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Forces on Cylinders and Plates in an Oscillating Fluid
Garbis H. Keulegan and Lloyd H. Carpenter

The inertia and drag coefficients of cylinders and plates in simple sinusoidal currents
are investigated. The midsection of a rectangular basin with standing waves surging in it is

selected as the locale of currents.
the water surface. The average

The cylinders and plates are fixed horizontally and below
ralues of the inertia and drag coefficients over a wave cycle

show variations when the intensity of the current and the size of the cylinders or plates are

changed. These variations, however,

an be correlated with the period parameter U,,T/D,
where U,, is the maximum intensity of the sinusoidal current, 7"is the period of the wave
and D is the diameter of the cylinder or the width of the plate.

For the cylinders U,,T/D

equaling 15 is a critical condition yielding the lowest value of the inertia coefficient and the

largest value of the drag coefficient.
are associated with the smaller
with the larger values of U, T/D.

For the plates the higher values of the drag coefficient
ralues of U, 7T/D and the higher values of the mass coefficient
The variation of the coefficients with the phase of the
wave is examined and the bearing of this on the formula for the forces is discussed.

The flow

patterns around the cylinders and plates are examined photograpbically, and a suggestion is
advanced as to the physical meaning of the parameter Uy T/D.

1. Introduction

In a remarkable paper on the motion of pendulums
Stokes showed that the expression for the force on a
sphere oscillating in an unlimited viscous fluid con-
sists of two terms, one involving the acceleration of
the sphere and the other the velocity [1].? Further-
more, the inertia coefficient involved in the accelera-
tion term is modified because of viscosity and,
indeed, is augmented over the theoretical value valid
for irrotational flow. The drag coefficient associated
with the velocity term is modified because of the
acceleration, and its value is greater than it would
be if the sphere were moving with a constant velocity.
Subsequent to Stokes’ %lu(ho% the forces on a sphere
moving in a viscous fluid in an arbitrary manner
were investigated by Boussinesq and also by Ba%so
[2, 3]. Jllv\ found that the force experienced by
sphere at a given time depends, in general, on tho
entire history of its acceleration as well as the instan-
taneous velocity and acceleration. As an example,
if a sphere is accelerated, say with a constant accel-
eration, from a position of rest to a finite velocity
and is then kept at this velocity, the force during
the initial instants of uniform V(‘l()(lt\ differs from
the force occurring at a later time. Rayleigh has
given the formula for the force for this case [4] The
force expression of Boussinesq-Basset contains three
terms, one of which is in the form of an integral
1nvolvmg the history of acceleration. If the integral
is evaluated when the acceleration is represented by
a sinusoidal function it then yields the modifications
of the inertia and drag coefficients in Stokes’ formula.

One expects quantitatively different results when
the oscillating velocities are large and the flow
turbulent.  As vyet a theoretic al analysis of the
problem is difficult and much of the desired informa-
tion must be obtained experimentally. In this
respect the experimental studies have been dealt
with variously. One method is due to MceNown
and Wolf [5], who considered the force on a two-

I Investigation sponsored by the Office of Naval Research.
2 Figures in brackets indicate the literature references at the end of this paper.

dimensional object immersed in a flow as made up
of three parts:

([(]C[ )

P o2 +§ﬁ7 /s+ C.DUIU|, ()

where F is l]l(‘ force per unit length in the direction
of flow, x; U/ the velocity at points far removed from
the ()b](‘(t Pz, the xz-component of the ambient
pressure in the ubsvn(o of the body; S, an element
of the surface area; (’;, the coefficient, of drag; and
k, the virtual mass coefficient. The dimension of the
body normal to the flow is D), and A, is a cilculal
area, A= wD?/4, to which the added mass is referred.
If A'is the cross-sectional area of the body, A=rdA,,
r being a ratio, then

. (o)
?pl(]b :p)‘g'lo i'/, )
and finally

_ 4y I:(/(u) (,/7(”] i

In this approach the variability of the mass co-

J|U].

efficient, £, 1s implied. Thus, introducing a new
coefficient & such that
, AU d
K gras )
and putting
nrn: (k/ + 7") ) ('3)

there is obtained from eq (1), the expression
=) P A [--],— ('J)plﬂ( (4)

which in fact constitutes a second approach utilized
first by Morison and coinvestigators [6, 7]. The
form of the expression is in agreement with the
Stokes formula for force on a sphere oscillating in a
viscous medium. In a general sense one may still
regard (', as a kind of mass or inertia coefhicient.
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A third approach was proposed by Iversen and

Balent, who considered the force on an accelerated
disk moving in one direction [8]. Briefly,
F=CpDU?, (5)
where
; DU D dU
= -
¢ (g lt>

Keim has considered the case of accelerated eylinders
[9] and Bugliarello that of accelerated spheres [10],
all motions being in one direction. Here the resort
1® to a single coefficient (7 and attempts to separate
the effects of acceleration and viscosity have not
been shown to be successful. Accordingly, the
adoption of this method can have a meaning only
for monotonic motions subject to definite limitations
as to initial and final conditions.

For oscillatory motions, although the forces are
more accurately described either using eq (2) or
eq (4), the latter might be preferred provided the
coefficients (7, and (), could be predicted with some
precision. The application of the expression to
vertical piling and large submerged objects by Reid
and Bretschneider stresses the necessity of having
these coeflicients better determined [11].

On the basis of irrotational flow around the cyl-
inder, (!, should equal 2, and one may suppose that
the value of (', should be identical with that appli-
cable to a constant velocity. Morison and coinvesti-
gators have obtained the values of (J; and C,, in
particular cases by considering the observed forces
in the phases of the wave cyele where 7 or dl/dt
vanishes. Such determinations show considerable
variations of (,, from the theoretical value and of
'y from the steady state value at the corresponding
Reynolds number. Dealing with field studies at
Caplen, Texas, R. O. Reid found similar variations
in (), and (; [12]. The variations in the coefficients,
however, have not vet been correlated with any
appropriate parameter.

The present investigation was undertaken with the
following two objectives in mind. The first was in
regard to a supplementary function AR that could
be introduced 1n eq (4) for a truer representation of
force when considering the coefficients 7, and (’; as
being constant throughout a given wave cycle. The
necessity for the term AR is associated with the
eventuality that the point values of (), and (),
deviate from their average values. The second
objective was to examine the possibility of correlating
the average values of (,, and C, with a parameter
(7, T/D, where U, 1s the amplitude of the harmoni-
cally varying velocity, 7 is the period of the oscilla-
tions, and ) is the diameter of a cylinder or the
breadth of a rectangular plate. The mid-cross
section of a large rectangular vessel with standing
waves surging in it was chosen as the field of harmoni-
cally varying current. The cylinders and plates were
held fixed horizontally, totally submerged in water
and extending from one side of the vessel to the other
to approximate as closely as possible the condition
of infinite length.
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2. Fluid Forces on an Immersed Body at
Rest in a Moving Liquid

It would be instructive to consider the momentum
equations discussed by Murnaghan for the evaluation
of force on objects immersed in a perfect liquid [13].
The method, however, is now generalized to apply
to imperfect liquids.

Consider the case of two-dimensional flow with =
horizontal and z vertical. The equation of motion
in the z-direction 1s

ou Du Ou th_ Op.,
or T -

(6)

where w and w are the velocity components along
the axes x and z, p the density of the liquid, p,, the
normal stress on an elementary surface perpendicular
to x, and p., the tangential stress on an elementary
surface normal to z, the stress being in the direction

of z. Because of the incompressibility of the liquid,
a ow -
s =0 (7)
and eq (2) becomes
Du 3 12 2 a,]li{ _apzx /
Por T (b.r ST or Tor ®

Take the immersed cylindrical body of surface S,
as in figure 1, and draw a surface S’ of arbitrary shape
which encloses the cylinder. Let « be the region
bounded by S and S’ and 7 and n the direction cosines
of the normal drawn inward into the region. Inte-
grating eq (8) throughout w, and in this making use of
Green’s Theorem, one finds

—dw—

gq; Ju(lu—k nw)(lS——pfu(/u+nz/;)4lS’:

~f(lp,,,—'r'npzr)(lS——f(/})”+np_,.I)(IS’. (9)

Ficure 1. Notation diagram fer force analysis.



