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The inAu ence of a di s tribution of relaxation times is studied in annealing ex pe rim ents . A two­
re la xation tim e mode l is proposed , whic h pe rmits th e ca lculatio n of the di stribution o f relaxation times 
from the c rossover data of Spinn e r and Napolitano as we ll as that of Ritland. This mode l al so charac­
te ri zes th e struc ture of any glass in te rms of two parame te rs . Thus , qu enc hed equilibrium as well a s 
none quilibrium glass we re compared with rat e cooled glasses with respect to the ir behavior upon 
furth e r annealing as well as the ir condu ctivit y at low te mperatures with excelle nt agree ment. 

Boros ilica te c rown glass was found to have a narrow di s tribution of re laxation times which is 
partic ular to associated liquid monomers rathe r than pol yme rs. The result s can be explained in 
te rms of a topological model for the di s tribution of re laxation tim es. The te mpe rature de pendence 
of th e viscos it y is due to a true ac tivation ene rgy rathe r than a free volume e ffec t. 

Key Words : Ann ealing, boros ili cate c rown glass, glass, index of re fra c tio n, re laxatio n times, two 
re laxation time mode l, volu me re laxation. 
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This s tudy deals with th e analysis of som e ann ealin g 
experime nts performe d on a borosilicate glass by 
Spinner and Napolitano [I].' The y established time­
index of refraction isoth erm s [or their glass in the 
transformation region. It is well known that the index 
of refrac tion of glass at room temperature is depende nt 
on its th ermal hi s tory , i. e. , th e type of heat treatment 
that the pare nt liquid received as it was cooled through 
the transformation re gion. The index of refraction 
(N) has been use d throughout this study because , of 
the various phys ical properties which reflec t this 
change in s tructure, the refractive index of glass can 
be mos t acc urately measured. It is assumed through­
out that the mechanical deformations associated with 
change of te mperature are purely dilatations. 

FIGURE 1. Plot 0/ index 0/ refraction versus temperature and time. 

The th ermal hi s tory of the glass in the transformation 
region is shown graphically in figure 1 where the 
indi ces of r efraction (N) have been plotted versu s tim e 
and temperature. The equi librium indices (line AC) 
for corresponding temperatures are shown on the left 
in figure 1. Th e glass at te mperature T" in equilib­
rium , will have a cons tant index of refraction A versus 
ti me. If th e temperature is changed instantaneously 
to som e lower value T2 , the index of refraction gradually 
in creases to a new equilibrium value C corresponding 

I Figures in brackets indi cate the literature references at the end of this paper. 

to the new temperature T2 • The time dependence 
8 - C of this property can be represented as eith er 

(a) a linear (i. e., nonamplitude de pe nd ent) di s tribu ­
tion of relaxation times or as 

(b) a nonlinear single relaxation (i. e., at any ins tant 
there is only one relaxation tim e , but at subse­
quent intervals the relaxation time changes with 
the distance from equilibrium) [2]. 

Even though any curve can be represented by (a) or 
(b), a systematic series of such curves cannot be 
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represented by either (a) or (b) [3] only. Unfortunately 
none of the previous investigators has been able to 
extract either the distribution of relaxation times or the 
nonlinear effects [3]. 

The purpose of this paper is to show how one can 
find a distribution of relaxation times from such 
annealing experiments. 

The time dependence of the physical properties of 
liquids has also been inves tigated by measuring the 
frequency dependence of these same properties. The 
time and frequency experiments are equivalent and a 
mathematical procedure will be considered which can 
interrelate both types of measurements. 

2. Pertinent Viscoelastic Theory 

When a distribution of relaxation times is present 
in a fiuid, the complex modulus of compression, K*, 
is frequency dependent and can be written [4] 

K*=K'+ K" = K +(K -K ) [! "'g(r)(Wr)2dr 
l 0 " 0 0 1 + (wr)2 

where Ko=lim K* 
w~O, 

K,,= lim K* 
W~OO'! 

+ i f" g(r)wrdr] (1) 
o 1 + (wr)2 

w = the angular frequency, 
r = the relaxation times, 

g(r) = the relaxation spectrum. 

Although this is in many ways a convenient form in 
which to represent material properties, it is seldom 
possible to find a unique spectrum to represent a 
measured response function (either a steady-state func­
tion of frequency like the above or a transient function 
of time like the annealing measurements). This 
results both from the experimental uncertainty of the 
measured function and the fact that a complete re­
sponse function is seldom measured. As an example 
of the difficulty of finding a unique spectrum, figure 2 
due to Macedo and Litovitz [5] shows a plot of reduced 
modulus versus W7, as well as two different g(r) . First, 
g(r) was assumed to be of the form 

g(r)=(b/(7v;.)) exp [-b 2(ln (r/7'))2] (2) 

which is a symmetric spectrum in the logarithm of 7 

centered at 7' whose width is determined by the value 
of b. 

