C. PADDAS, Phys. Rev. 81, 299(A) (1951).	50856	D. F. Smith. M. Tidwell, D. V. P. Williams.		
50P73	G. W. Parker, ORNL-870, 45.	00000	Phys. Rev. 79. 1007.		
50P74	M. Pahl. J. Hiby. F. Smits. W. Gentner.	50857	B. N. Sorensen B. M. Dale. J. D. Kurbatov.		
001 / 1	Z. Naturforsch. 5a. 404.	0000	Phys. Rev. 79. 1007.		
50P76	G. W. Parker, priv. comm. guoted in NNES	50858	R. F. Sheriff. D. Williams. Phys. Rev. 79.		
001.0	vol 9.2020.	00000	175.		
		50859	A. W. Sunvar. D. Alburger. G. Friedlander.		
	The Developer Developer To MOO	00000	M. Goldhaber, G. Scharff-Goldhaber, Phys.		
R BORBI	J. H. Reynolds, Phys. Rev. 79, 789.		Rev. 79. 181.		
50R52	W. C. Redman, Phys. Rev. 79, 6.	50560	A. Storruste, Phys. Rev. 79, 193.		
50R53	N. F. Ramsey, Phys. Rev. 79, 1010.	50561	K. Street, Jr., A. Ghiorso, G. T. Seaborg.		
50R54	J. H. Reynolds, Phys. Rev. 79, 886.	00001	Phys. Rev. 79, 530.		
50R55	F. L. Reynolds, E. K. Hulet, K. Street, Jr.,	50582	R. M. Steffen, Phys. Rev. 80, 115.		
	Phys. Rev. 80, 467.	50563	J. Sanada, S. Yamabe, Phys. Rev. 80, 750.		
50R56	J. U. Kasmussen, F. L. Reynolds, S. G.	50864	P. H. Stelson, W. M. Preston, C. Goodman.		
	Thompson, A. Ghiorso, Phys. Rev. 80, 475.	00001	Phys. Bev. 80. 287.		
50R57	J. E. Richardson, Phys. Rev. 80, 851.	50865	W. Selove, Phys. Rev. 80, 290.		
50R58	L. Ruby, J. R. Richardson, Phys. Rev. 80, 760.	50566	A. Sperduto, S. Holland, D. Van Patter,		
50R59	H. T. KICHARGS, K. V. SMITH, C. P. Browne,	00000	W. Buechner, Phys. Rev. 80, 769.		
505.00	PHys. Rev. 80, 5%4.	50867	A. H. Snell, E. C. Barker, R. L. Sternberg,		
50R60	K. RICAMO, W. ZUILI, E. Baldinger, P. Huber,	50501	Phys. Rev. 80. 637.		
605.44	HELV. Phys. Acta 23, 508.	50868	A. D. Schelberg, M. B. Sampson, R. G.		
50R61	E. Rabinowing Phose Rev. 79, 415.	00000	Cochran, Phys. Rev. 80, 574.		
50R62	L. RADIHOWICZ, Proc. Phys. Soc., Lond., A53,	50869	A. Stebler, H. Bichsel, P. Huber, Helv.		
FOD 07	D P Pag I G Duthenglon P D Smith		Phys. Acta. 23, 511.		
DUK63	Proc Phys Soc Lond Act 775	50870	J. M. C. Scott, E. W. Titterton, Phil. Mag.		
	Progress Repo	rt, Chalk Rive	71, 918. r		

Nuclear Data, National Bureau of Standards Circular 499

Supplement 2, July 1950 - January 1951

.950 - Continued			
S	50S71	B. Smaller, J. May, M. Freedman, Phys. Rev.	₩ 50%
		79, 940.	50W
	50872	A. W. Schardt, W. A. Fowler, C. C. Lauritsen,	
		Phys. Rev. 80, 136(A).	50W
	50S73	B. Smaller, E. Yasaitis, H. L. Anderson,	• 50W
		Phys. Rev. 80, 137(A).	50W
	50S74	A. Storruste, Proc. Phys. Soc., Lond., A63,	50W
		1197.	50W
			50W
т	50T51	M. Ter-Pogossian, C. S. Cook, F. T. Porter,	50W
		K. H. Morganstern, J. Hudis, Phys. Rev.	
		80, 360.	50W
	50T52	S. G. Thompson, A. Ghiorso, G. T. Seaborg,	50W
		Phys. Rev. 80, 781.	50W
	50T53	S. G. Thompson, K. Street, Jr., A. Ghiorso,	50W
		G. T. Seaborg, Phys. Rev. 80, 790.	50W
	50T54	S. G. Thompson, K. Street, Jr., A. Ghiorso,	50W
		F. L. Reynolds, Phys. Rev. 80, 1108.	
	50T55	J. Terrell, Phys. Rev. 80, 1076.	БOW
	50T56	R. G. Thomas, Phys. Rev. 80, 138(A).	
	50T57	J. Tittman, C. Sheer, J. Rainwater, W. W.	
		Havens, Jr., Phys. Rev. 80, 903.	
	50T58	C. W. Tittle, H. Faul, Phys. Rev. 80, 908.	
	50T59	E. W. Titterton, Proc. Phys. Soc., Lond.,	
		A63, 915.	
	50T60	E. W. Titterton, Proc. Phys. Soc., Lond.,	Y 50Y
		A53 , 1297.	
	50T61	J. Townsend, Phys. Rev. 81, 297(A) (1951).	7 507
			2 002
W	50W51	W. D. Whitehead, N. P. Heydenburg, Phys. Rev.	507
		79, 99.	502
	50W52	W. Whaling, T. W. Bonner, Phys. Rev. 79, 258.	001
	50W53	W. D. Whitehead, Phys. Rev. 79, 393.	
	50W54	E. Wantuch, Phys. Rev. 79, 729.	507
	50W55	R. Wilson, Phys. Rev. 79, 1004.	502