Over the surface S of the immersed body lu-nw van-

ishes because the body is at rest. Also f(]pu+

np.)dS= 1, that is, the z-component of the force ex-
erted on the solid by the moving liquid. It may be
assumed that if " is removed sufficiently from the
body the tangential stress p., on S8’ vanishes and the
normal stress p,. reduces to the hydrostatic pressure
—p. Solving for F,

*‘—{ISTMr%{I Uu%ﬂmvdS“+vadS’ (10)

The later relation may be given in another form,
suitable for the present purpose. Select the bound-
ing surface S” as the rectangular strip shown in
figure 1. The plane S} to the left of the cylinder
passes through the point 2= —z, and the plane S} to
the right passes through z=x,. Denoting the hori-
zontal velocity components at the points P; and P,
with the common elevation z; by %, and u,, and the
pressures by p; and p,, eq (10) now reduces to

©

e S
Jat([w+pj (ufﬁ'uj)(/zH—J v (pr—p2)dzy,
(11)

which is the momentum equation of familiar form.
This may be specialized to evaluate the force on a

circular cylinder when the motion is irrotational.

Letting U be the undisturbed velocity and referring

to Lamb [14],
} a? )
/ILT[][] +F CcOSs 20]
_ I'(I'Q sin 20 2
W=— 7‘5 sin 2 e (1~)
p_dU(, aj) in 9—L (ot
= (I+r sin 0 2(u+?17)) )

where a is the radius of the cylinder, 7 1s radial dis-
tance, and 4 is the angle between a radius vector and
the vertical line #=0 passing through the center of
the cylinder. Clearly, u;=u, and the momentum
equation, eq (11), reduces to

. 0 '
]‘1:-pf -5%(&0%*]# (pr—p2)dz.

Introducing the values of # and p from eq (12), and
omitting the straightforward but somewhat lengthy
evaluations, the result is

(13)

]4‘1 —9r (l[f

2
a ¥P

or in terms of the diameter D of the cylinder

o, prD)? (IU

L 4 dt’

(14)

where C,,—=2.

Next, suppose that the undisturbed velocity is con-
stant and that the body experiences a drag. With the
liquid extending to infinity and ignoring the variation
of pressures from the shedding eddies, or, more prop-
erly, assuming that the surfaces S; "and S, are far
removed from the cylinder, p;=p,, and eq (11) re-

duces to
+00
Famo | =i

=rct)

(15)

The velocity w,=U, and u,=mU, where m is de-

pendent on z,/D and on Reynolds number UD)/v.
Thus,

. Z’f?

Fo=CypD o5 (16)

where

=) ‘M)(l—m?)l-z—'-
et B D

©

It appears that in ordinary cases where the flow
departs from irrotationality and becomes unsteady
and eddying, eq (11) is still the basis for evaluating
the force, since the first and third integrals may be
associated with acceleration and the second with
drag. That is, the coefficients C,, and C; are de-
rived from eq (13) and (15) provided the velocities
and pressures can be given. The force of the state-
ment 1s only .1((1(1(‘1111(, since in the flows involving
separation and intermittent eddy formation the
pressures and velocities are not known and the
integrations in eq (11), at present, cannot be carried
out. \0\ ertheless, experience suggests that eq
(4) remains useful (xt least for sinusoidal motions, if
allowance can be made for the variations in Cm
and C,.

Had one carried out the integrations in eq (11)
for an extended plate using the known velocity ex-
pressions derived from the Kirchofl solution for the
mmpact on a lamina, definite values for C,, and C,
would have resulted. This would have shown in
principle the existence of a relation between ),
and C; in the absence of eddy formation. In the
Kirchoff solution the wake is of infinite length and
this 1s cause for concern. McNown overcomes this
difficulty by considering the case of a closed wake
as between two plates and finds a relation between
k and C; or between (), and (', [15]. This result 1s
very significant as it points to the path to be fol-
lowed in analytical approaches taking into account
also the effect of the eddy processes. With cylinders
the changing separation seats are a cause of added
difficulty.

Meanwhile, the tasks of the experimental investi-
gations become more necessar v. Not only are the
needs of the applied arts to be fulfilled, but also
there must be clarification as regards the flow pro-
cesses during unsteady flows.
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3. Cylinder in a Field of Sinusoidal Motion

Forces on a cylinder admit an easier representation
when the undisturbed portion of the flow, infinite
in extent, is varying harmonically. Let the velocity
be given by

U=-U, cos dt, (17)
where (7, is the semiamplitude of the current, 7T
the period of the alternations, and o=2x/7. The
force on the cylinder per unit length /' is in general

I";-’f(th:[vmyD;pW)‘ (18)

Grouping the variables on the basis of dimensional
reasoning
T U, D

LY
pU20 f(T S

or introducing

6=2wt/T, (19)
F uU,.T U,D
p(]QD:f(o’ D ) ) ); (20)

where U, D/v is a Reynolds number and U, 7/D
will be termed the ‘“period parameter.” Bearing
in mind that /' is periodic, and that because of flow
symmetry

F6)=—F(+m),

we have
F
U?H—D_Al sin +.A; sin 30+ A; sin 56-F.
+ B, cos 8-+ B; cos 36+ B; cos 50+ . . . . (21)
Here the coefficients A4,,A4; . . ., and B, By . . . are

independent of 4, and are at most functions of
U, T/D and U,D/v. A sure method of approach
in the analysis of the observed force curve is to re-
sort to a Fourier analysis to determine the coeffi-
cients A, . . . By .. ..

1 (" F sin nf
], R 2
and
1 (* F cos nb

Once the coefficients are obtained, their dependence
on U, T/D and U,D/v may be established, provided
the observational data are of sufficient number and of
large extent.

The above general and fundamental relation, eq
(21), may be reconciled with eq (4), which is the form
which Morison and coinvestigators Reid, Bret-
schneider and others, have adopted in their numerous
studies. Introducing U from eq (17) into eq (4)

VG T Do

@
=1 O T sin o—ﬁ \cos flcos 6. (24)

By the rule of Fourier

©

2T
f |cos @|cos 6 cos n6do
|cos f|cos =17 =°
n=0

o2m
f cos? ndé
0

=ao+a; cos -+a, cos 20-+as cos 30-+. . .,

where

a,=0 for n even,

n_+1
(I/”——:(—l) 2 7’7/(—7?/“‘)———4)—# for nodd,
8 8 8
ay E{" (I/g:ﬁ) a5——m) a5 oo g (25)
Introducing this in eq (21), and writing
B,
1—@1
Bi=B,—% B, (26)
a;
B;:B_g*% B]
ay
J
one has
F . . .
m=Al sin -4 A; sin 30+ A; sin 56+ . . .
+Bi| cos 6] cos 8+ B cos 30+ B; cos 50+ ... . (27)
Now eq (24) and (27) may be compared. One can
write
T Do sin 36 sin 56
4 Co - (7~111+A sin 6 +4; sinf "~
and '
Ci ; cos 36 B} cos 560
P Bs | cos 6] cos @ | cos 6] cos 6 o
or
2 U, T
C,(6) = [A1+-A45+454+2(4,
+A45;) cos 204+-2A; cos 46+ . ..] (28)
and
’ 2 < ’ ’ ’ ’
Ca(6)= _‘QBH‘W [2(B;— B;)+4(B;— Bs) cos 26

—4B} cos 46+ ...]. (29)