The second fit was obtained by using two delta fun c­
tions for g(r) such that 

~ ~~: 
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~ 0'4 

0'2 
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FIGURE 2. Normalized real part of the modulus verSliS normalized 
frequency for B2().J at 550°C from reference 5. 

I(J = (T2 /TI ) . 1/2 

Depending on the experiment and subsequent data 
reduction, one can obtain the relaxation time spectrum 
at different thermal conditions. In the above example 
where the modulus was calculated from ultrasonic 
velocity measurements, one has a spectrum corre­
sponding to a stress relaxation modulus at constant 
entropy and s train. In the annealing experiment one 
is measuring the relaxation of a thermally induced 
strain at constant temperature and stress. Even 
though there is a rigorous mathematical connection 
between the constant stress spectrum (retardation) and 
the constant strain spectrum (relaxation) at either con­
stant temperature or cons tant entropy, no simple 
relation between the spectra for the two limiting ther­
mal conditions is available. 

3. Analysis of Annealing Experiments 

3.1. Thermal History of Crossover 

Spinner and Napolitano [1], following some work of 
Ritland [6] and Kovacs [7], transferred a sample from 
the middle of an approach curve having an index (a), 
see figure 1, to a furnace whose temperature (Tx) was 
so adjusted that the equilibrium value of the index (x) 
was equal to the approach index (a). This change in 
temperature was designated as a crossover. The 
changes in index with time at two of these crossovers 
are shown in figure 3. The thermal history of these 
specimens follows: 

(a) All specimens were held at 585 °C until the struc­
ture was at equilibrium. (Index of refraction was con­
stant with time.) 

(b) The specimens were reintroduced into the fur­
nace set at 470 °C for Crossover A and at 500°C for 
Crossover B. The curves through the open circles 
represent the values of index of the specimens for the 
respective approach curves. 

(c) The change in index with time was followed by 
frequent measurements. When the index had reached 
a value close to the equilibrium value for a tempera­
ture of 544°C, the sample was transferred to the 
furnace set at 544 °C and the s ubsequent change in 
index followed until it had reached its final equilibrium. 
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FIGURE 3. Index versus time at two seLected crossovers . 
Equilibrium lem.eerature for both cros~overs)5 544 0c. Approach temperature for 

crossover A is 470 C, and for crossover B. IS 500 C. Data from reference I. 

Several different starting points [or this final crossover 
curve (solid circles) were selected on each of the two 
approach curves, as shown in figure 3. 

3.2. Effect of Distribution of 7 on Annealing 

Reexamining figure 1, one observes that upon an 
instantaneous change in temperature from T! to Tz, a 
thermal strain of Nro(TI)-Noo(Tz), (B - C), is applied to 
the sample. We will proceed to study the decay or 
relaxation of this strain. 

As noted in the introduction, one cannot represent 
a series of volume-time curves in terms of any given 
sum of exponentials with given relaxation times and 
weighting factors if the total volume change is very 
large. However, we might well expect, if the total 
range of volume covered by the final (crossover) curves 
is small, that a series of such curves could be repre­
sented by a sum of exponentials without changing the 
constants. We shall find that the curves analyzed here 
can be so represented for any given final equilibrium 
temperature, even though the various crossover curves 
are started from different points on the same approach 
curve or from points on two different approach curves. 
We will term such behavior "linear." 

The simplest such representation which could 
describe the type of behavior shown in figure 3 is two 
exponential terms with equal weighting factors , which 
may be set equal to 1/2. If we were describing the 
index-time relation between two equilibrium conditions 
(starting with the glass in equilibrium at one tempera­
ture and following the index as a function of time after 
suddenly changing the temperature to a second value 
which is then held constant), we would write: 

N(t)=Noo + NO/2 e- tiT) + 1/2 e- tiT2 ) 

=1/2 (MI(t)+Mz(t)) (4) 

where Mj(t) =Noo + Nje - tiTj 

where NI = Nz = N. 