G. Wilkinson, Phys. Rev. 79, 1014.

W. D. Whitehead, phys. Rev. 79, 1022.

1950 - Continued

- 50W58 H. W. Wilson, Phys. Rev. 79, 1032.
- 50W59 M. A. Waggoner, M. L. Moon, A. Roberts, Phys. Rev. 80, 420.
- 50W60 R. L. Walker, Phys. Rev. 79, 172.
- 50W61 R. Wilson, Phys. Rev. 80, _90.
 - 0W62 S. D. Warshaw, Phys. Rev. 80, 111.
 - DW63 M. A. Waggoner, Phys. Rev. 80, 489.
- OW64 G. Wilkinson, H. G. Hicks, Phys. Rev. 80, 491.
- 50W65 B. Weaver, Phys. Rev. 80, 301.
- OW66 S. D. Warshaw, J. J. L. Chen, G. L. Appleton, Phys. Rev. 80, 288.
- 50W67 G. Wilkinson, Phys. Rev. 80, 495.
- OW68 D. West, P. Rothwell, Phil. Mag. 41, 973.
- 50W69 W. Whaling, J. W. Butler, Phys. Rev. 79, 414.
- 50W70 S. C. Wright, Phys. Rev. 79, 838.
- 50W72 F. Wagner, Jr., ANL-4490, 5.
- 50W73 E. J. Wolicki, B. Waldman, W. C. Miller, Phys. Rev. 81, 319(A) (1951).
- 60W74 H. B. Willard, W. M. Preston, C. Goodman, Phys. Rev. 81, 329 (A) (1951).
- 50Y51 L. Yaffe, W. H. Stevens, Phys. Rev. 79, 893.
- Z 50251 H. Zeldes, B. H. Ketelle, A. R. Brosi, Phys. Rev. 78, 901.
 - 50252 A. Zucker, W. W. Watson, Phys. Rev. 80, 966.

50Z54 A. S. Zavelskii, M. M. Reifman, S. K. Matushevskii, Izv. Akad. Nauk, SSSR, Ser. Fiz. 12, 673; Chem. Abst. 44, #4343a.

- 50255 H. Zeldes, A. R. Brosi, G. W. Parker, G. M. Hebert, G. E. Creek, ORNL-286.
- 50Z56 H. Zeldes, priv. conv.

50W56

50W57

PERIODICALS OF THE NATIONAL BUREAU OF STANDARDS

As the principal agency of the Federal Government for fundamental research in physics, chemistry, mathematics, and engineering, the National Bureau of Standards conducts projects in fifteen fields: electricity, optics, metrology, heat and power, atomic and radiation physics, chemistry, mechanics, organic and fibrous materials, metallurgy, mineral products, building technology, applied mathematics, electronics, and radio propagation. The Bureau has custody of the national standards of measurement and conducts research leading to the improvement of scientific and engineering standards and of techniques and methods of measurement. Testing methods and instruments are developed; physical constants and properties of materials are determined; and technical processes are investigated.

Journal of Research

Internationally known as a leading scientific periodical, the Journal presents research papers by authorities in the specialized fields of physics, mathematics, chemistry, and engineering. Complete details of the work are presented, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Each of the monthly issues averages 100 two-column pages; illustrated. Annual subscription: domestic, \$5.50; foreign, \$6.75.

Technical News Bulletin

Summaries of current research at the National Bureau of Standards are published each month in the Technical News Bulletin. The articles are brief, with emphasis on the results of research, chosen on the basis of their scientific or technologic importance. Lists of all Bureau publications during the preceding month are given, including Research Papers, Handbooks, Applied Mathematics Series, Building Materials and Structures Reports, and Circulars. Each issue contains 12 or more two-column pages; illustrated. Annual subscription: domestic, \$1.00; foreign, \$1.35.

Basic Radio Propagation Predictions

The Predictions provide the information necessary for calculating the best frequencies for communication between any two points in the world at any time during the given month. The data are important to all users of long-range radio communications and navigation, including broadcasting, airline, steamship, and wireless services, as well as to investigators of radio propagation and ionosphere. Each issue, covering a period of one month, is released three months in advance and contains 16 large pages, including pertinent charts, drawings, and tables. Annual subscription: domestic, \$1.00; foreign, \$1.25.

> Order all publications from the Superintendent of Documents U. S. Government Printing Office, Washington 25, D. C.