Thus if A;, A;, and Bi, B: vanish, the coefficients
of mass and drag remain constant for all the phases
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in the wave cyecle and

2T
2D NTE D

2U ,,IT 27 [ sin 0d6

P( mD (30)

=
and
27 [ cos 0(10

4 0 PL mD (3 1)

Od— '—2Bl—

In the event that these coefficients vary with the
phase 6 of the wave cycle, the values given by eq
(30) and (31) are in a sense the weighted averages

2
- f O, (6)sin? 86 (32)
TJo

and

2m
Ud=+2f Cy(0) |cos 6] cos? bdb. (33)
0

With the above possibilities in mind, it is prefer-
able to adopt the expressions

fFf——:Al sinf+ B cos 8 |cos 8] -FAR (34)
PU?/J)
or
F (',,L D,U sin 0——{'§ [cos Olcos 6-+AR, (34a)
U:D 4 "U, O

where A,, Bi, C,, and (), are constant, and AR has

the value

AR= Aysin 30+ A;sin 50+ Bj cos 30+ B; cos 560.  (35)
The function AR will be referred to as the remainder
function, and then this remainder function is ob-
tained by subtracting the computed values of A,
sinf and B |cos 6] cos 0 from the observed F/pUZD.
The remainder thus obtained may be examined in
regard to its Fourier structure and also as to its
magnitude.

4. Characteristics of the Experimental

Waves

The region under the nodal area of a standing wave
that may be realized in a rectangular vessel furnishes
a velocity field of simple harmonic motion in the
velocity component (/. This circumstance is not
seriously modified even when the surges are moder-
ately high.

Taking the z-axis in the plane surface of the un-
disturbed water, the z-axis vertical and upwards and
the origin at one end of the basin, (see fig. 2), the
surface elevation as reckoned from the undisturbed
level, according to the second-approximation theory,
from Miche [16], 1s

ak
“ N, cos 2kr—

h=a cos kx smaf+a 4

k
a— N, cos 2kx cos 20¢,

a Qp
4 (3())

where
_cosh 24T
"~ sinh 2kH

cosh® kH (cosh 2kH +2)
sinh? kH sinh kH

and

sz

Here k=n/L, L being the length of the basin; o=
27/ T, T being the period of oscillation; 77 the depth
of water; and a the semiwave height, that is, the
mean value of the extreme end deflections in a cycle.
The expression for the period is the same as in the
first-approximation theory, that is,

o’=gk tanh kH. (37)
Focusing attention on the basin end 2=0, the surface
displacement is

ap=(0). (38)

h=asin at—l—aale~aq§J\f_» cos 20t;

Thus, the maximum elevation, occurring at t=m/20, is

h=a-+a % N+ N, (39)
and the maximum depression, at t=3m/20, 18
/1,:~a+(1 [Z\ + N,].
The ratio of the elevation to the depression is
p=—(+ ) fo-Savavag) a0

and accordingly its value increases with wave height.

The surface configuration for t=0 is

= a%k [N—

N, cos 2], =(0k (41)

'|':21r/cr H

L 1

B

Fraure 2. Notation diagram for wave profile.
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This represents a positive hump at the center of the
basin and depressions at the ends. As a result, the
duration of time that the surface of the water at one
end of the basin is found to be above the undisturbed
level is shorter than the duration that it is below.
This matter has a bearing on the manner of fixing the
reference time of the force cycles studied, and requires
further discussion.

At a small positive time t=7,, the elevation A is
nil, and this is the time when the wave in its upward
surge reaches the undisturbed level.

Since o7, 1s a small angle, sin ¢ry=07,, and from
eq (38)

0To— (AY —N, )*'_‘(N’z Tl)za lé’ N.. (42)

At a later time, t=T/247,, once more £=0. This is
the time when the wave in its downward surge reaches
the undisturbed level.  Since o7, is also a small angle,
sin o7, =07, and from eq (38)

! e
§(N1 N,) 16 N,

0T1=— (]Vr—Nz) (%C+

and, thus,

=110 (43)

Let 7'; denote the duration of time that the surface
of the water at the end of the basin, =0, is above
the undisturbed level, and 7} the duration below the

same level.  Accordingly,
Ti+T0:Ta
and
2(Lo—14)_ ( iy
T T .

By definition
ZY
Ti:§+T1—“Tm

and in view of eq (43)

Tl-:g—ZTO
or
2T, _ _ 1__207'0
T T
and, thus
2(Ty—T)) _ 4o,
T T

Introducing the value of o7, from eq (42)

2(Ty—1T) kH a . . TH i
= (N—N) “2 £ (N— NN, <H)

i
(44)

If the instant when the upsurging wave at the end,
r=0, reaches the level of the undisturbed water is
observed, this then determines the instant 7=rq
Since 47,="T,— T, the value of 7, may be obtained
from the time durations that the water surface is
below or above the still level. If on the other hand
these observations have not been made, then 7, must
be obtained from eq (42), introducing in it the wave
height @ of the observed surge deflections.

The expressions for the particle velocities within
the order of the approximations considered are from
Miche [16],

qak cosh k(z+H)

sin kx cos ot

o coshkH

G e
and

(oo sir?ﬁ;};cfflk Gl g €05 2k sin 201 (4)

At the vertical plane through the midsection of the
basin, that is, at the plane x=L/2 or kx==/2, the
velocities are

__gak coshk (=+H)

S oheE (47)

and
S sinh 2k(z+4H)

W="2¢ o sinh? kA sinh 2k H

sin 207, (48)

Thus at the channel midsection, the horizontal
component of the particle velocities 1s simple
harmonic. The vertical component is also simple
harmonic except that the frequency is twice as
large. The effect of vertical velocity decreases with
wave height. It is further reduced by lowering the
object in the basin. Denoting the position of the
object in the basin by z; and putting

__gak cosh k(z,+H)

Un= o ~cosh kH ’ @
the velocity components are
w=—U,, cos ot (50)
and
B kCrt H) &7 inoar. 51)

sinh® kHH ~ H

It is inferred that w becomes less significant when
kH is larger than 0.9. This limits the length of the
basin for a given depth of water. For studies of
wave forces in basins of greater length or with water
of less depth the present theory proves inadequate.
All the experiments discussed subsequently were
made 1n a basin of length L=242 e¢m and water
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depth H=70 em. The objects, cylinders or plates,
were placed 25 em below the water surface, that is
2=—25 cm in the midsection plane z;= 121 cm.

For this condition, Hk=0.908, N,=1.054, and
N,=3.322.  From eq (40), the ratio of end deflections
reduces to

by 140.993 a/H
hy  1—0.993 a/H e

The graph of this equation is shown in figure 3, and
values from observation are given by circles. The
agreement between theory and observation is satis-
factory for a/H less than 0.3. With thig restriction
in mind, the value of the semiwave height ¢ may be
inferred from (39), that is,

@—Ho 993 a/H. (53)

During the tests the elevation A,
observed.

Fromeq (49) the relation between the current semi-
amplitude and the wave height, in cgs units, is

was most easily

r—=33Ya) (54)

At 2, the horizontal velocity is not uniform in the
vertical direction. In the absence of a cylinder,

with =z measured in centimeters,
] (”JT -
77T ’”20.00680.
l’m dz
Thus, if AU, be the difference in the maximum

velocities at two points differing in elevation by I,
then

AUn_ 43 D/H.

Un

For the largest cylinder used in the experiments,
D=7.62 c¢m, the value of the ratio Al "] U 18 0.052.

The maximum value, during the cycle, of the
vertical velocity (omponont is given by

Wi/ Un=0.38 a/H.

The majority of the experiments were made with «
less than 10 em. For these cases, w,/l/, is less
than 0.055.