248-7330-67-4 

This formulation can be thought of as describing the 
relaxation (change of volume) to a final eq uilibrium 
value following a change in temperature (analogous to 
an isothermal recovery function) in terms of two 
separate mechanisms, the first of which relaxes ap­
preciably faster than the second. NI and Nz are 
measures of the total relaxation undergone by the two 
separate mechanisms in reaching equilibrium. If the 
starting point is one of equilibrium (MI (0) = Mz(O)) the 
two mechanisms will have to relax the same total 
amount, Noo (TI)- Noo(Tz), and N! will equal N2 • How­
ever, when starting from a nonequilibrium approach 
curve, !V! and N2 will depend on the particular approach 
curve bein u followed, as well as on the actual measured 
index at the crossover point , and in general, will not 
be equal. To represent this situation eq (4) can be 
generalized to: 

N(t)= 1/2 (MI(t)+Mz(t))=Noo 

(5) 

Figure 4 shows schematically the time dependence 
of N, M I, and Mz for a glass initially at equilibrium. 
As the structure rearranges itself to the new equilib­
rium, M! will rise faster since it is associated with the 
shorter relaxation time 7!, while Mz will change more 
slowly. Thus, around the bend of the approach curve, 
there will be the largest difference between MI and 
M2 in the glass. As time progresses, MI will reach its 
equilibrium value for T2 first and stay there. From 
then on the spread between MI and Mz narrows be­
cause the slow relaxation process continuously ap­
proaches the same equilibrium value at a slower rate. 
Finally, whe n the structure is co mpletely at the new 
equilibrium the spread becomes zero, and one has 
again an equilibrium glass (MI = M2)' At a crossover 
(a) the fast relaxation time (7) corresponds to an index 
MI higher than the (average) measured value , N, and 
the slow relaxation time (72) corresponds to an index 
Mt lower than N. 
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FIGURE 4. Illustration oj two reLaxation times represented by upper 
and Lower dashed curves. 

The average or measured index is give n by the so li d line. The crossover equilibrium 
index x and the transfe r point arc also shown. 
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FIGURE 5. Crossover A -Solid curve is the average of the two dashed 
curves , each having a single relaxation time; the fast relaxation 
time (7, = 7.77 min) , above; and the slow relaxation time (72=64.4 
min) below the equilibrium line N x =1.51493. 

Here Nl = 0.00103 and N,! =- O.OOl1L Points are third experimental se t from cross­
over A. in figure 4. Data from reference I. 

If the index at the point of crossover, N(O), is equal 
to the equilibrium index, N(oo) at the crossover tem­
perature Tx , then N2 =-N\. A prerequisite for a 
minimum in the crossover is that N, and N2 have oppo­
site signs. This is fulfilled when N has a value be­
tween A and B in figure 4. 

The crossover curves were analyzed as follows: 
(a) The logarithm of the difference between the 

equilibrium index and actual index was plotted as a 
function of time. From the best straight line through 
the final points, both T2 and N2 were calculated , assum­
ing t P T\ so Mdt) in eq (5) can be set equal to N oc ' 

(b) From the initial value of the index at crossover, 
No and the equilibrium value, N"" N, was calculated 
from 

(6) 

(c) From the time, t"" at which the index reached 
its minimum value, T, was calculated from the equation 

aN 
-=- [N, exp (- tmlT,) liT, at 

The results of this computation for the crossover A 
curve with No closest to N oc is shown in figure 5. The 

solid line is the average of the upper curve, M\, and 
the lower curve, M 2 • The agreement of the solid 
calculated curve with the actual experimental points 
is seen to be good. 

3.3. Nonlinearity in Crossover Region 

The definition of linearity adopted requires that the 
relaxation times at a crossover are independent of 
amplitude (i.e., N, and N2). Since in the linear case 
the relaxation times are characteristic of the equilib­
rium temperature rather than the approach curve, two 
crossovers having the same equilibrium temperature 
will have the same T\ and T2 and the same weighting 
factors (112), regardless of approach temperature. 

The two crossovers in figure 3 present themselves 
as a natural check for linearity. This is done by apply­
ing T\ and T2, already computed for crossover A, to 
crossover B. Equations (5) and (6) were combined 
to give: 

N - N 00 = ~' [exp (- tiT,) - exp (- t1T2) 1 

+ Ll exp (- tIT2)' 

Solving for N, gives: 

N, = 2 (N - N x) - Ll exp (- t1T2) . 
exp (-tIT,)-exp (-tIT2) 

(8) 

(9) 

From this equation the average value of N\ for cross­
over B was obtained using 7\ and 72 from crossover A 
and Ll from eq 6. Figure 6 compares the calculated 
curve (solid line) with the corresponding experimental 
points (the middle set from crossover B in fig. 3). This 
fit is seen to be comparable with that observed for 
crossover A (fig. 5). Linearity of the relaxation process 
in the crossover region with respect to a given equi­
librium temperature is thus demonstrated to within 
the experimental uncertainty. 