From eq (44) the proportion of time that the sur-
face of the water at one end of the channel is above
or below the undisturbed level is given by

¥
f_o 323 0.254 (55)
T
The graph of this expression is shown in figure 4 and
values from observation are given by (11(1('5. For

the observations, there was introduced into the
basin at each end a parallel-wire resistance electrode,
the bare parts of the wires being about 5 c¢m lon(r
and placed in a horizontal position just touching the

surface of water at rest. The time that the electric
current was traversing the electrodes gave the time
that the water smfa(o was above thv undisturbed
level, as in figure 5.

2,50 — — — ——W
] THEORY |
2.00 T
|
|
- h/h, ‘
1.50 | |
|
|
[ [ [
| |
| |
J‘ |
1.00 ~ - L
o I 2 3 a4
a/H

Frcure 3. Variation of end deflections with wave height.

0.15

(T-T)/T

0.05

o 0.1 0.2 03 04
a/H

Frcure 4. Difference in the durations of the end elevations and
depressions.

EEEEEEEEEEEEEEET

= i L e Tl e

K1GUure 5. Time record of the durations of the end deflections.
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5. Dynamometer and Calibration guard against accidental changes in the strain-gage
behavior.

The sketch of the dynamometer assembly is shown
in figure 6. The rigid and massive base A for sup- | - - ==
porting purposes is firmly attached to the steel frame _}
of the rocking basin directly above the water. The - 426‘5
dynamometer itself consists of a pendular frame to ) l
which is attached the object to be immersed in water, I -

80.7

n=
[}

— = f =
l-25.4 — | [26.5)
1424 J

a cylinder or a rectangular plate. The frame is
constructed of brass angles and is strong enough to
resist torsional and flexural deformation. The pivot
depressions, located at the upper corners of the I T T
frame, consist of small bores of 1 mm in diameter in 250

a bronze bedding. The bores are centered about 6 &S0 i

polished steel conical points emerging from the | _ i -l-. RNE
supporting base. At a lower level two duraluminum
annular rings of rectangular cross section are clamped ' 70.0
to the frame and to the base.

These rings constitute elastic elements for measur-
ing the forces. To indicate the ring deformations
two pairs of strain gages, SR—4, 120 ohms, are glued
to each of the rings, inside and outside, and at dia-
metrically opposite points. The four strain gage | Ficure 6. Dynamometer assembly (dimensions in centimeters).
elements form the bridge which is led to a universal

analyser. The latter is relayed to one of the chan-
nels of a two-channel magnetic oscillograph. The 35°
second channel is reserved for timing observations. e
A similar connection is adopted for the other ring. / /'d
w
/

52.0

el e

By having four strain gages on each ring the sensi-

tivity is increased and no corrections are needed for | ¢ 20

temperature changes. Two different sets of rings | £

are used for measuring forces of different magni- | & o

tudes. The method of calibration may be inferred | g

from the sketch in figure 7. The sum of the forces | & P

on the two rings equals 0.625 times the load applied | “-20}—

to the frame. 'The ring deformations are examined /

for loads producing tension and compression. The a0 o

indications of the ring deformations as read from the -1600 -1200 -800 -400 __ O 400 _ 800 1200 1600
oscillograph record are linear as shown in figure 7. WS

The calibrations were repeated before each run to Frcure 7. Calibration of the strain gages.

[JEE====== === = e =
A = =—S_cssesscsmssses _ssssesssss ===

Ficure 8. An example of oscillograph record of forces.
Run 82, U, T/D=15.6.
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6. Record of Forces and the Reduction

An example of two oscillograph records of the
forces, one from each ring, and of the timing is shown
in figure S. The nearly sinusoidal traces relate to
the forces acting on the rings; the others, in steps,
give the time sequence. The incidence of the larger
deflections indicates the time that the parallel wire
electrode at the basin end x=0 was immersed; and
the incidence of no deflection indicates the time that
the electrode was out of the water. The point P
where the greater deflections appear to commence
gives the instant that the upsurging water reached
the undisturbed level. “Thus the point P gives the
time t=r7,, the value of which was computed from
eq (55),47,=T,— T;, after introducing the semiwave
height of the wave. This value was transferred to
the record to mark the origin of time, =0, shown by
the line A4, The line BB’ indicates the end of the
wave cycle and corresponds to t=7. To establish
the correspondence of the records from the two rings,
the timing marks appearing at the lower edges of
the records were used.

At the time the record of the forces was being
taken the wave elevation A, was read visually
against a paper scale attached to the end wall of the
basin. The water surface was readily discernable
through the lucite walls of the basin. The magni-
tude of the semiwave height ¢ was deduced from
eq (53), using the observed value 4. Maximum
current (7, was deduced from eq (54).

The sum of the corresponding readings of the
sinusoidal tracings in figure 8 gives the magnitude of
the forces acting on the two rings when the calibration
is applied. Taking moments about the dynamom-
eter pivot point, the total force X on the cylinder is
obtained. This is divided by the length of the cyl-
inder to give /. The time history of the reduced
force, F/pl,*D, is shown in figure 9.

08 romemeedb -

_E_ /—/ |
pUZD |

-08 /
|

i | |
| | |
[0} 0.2 0.4 0.6 0.8 1.0
AT

Freoure 9. Anexample of a curve of reduced forces en a cylinder.
Run 82, U, T/D=15.6.
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7. Inertia and the Drag Coefficients of
Cylinders and Plates

Considering the force data in dimensionless form,
such as shown in figure 9, the coefficients A, and 5,’
of eq (34) were determined by the method implied in
eq (30) and (31). The desired integrations were
carried out in the form of summations by giving to
the differential multiplier d6 the incremental value
A0=0.057. The values of A; and B,” thus found are
entered in table 5 for the cylinders and in table 6 for
the plates. Tables 1 and 2 contain the diameters of
the cylinders, or the width of the plates, the values
of the maximum currents and the water tempera-
tures. Next the values of the inertia coefficient,
C,,, were determined on the basis of eq (30), and the
values of the drag coefficient, C;, on the basis of eq
(31). These results are entered in table 3 for the
cylinders and in table 4 for the plates. These tables
also contain the Reynolds number (7, D/y and the
period parameter U/, T/D.

The inertia coefficient ¢,, varies from the theo-
retical value 2 as the diameter of the cylinder is
changed, or with a given eylinder as the maximum
current is varied. Similar variations occur in the
drag coefficient €, the changes being in the form
of additions to the value experienced in steady flow.
A correlation between the coefficients and Reynolds
number U/, D/v does not appear to exist. On the
other hand, when these coeflicients are related to the
period parameter [/, T/D, definite and regular de-
pendencies are found. This 1s illustrated in figures
10 and 11 for the eylinders, and in figures 12 and 13
for the plates.

TasrLe 1.  Cylinders

[T=2.075 sec]

; Run a1 6 I Run | D | Un ]
| " T
in. cm/sec G in. cm/sec C
1 3 36. 2 23.0 30 1 71.7 30.0
OB 3 | 30.2 22.0 || 31 1 58.7 30. 0
& | 3 ‘ 2.7 23.0 || 32 1 45.3 | 30.0
4. ______ 3 24. 5 22.5 || 33.________ 1 | 36.0 | 30.0
H 3 21.1 22.5 || 34.______ 0.75 | 70.7 | 30.0
6 | 3 | 19.2 22.0 75 | 63.8 [ 30.0
7. 3 ‘ 15.8 22.0 75 53.5 30. 0
8 . 3 13.1 23.0 75 45.3 30.0
9. 3 10. 0 23.0 .75 38.1 | 30.0
0. 2.5 33.1 24.0 .5 | 73.4 | 30.0
. | 2.5 27.4 24.0 || .5 58.7 30. 0
TR 2.5 20.7 24.0 || %5 48.0 30.0
13— 205 13.0 24.0 || 7 1875 27.6 ‘ 22, ¢
14 2.5 | 10.3 24.0 || 1.75 24.0 22.0
15. 2 41.5 24.0 .75 | 17.7 | 22.0
6. 2 35.4 ‘ 24.0 “ : 1.75 14.4 22.0 |
17 2 21.5 | 24.0 || 82 1.5 ‘ 2.7 | 20.5
|18 2 19.1 2.8 ‘ . .5 | 25.2 | 2.5
19 2 285 | 248 || 84 | 15 20. 2 20. 5
20 ‘ 1. ‘ 53.2 | 26.0 || 8.________| L5 ‘ 14.6 | 20.5
21 1.5 | 43.4 26.0 ‘ 86 105 66. 4 21.0
Do 1.5 33.4 | 26.0 || 87 | .5 | 548 | 210
23 1.5 \ 25.7 2.0 || 8 .5 | 44.6 | 21.0
24 1.5 | 19.4 ‘ 26.0 | 89 5 32.6 | 2L.0
23‘ 1.25 ‘ 62.9 24.0 ‘;90, . .75 ‘ 5.0 | 120
26 1.25 545 | 28.0 | 9L 75 | 496 | 12.0 ‘
27__ -| 1.25 | 43.8 24.0 || 92 75 46.0 12.0
28 | 1.2 3507 ‘ 29.2 || 93 75 | 410 | 12.0
29 - L25 | 211 29. 2 - - “




Tasre 2. Plates For the cylinders, as one passes from the small
[T'=2.075 sec] valugs of. the perlqd parameter to the larger values,
o = the inertia coefficient commences to fall from the
Run D Un 0 Run D T ¢ | | mitial value 2 to a minimum ) value of 1.00 at
——— U, T/D=15 and then gradually increases to a value
" in. | emlsec ;3% . c%/sgc ;4% of 2.5 at U, T/D=120. In regard to the coeflicient
37 3 127 | 20 Lo | 370 | 285 of drag, there is an increase from the initial value
e : g8 | 24 Ba i 0.9 to a maximum value 2.5 at U,,7/D=15 and then
[ R— 3 6.4 | 23.0 125 | 161 | 285 there is a gradual decrease to the value obtained in
a7 25 | 185 | 240 42 | 30.4 steady flow. It appears that for the cylinders the
‘ el e ol narrow region around U7, T/D=15 is a critical one.
‘ i 25 | 103 | 240 s | 1B | 304 As regards the plates, the course of the variations
"""" ‘ : 0 ! : 0.8 of €, and O, with the period parameter is of a very
O o BE R different kind. It will be noticed that ¢, first in-
2 | 181 210 75 | 24| 308 creases, then decreases and finally rises again to a
‘ 2 99 | 270 s | 636 | 300 value of nearly 4.5. The most remarkable behavior,
! e > : h
P 16 | e | oe & i sia 1 snn however, Is 1n I:egard to (J;. The coefficient of
- AR R drag, starting with an unusually large value, 10,
‘ decreases rapidly at first and then gradually for
Tasre 3. Cylinders
o |
Run Cn Ca [ UnT|D UnD|v Run Cn Ca UnT!D UnD)v }
1.11 1.24 9.9 293 X102 1.66 1.09 58.6 227102 ‘
1.44 1.14 8.2 239 1l (6} 1.29 47.9 185
1.49 1.32 7.6 225 1. 68 1.40 B0 143
}.gg l(l]g g 7 196 1.64 1.49 29. 4 114
5 1 Bl 169 1.82 1.10 77.0 167
|
1.95 0.91 5.2 152 1.61 1.19 69.5 151 v
2.05 1.23 4.3 125 1963 1.42 58.3 127
2.10 1.01 3.6 106 1. 64 1.45 49.3 107 |
2.14 0.70 N7 81 1.84 1. 50 41.5 90
0.74 1.69 10.8 229 2. 54 1.07 119.9 116 J
|
1.14 1.61 8.9 189 74633 1,29 95.8 93 |
1.71 1.36 6.8 143 2.15 1.42 78.5 76 |
2.02 1.15 4.3 90 0.82 1.99 12.9 127 |
2. 06 1.12 3.4 il .84 2.08 1152 111
0.72 | 1.73 17.0 230 1.4 2. 06 8.3 82 |
‘
.70 1.98 14.5 196 1.78 1. 76 6.7 67
.83 2.18 0 152 0. 80 2. 05 15. 6 109
1. 50 1.89 7.8 108 T 2.28 1307 96
1.10 1.97 9.6 TR 87 2, 36 11.0 77
1.02 1.30 29.0 231 1.46 2.18 7.9 56 |
1.02 1.49 23.6 188 2.52 1.18 10R8. 4 85 |
0. 82 1.73 18.(2) 145 2. 60 3l 89.5 71 |
T 2.15 14. 112 D832 1.43 72.9 57 |
.87 2.21 10.6 84 2.26 1. 54 532 42 |
1.24 1.15 41.1 218 1.82 1.28 58.8 83 |
|
1527 1223 35.6 206 1.81 [ 1.38 54.0 76
1.40 1.46 28. 6 | 152 1.81 1.42 90 1 71
1.26 1.52 2303 138 1.76 | 1.54 44.7 63 |
0. 87 1.75 17.7 105 R | SV R e e |
, ‘
TaBLE 4. Plales
| Tors] o =
Run Cm Ci | UnT/D | UnDpy Run | onm Ci | UnT/D | UnDp
= == i
1.94 8.75 3.8 114 X102 2. 51 5.15 a0 58X10?
1.74 8.81 3.5 103 2.14 3.25 24.2 142
1. 56 9.76 2.7 80 1.07 3.94 19.3 113
1.51 10.21 2.2 65 1.43 4.09 14.3 84
1.35 11. 55 1.7 52 | 2.25 4.43 10. 5 62
2.28 5. 50 621 128 2.45 31, 163 33.6 131
2012 7.06 N2 109 2.10 3. 55 28.2 110
2.00 R8.01 4,2 90 2.01 3. 68 22.4 87
1.91 8.64 3.4 7l 1. 56 4,38 15.4 60
1. 57 11.44 2.1 45 SRl 2.43 62.2 138
2,22 5.21 8.8 128 0. 2. 88 2. 86 51.2 113
2.44 5.48 T 112 7R S s 2.89 3. 06 41.1 91
2.42 6.31 6.6 95 (72 D 5 2871 3. 36 29.9 66
2.17 7.25 5.3 i (1 PR o 4. 96 1.81 118.2 114
2.16 8.04 4.1 59 7 A S R & 4.09 2.03 104.0 101
| 57- T 0.95 4.11 16.3 127 4. 00 237 88.3 85
58.. S 07 4,28 13.6 106 3.58 2.45 | 74.0 72
59 | 2.08 4.61 10.3 80 ’ 3.70 2. 59 | 58. 6 57 |




TasLe 5. Cylinders TasrLe 6. Plates
Run Ay B As B; As B; |UnT/D Run Ay B As B; As B T T
0.56 | —0.62 | —0.11 9.9 2.50 | —4.38 0. 58 0. 56 0.01 | —0.05 3.8
.87 =Y —. 06 8.2 2.49 | —4.41 .58 .47 04 —-.11 3.5
.97 —. 66 —. 08 7.6 2.86 | —4.88 .47 .40 —.02 —. 18 2T
1.26 —. 56 —.03 6.7 3.42 | —=5.11 .53 .45 —.01 —. 17 2.2
1. 62 —. 51 —.02 5.7 3.8 | —=5.77 .43 .48 —.02 —. 16 1
—. 46 +.02 .06 .00 —.01 5.2 —2.75 .37 . 58 —. 08 —.03 6.1
—.62 01 .12 -—. 01 —.02 4.3 —3. 53 .45 .59 —. 04 —.02 5.2
—. 61 03 14 +.01 .00 3.6 —4.01 .53 .64 —.02 —. 02 4.2
—. 36 .01 .08 —.02 +.02 2.7 —4.32 . 68 .52 +.07 —. 06 3.4
—. 84 —.19 —.02 —.04 —.08 10.8 =572 61 .55 01 —. 14 2.1
—.80 -. 14 —.05 —.04 —.09 8.9 —2.61 .35 .42 —.05 +.02 8.8
—. 68 —. 07 —.02 .00 —. 06 6.8 —2.74 .31 .49 —. 06 —.03 (Al
—. 58 “+.10 +.13 +.01 —.01 4.3 —3.16 .38 . 56 —.05 —.02 6.6
—. 56 01 .14 .00 +4.01 3.4 —3.63 .45 .54 —.01 —.03 5.3
—. 96 —.18 .00 —.04 —.05 17.0 —4.02 . 66 . 60 00 —.01 4.1
—. 99 —.22 — (01t —.02 —.07 14.5 —2.05 29 33 +.02 +.07 16.3
—1.09 —. 19 = {0 —~.02 -.12 11.2 —2.14 30 31 .00 03 13.6
—0.95 —. 14 —. 04 —..02 .11 7.8 —2.31 29 43 —.08 00 10.3
—.99 —. 15 —. 06 -, 01 -.11 9.6 —2. 58 30 54 —.07 —.04 7.5
—. 65 —. 06 .00 —.01 —.03 29.0 —1. 62 11 18 —.05 —.02 24.2
21 —.74 -.07 00 .00 —.04 23.6 -1.97 .18 19 +.02 +. 07 19.3
23 —. 87 —. 16 —.05 —. 04 —.07 18.2 —2.04 el 36 —.02 04 14.3
26 | —1.08 —. 22 —.04 .00 —. 08 14.0 —2.22 .30 45 —. 06 —.01 10.5
41 | —1.10 -, 20 —-. 07 .00 -.11 10. 6 —1. 56 .08 13 —.05 -—.01 33.6
15 | —0.58 00 —+.01 .00 —. 01 41.1 —1.77 .09 16 —. 04 —.01 28.2
.18 —. 62 —. 01 .01 .00 —.02 35.6 —1.84 .16 19 —.02 +.03 22.4
.24 —.73 —.01 .02 .00 —.02 28. 6 —2.19 .32 38 —.01 .06 15.4
20 —.76 —.04 .00 .00 —.06 23.3 —1.21 .05 05 —.02 —.04 62.2
.24 — 87 —-. 13 —.04 —.04 —.07 17.7 —1.43 .06 08 —.03 —.04 51,2
.14 —. 55 +.02 +.01 .00 -.01 58. 6 —1..563 .08 11 —.04 —.04 41.1
kTt —. 64 .02 .01 —. 01 —. 01 47.9 —1.68 ol 13 —.03 —.01 29.9
7 —-.70 =0 .03 .00 —.02 37.0 —0.91 .06 03 -—.01 —.03 | 118.2
il —.74 .01 .02 .00 —.02 29. 4 —=1.01 .06 03 —.01 —.03 | 104.0
12 —. 56 .03 .01 —. 01 ) 77.0 -1.16 .05 05 —.02 —.03 88.3
s adfil —. 60 .01 .01 —. 01 —.01 69. 5 —-1.22 .05 .05 —.02 —.02 74.0
.14 —. 71 .01 .02 .00 —.02 58.3 i (R 31 | —1.29 07 .06 —. 03 —.03 58. 6
16 =T .01 .02 —.01 —.01 49.3
22 =75 .02 .02 .00 —.01 41.5 B -
.10 —. 54 .03 .00 .00 —.01 | 119.9 B
12 —— (i}3) .02 .01 .00 —.01 95. 8 3 ]
.14 -7 .01 .02 .00 —.01 78.5
31 —.99 —.18 =505 =01 .10 12.9
37 | —1.04 —. 19 — 02 —.03 —.12 11.2
84 | —1.03 —. 15 —10 —.01 —.13 8.3
1.30 | —0.88 —. 07 — ki) .00 —.10 6.7
0.26 | —1.02 —.22 —.03 —. 04 —. 06 15. 6
28 | —1.14 —.24 —.01 —.01 —-.10 13.7
39 | —1.18 —.23 —.05 —.02 —. 14 11.0 **® 4 + |
91 | —1.09| —15| —o04| 00| —12| 79 | N, IR e
11| —0.59 | +.03 | +.01 00 | —.01 | 108.4 S = S
14 02 01| —o1| —.01 = £
.16 .01 .02 —.01 —.01
.21 .01 .04 +.01 —.01 ° |
.15 .02 .01 .00 —.01 |
5 7 .02 .01 .00 —. 01
.18 .02 .02 .00 .00 50. 1
.19 .02 .02 .00 .01 44.7 6] J
(o) 25 50 s 100 125
— UnT/D
> - 0 0 Ficure 11. Variation of drag coeflicient of cylinders.
Diameter (inches): 3 25 2 1.75 1.5 1.25 1 0.75 0.5
‘ . - — Corresponding symbol: O A O O @ A H O ¢ +
g ) / increasing period parameter. The final value is
2| % almost identical with that found for steady flow. 1t
: is perhaps important to mention that  O'Brien
Cn : and Morison [17] noted equally large values of drag
coefficients for spheres subjected to the action of pro-
S | | gressive waves. It will be noted that the larger
values of (7, are associated with the smaller values of
(7, and the larger values of (), with the smaller
values of ;. Because the drag coefficient is large
5 when (7, 7/D is small and the variation of (€,
o 25 50 75 100 125 relatlvelv moderate, the wave forces on plates are

U,T/ D

Fiaure 10. Variation of inertia coeflicient of cylinders.
Diameter (inches): 3 26 2 1.76 1.6 1.26 1 0.76 0.6
Corresponding symbol: O A O <& ¢ +

essentially due to drag and the inertia effects play
a small role almost independent of the period
parameter.
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0
0 25 50 75 100 125
UnT/D
Fraure 12. Variation of inertia coefficient of plales.
Diameter (inches): 3 25 2 1.5 1.25 1 0.75 0.5
Corresponding symbol: O A [0 @ A W ¢ +
1
|
o | |
0 25 50 75 100 125

UnT/ D

Fraure 13. Variation of drag coeflicient of plates.

Diameter (inches): 3 25 2 1.5 1.25 1 0.75 0.5
Corresponding symbol: O A 0 @ A W ¢ +

8. Variations of the Remainder Function
and C,, and C, During the Wave Cycle

The values of (', and (’; given in tables 3 and 4 are
average values for the entire wave cycle, and in some
cases local values may differ from the average.
Where the inertia and drag coefficients, (’,, and
each have the same constant value at all phases of the
wave cycle, eq (24) should suffice to describe ade-
quately the magnitude of the forces at every phase.
On the other hand, should €, and C,; vary with the
different phases, the forces are better represented by
eq (34a). The variations in (,, and ('; should lead
to the remainder force function AR. The examples
of the remainder function AR are given in figures
14 and 15 where AR is the difference between
FlpUiD— A, sin 6 and B cos 0 | cos 6| in conformity
with eq (34). Once a curve of AR as a function of 6
is obtained, its structure in Fourier components may
be considered and the coefficients A;, A; . . ., and
B;, B. may be obtained. These determinations
are given in tables 5 and 6 and in figures 16, 17, 18,
and 19.

Now for the determinations of the local values of
', and (’;, two methods are available. The first
gives the point values of the coefficients in a wave
cvele as determined from the observed values of
FlpUZD, using eq (24). Two sets of evaluations
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Ficure 14. Evaluation of remainder force AR for a cylinder.
Run 82, UnT/D=15.6.
qa— —— — — S
B'lcos 81 cos 8
S o |
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. . pUn |
4
|
o \
- \
N A(
-3 b - 10
05
N AR
/1 1\ /o,
\ - < ==k 45\1/ 05
Lo -10
o (o] 02 O3 04 05 0.6 o7 08 0.9 10
t/ T

Ficure 15. Evaluation of remainder force AR for a plate.
Run 54, UnT/D=6.6.

0.2 }
(oX la
B‘3 %., " . o - + . ‘
o < L - — +
A% >4 | }
ol L1
Ol =— T — T T ‘|
8 & y » —x L

50 60, 70 80 90 100 110 120
UnT/D
Fraure 16. Variation of coefficients of the remainder force of
cylinders.
Diameter (inches): S 206 20 L ThR b 260 R 0576 5005
Corresponding symbol: O A O < @ A W & +
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Frcure 17. Variation of coeflicients of the remainder force cf
plates.

Diameter (inches): 3 25 2 1.5 1.25 1 0.7 0.5
Corresponding symbol: O A [ @ Ao W ¢ -+
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Ficure 18. Variation of coeflicients of the remainder force of
cylinders.

Diameter (inches): SRR N N7 . 2

Corresponding symbol: O A 0O & @ A
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Frcure 19. Variation of coeflicients of the remainder force cf

1)lalcs.
Diameter (inches): 3 2.6 1.5 1.256 1 0.75 0.5
Corresponding symbol: O /k _] ® A B ¢ +

were made, the basic suppositions being as follows:
[t was assumed in the first evaluation that for
0,=m/2-+a and O,=7/2—a, where « is an angle less
than 7/2, the coefficients (7, and (; each have equal
values, since these are the phases where the accelera-
tions, du/dt, are equal, and the currents u, are equal
in absolute value although of opposing signs. This
is true also for 6,=37/2+a and 6,=37/2—a. In
the second evaluation, it was assumed that for
f—x-+B and 6=r—p, where 8 is an angle less than

the coefficients ', and C, each have equal values,

since these are the phases where the currents, u, aro
equal and the accelerations, duldt, are equal in
absolute value, although of opposing signs.  Also
since we know the values of the coefficients A;, Aj,
A; and Bi, B;, Bi, the curves of (, and (), as
function of § may be obtained by using eq (28) and
(29). The latter is the second method and is mathe-
matically equivalent to the assumptions made above.

In the cylinder data the agreement between the
observed and computed force is satisfactory when
U, T/D is small. The computation was based on eq
(24), introducing the values of (,, and (', from the
tables. Figure 20 illustrates this agreement. The
local values of (,,(6) and (';(0) for this case are shown
in figure 21. The first determinations discussed
above are shown by circles and squares, whereas the
curves are determined by the second method. Tt is
seen that (7,,(0) is independent of the phase #/7" and
that the coefficient (7,(6) is constant except in short
ranges of the phases t/7=0.25 and 0.75. This is
expected, for at these phases the current u vanishes.
The values of (,, and €, determined by eq (30) (lll(]
(31) are given in the caption.

The agreement between the observed and com-
puted forces is also satisfactory when the period
parameter is large. This is illustrated in figure 22.
The local values of the coefficients for this case are
shown in figure 23.  Here again, allowing small devi-
ations, (7,(0) is practically independent of the phase
t/T and differs very little from the value given in
table 3. On the other hand, considerable variations
are obtained between the observed and computed
ralues of the forces in those cases where the period
parameter is near (/,,7/D=15, as shown in figure 24.
The local values of the coefficients for this case are

shown in figure 25. Now (7,,(0) varies considerably
with the pbase t/7') the smaller values occurring at
t/T=0.0, 0.50, and 1, :m(l the larger values at
t/T=0.25 and 0.75. Also, (’;(0) appears to be con-

siderably augmented at the plmsvs where lhv velocity
u vanishes, llml is, at t/T=0.25 and 0.7 The ex-
ample shown is typical for all the cases where
(7, T/D is in the neighborhood of (7, 7/D=15. 1In
the example shown in figure 25, (,(6) shows large
negative values at the points ¢/7=0, 0.5, and 1.0.
The significance of this is not clear. It is believed,
however, that the presence of negative values is not
related altogether to the observational methods that
were used.

For the plates deviations were always found be-
tween the observed values of the forces and the values
computed on the basis of eq (24). An example is
given in figure 26. The local values of ,(8) and

(,(0) for this case are shown in figure 27.
An additional example is given in figure 28.  What

is shown in these figures is typical for all the runs
made with the plates. The coefficient (7,,(8) under-
goes considerable variation in value for varying ¢/7,
the greater values occurring at t/7=0, 0.5, and 1.0
and the lesser values at t/7=0.25 and 0.75.  Further-
more, the increase in (;(6) at the points ¢t/ 7=0.25
and 0.75 is very decided.
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Fraure 20. Comparison of measured and computed forces on a

cylinder.
Run 9, U,T/D=3.0.
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Fiaure 21. An example of variation of the inertia and drag
coeflicients of a cylinder during a wave cycle.

Run 9, UnT/D=3.0, Cn=2.14, C4=0.70.
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Frcure 22, Comparison of measured and computed forces on a

cylinder.
Run 93, U, T/D=44.7.
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Fracure 23. An example of variation of the inertia and drag
coefficients of a cylinder during a wave cycle.

Run 93, UnT/D=44.7, Cr=1.76, Ca=1.54.
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Ficure 24. Comparison cf measured and computed forces on a
cylinder.
Run 82, U, T/D=15.6.
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Ficure 25. An example of variation of the inertia and drag
coefficients of a cylinder during a wave cycle.

Run 82, UnT/D=15.6, Cn=0.80, Ca=2.05.

For the cylinder data, as long as the period parame-
ter is sufficiently small, or sufficiently large, the forces
may be computed on the basis of eq (24); the re-
mainder function, AR, is small. For period parame-
ters in the mneighborhood of the ecritical value,
U,T/D=15, the representation of forces is more
exact using eq (34a); the remainder function is of
significance. For the plate data the remainder may
not be disregarded, in particular when the period
parameter is small.
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Fiaure 26. Comparison of measured and computed forces on a
plate.
Run 54, UnT/D=6.6.
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Fraure 27. An example of variation of the inertia and drag
coeflicients of a plate during a wave cycle.
Run 54, U, T/D=6.6, Cn=2.42, Ca=6.31.
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Ficure 28. An example of variation of the inertia and drag
coeflicients of a plate during a wave cycle.
Run 69, UnT/D=62.2, Cn=3.17, Cd=2.43.

9. Flow Pattern Around Cylinders and Plates

The flow patterns around the cylinders and plates
for varying values of (/,,7/D were examined, because
they may have had a bearing on the fact that the
nature of forces during a cycle is significantly affected
by the period parameter. The flow pattern was
visually examined by introducing a jet of colored
liquid on one side of the immersed object. The
disposition of the liquid close to the object during
the cyclic motion was recorded by a still camera and
also by a motion-picture camera. Some of these
pictures are shown in figures 29 and 30.

Figure 29, a and b, were taken with the 3-inch
cylinder, the first corresponding to (/,,7/D=4, the
second to a larger value (/,7/D=10. When the
period parameter is small there is no separation of
flow; the liquid near the cylinder clings to the cylin-
der, and the partitioning of flow from above and
below is symmetrical. It will be remembered that at
low period parameter the inertia coefficient is about
equal to the theoretical value 2, and drag is negligible.
As U, T/D 1s increased there is separation of flow at
the top surface of the eylinder during the relatively
longer time that the flow continues in one direction.
Although not visible in the picture, somewhat later,
but prior to the reversal of current, liquid coming
around the cylinder from below moves upward and,
although transforming into an eddy, remains close
to the cylinder.

Figure 29, ¢, illustrates the flow pattern for
U, T/D=17 with the 2-inch cylinder. Note the
complete separation at the upper surface of the
cylinder with the following flow around the lower
surface directed upward with the subsequent eddy
formation.

A completely different picture is obtained for large
period parameter, as shown in figure 29, d, taken
with the %-inch cylinder, (/,,7/D=110. Here one
is confronted with the regular Karman vortices.
The eddies are separated alternately from above
and below.

With plates the flow patterns are decidedly
different, especially for small period parameter.
Figure 30, a and b, show the 3-inch plate, the first
corresponding to U/,,T/D=1, the second to a larger
value, (7, T/D=4. Eddies-are formed almost simul-
taneously at the upper and lower edges of the plates.
For the smaller value of U, 7T/D the eddies are
apparently concentrated nearer the edges of the
plate. Perhaps the large values of the drag coeffi-
cient for small period parameter are associated with
the behavior of the eddies in this case, but the ques-
tion is left open for another occasion.

Figure 30, ¢, illustrates the flow pattern for

InT/D=15 with the 1%-inch plate. Here the eddy
formation is no longer symmetrical, the separation
occurring first at the upper edge of the plate followed
by an eddy formed at the lower edge, remaining close
to the plate.

Again the Karman vortices are obtained for large
period parameter as shown in figure 30d taken with
the %-inch plate, (/,,7/D=110.
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Fiaure 29. Flow patterns around cylinders.

) D=3in., U,T|D=4; (B) D=3 in., UxT/D=10;
C) D=2in., U,T/D=17; (D) D=0.5in., U, T/D=110.

Fiaure 30. Flow patterns around plates.

(A) D=3in., UnT/D=1; (B) D=3 in., U,T|/D=4;
(C) D=L5in., UnT/D=15 (D) D=0.5in., U, T/D=110.

438




The eddy appearances discussed above suggest the
following interpretation as to the physical meaning
of U,,T/D. 1If one defines a length, [, as the distance
that a fluid particle would move in one direction in
the absence of the cylinder, /=7, T/x. Thus,

UnT_rl
D D’

and accordingly the period parameter is proportional
to the ratio of the distance traversed by a particle
during a balf cycle to the diameter of the eylinder.
When the period parameter equals 15, I/D is 4.8.
Perhaps when (7,,T/D is smaller than 15, the distance
traveled by a particle is not large enough to form
complete eddies. When it equals 15, the distance
suffices to form a single eddy, and when much larger
than 15 the greater distances allow the formation of
numerous vortices of the Karman vortex street.
One can hardly refrain from pointing to the similarity
between the period parameter and the Strouhal
number, and as suggested by McNown and Keulegan
[18], the product of Strouhal and period parameter
numbers furnishes an alternate parameter as service-
able as the period parameter number. If 7 be the
duration for the shedding of a single eddy, then the
Strouhal number fD/U=S may be written as
D/2T,U)=S, since the number of alternative eddies
shed during a second is 2f and 2f7; equals 1 second.
One may suppose that the relation is satisfied
approximately also for sinusoidal motions, provided
U is replaced by (7,,/2.  Hence, the Strouhal number
for sinusoidal motion is D/(l7,,T,)=S.

Multiply the two sides by the wave parameter
number (/,,7/D,

r U,T

7,=5D

For eylinders, ignoring the dependence of S on the
Reynolds number, g
nyri " ‘) m .

=02 o)

As noted previously for the cylinders, €, attains its
least value, slightly less than unity, at about
U7, T/D=12.5. This corresponds to the condition
that 7'/7T,=2, nearly, and suggests that during a half
cycle, that is, during a complete motion of fluid
particle in one direction, a single eddy is formed and
1s separated (see also the figure 29, b). Obviously,
the process of eddy shedding has a very significant
bearmg on the variations of the so-called coefficients
of mass and drag, and account needs to be taken of
this in the theoretical formulation of the basic
process.

10. Maximum Force During a Wave Cycle

In engineering applications the main interest is in
the magnitude of the maximum force experienced
during a wave cycle. If the remainder function is
neglected, the expression

FlpU3D=A, sin 6+ B;

cos f|cos 6

|

instead of the eq (24), may be utilized to evaluate

the maximum force /), and also its phase. If the

maximum force /,/pUsD occurs at 6—=4,,, the phase

may be defined as
b=7r—0,,.

The maximum value of the computed force is given

by

F, . i
;IT%=Al sin 6,4 Bi|cos 6,,/cos 6,
< m

where 6, satisfies the relation

1‘11

A;+2B] sin 6,,=0, or sin 0,,1:——‘)”,,;
— 1

™ By
f()l'é<0”,<§ <

As the coefficients A, and BY are functions of UnED
only, then F,/pU2D and ® both are functions of
U, T/D.  For greater accuracy, the remainder
function AR must be considered, but then the
evaluations become somewhat involved. If these
evaluations are made, the maximum force and phase
are again functions of the period parameter.

An alternative procedure is the direct establish-
ment of the maximum force and phase by merely
taking these quantities from the reduced force
curves of this investigation. Such readings for the
cylinders are given in figure 31 and for the plates in
figure 32.
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Fraure 31. Variations of the magnitude and phase of the

maximum force on cylinders.
Diameter (inches): 3 25 2 1.7 1.6 1.25 1
Corresponding symbol: O A O ¢ @ A | ]

0.75 0.5
¢+
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Ficure 32. Variations of the magnitude and phase of the
mazximum force on plates.

Diameter (inches): 3 25 2 1.5 125 1 0.75 0.5
Corresponding symbol: O A [ @ A N ¢ -+
Tasre 7. Cylinders
| F ® F
T [ L 7 e o
UnT|D | Luip (degrees) UnT/D pULD (degrees)
|
2.5 4.00 82.0 12.5 1.28 —6.8
3.0 3.45 81.2 15.0 1.15 —6.0
3.5 3.02 80.8 17.5 1.03 —5.0
4.0 2.65 80.0 20.0 0.93 -3.0
45 | 2.34 79.0 25.0 80 1.0
5.0 | 2.10 78.0 30.0 73 4.0
5.5 1.83 76.6 35.0 70 6.5
6.0 1. 60 75.0 40.0 68 8.0
6.5 1.42 72.5 50.0 66 8.0
7.0 | 1.30 65.0 60.0 65 8.0
7.5 ‘ 1.20 35.0 70.0 63 8.3
8.0 1.20 5.0 80.0 63 8.7
9.0 | 1.25 —3.0 90.0 62 8.9
10.0 | 1.28 =i (0 100. 0 62 9.0
TasLE 8. Plates
|
UaTy | Fm P Fm P
J. D sorees UnT|D 3
m pULD (degrees) / pULD (degrees)
I i |
2.0 6.50 24.0 | 10.0 2.71 34.9
2.5 6.00 25.6 | 12.5 2.44 32.0
3.0 5.55 27.0 15.0 2.25 28.5
3.5 5.20 28.2 17.5 2.10 26.0
4.0 4.85 29.5 20.0 1. 96 23.5
4.5 4.55 30.8 25.0 1.76 18.3
5.0 4.30 32.0 30.0 1.63 13.6
5.5 4.05 33.0 35.0 1.53 11.1
6.0 3.82 33.6 40.0 1.45 9.7
7.0 3.43 34.9 50.0 1.33 8.9
8.0 3.10 35.5 60.0 1.25 8.7
9.0 2.86 35.5 70.0 1.18 9.0
oy | e | s 80.0 1.11 9.5
,,,,,,,, | [P P 90.0 1.06 10.1
| N | 100.0 1.02 10.8

Wasuixaron, December 2, 1957.

For reference purposes, the data of the curves is

given in tables 7 and 8, and can be used directly.

In a future communication the forces on cylinders
held in vertical positions will be computed on the
basis of the data in these tables and will be com-
pared with the laboratory observations already
completed as a matter of concrete illustration.

The authors gratefully acknowledge the suggestions
of G. B. Schubauer, the valuable and extensive en-
deavors of J. W. Lowry, a former colleague, in care-
fully examining the force records and preparing the
corresponding charts and the diligence and resource-
fulness of Victor Brame in carrying out the experi-
ments.
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