3.4. Further Experiments 

Spinner and Napolitano (1) also reported data for a 
third crossover (C) which corresponds to an initial equi­
librium temperature of 585°C, approach temperature 
477 6C, and equilibrium 527°C. The results of a calcu­
lation performed as above ' are shown in figure 7. 
Inasmuch as this crossover contains the largest number 
of experimental points, the agreement of the computed 
curve with these experimental points is even more 
impressive ' than that for the other two crossovers 
shown. For this crossover, T\ was computed to be 75 
min and T2, 540 min. 

An encouraging result is that (72/TI)s27 'c= 7.2 is 
within the experimental uncertainty of the value of 8.3 
found at 544°C. Since the distribution of relaxation 
times is temperature independent in most liquids , one 
can assume that this is the case here, even though the 
temperature range is not large enough to justify a 
conclusive statement. 
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The annealing experiments of Spinner and Napoli­
tano are based on the following experiment of Ritland 
[6]. A sample of BSC glass was cooled through the 
glass transformation range at a cons tant rate. Later 
it was reintroduced in a furnace whose temperature 
matched the sample's fictive temperature. Figure 8 
shows the time dependence of the specimen after 
reinsertion. Even though the dip is slightly shallower 
the curve is similar. Unfortunately, Ritland did not 
take enough data at "long" times for accurate descrip­
tion of T2. Since the composition of Ritland's glass is 
very close to that of Spinner and Napolitano, it was 
decided to use the same ratio of T2 / TI = 8 and fit the dip 
by adjusting the average T and the initial spread in 
index. Again, a good fit was obtained, indicating once 
more , that the distribution of relaxation times is a 
property of BSC glass and not of the thermal history. 

3.5. Comparison of Tvs and Ts 

The di s tribution of volume relaxation times has been 
calculated at two te mperatures (544 and 527°C) for 
BSC glass. From these a weighted average relaxation 
tim e at cons tant pressure and temperature can be 
defined by: 

(10) 

On the basis of the values of TpT for each of these tem­
peratures the apparent acti vation energy for volume 
relaxation, H/i , was computed from the well-known 
relation 

(11) 

where A is an arbitrary co nstant. Hb was found to be 
155 kcal/mole (6.49 X 105 J/mole). This value is com­
parable with the activation energy for shear viscosi ty, 
Hs= 140 kcal/mole (5.86 X 105 J/mole), over about the 
same te mperature range, based on direct measure-
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N~ = 1.51584, approach temperature 477 'C . 
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FIGUIlE 8. Solid line is computed curve based on two single relaxa­
tion decay curves. 

Here TI = 12 min. N. = 0.00064 and 72= 96 min. N2 =- O.00064. N,., = 1.51453, and shows 
fit to experiment a l point s 161. Init ial di s tribution of index was ob tai ned by rate cooling 
sam ples. 

ment of the shear viscosity by the fiber elongation 
method [8]. 

According to a tabulation by Litovitz and Davis [9] 
the ratio of the average adiabatic isochoric relaxation 
time for dilatation , Tvs , to Maxwell's average shear 
relaxation time, Ts , turns out to be between about 0.79 
and 4.60 for a number of associated liquids. Hence a 
calculation of this ratio should give us a check on 
whether the relaxation times as calc ulated here to 
represent thermally induced volume changes can 
reasonably be equated to relaxation ti mes associated 
with purely mechani cal deformations. 

The iso thermal iso baric average relaxation (re tarda­
tion) time, Tp,/" at 544 °C was calculated from eq (10) to 
be 2.17 X 103 sec. It is assumed that the relations hip 

(12) 

2~5 



derived for a single relaxation mechanism will be ade­
quate for the comparison desired here_ This gives, 
using isothermal compressibilities , KT , and isochoric 
specific heat , Cv, from references [11 , 12, and 13] 
Tvs = 653 sec_ 

The average shear relaxation time Ts, was computed 
[4] from 

(13) 

where G", is the glass modulus of rigidity [14] and at 
544 °e, was found to be 303 sec_ Thus, the ratio TvsITs, 
was 2_2, a value in good agreement with the above 
mentioned Litovitz and Davis compilation for asso­
ciated liquids_ Therefore, the relaxation times calcu­
lated here can reasonably be equated with the relaxation 
process associated with purely mechanical deforma­
tions_ 

The width of the distribution found in BSe glass, 
as given by T~/T) = 8 is comparable with that found in 
most liquids_ For example, B20 3 at 550 °e (fig_ 2) is a 
little wider, 1'2 / 1') = 9, but at higher temperatures it is 
narrower [5]- The associated organic liquids, whose 
distributions are the best known, have about the same 
width provided they are monomeric [91- For poly­
meric liquids this ratio is meaningless but would be 
from 103 to 106• Thus one can conclude that BSe is 
not polymeric. 

4. Discussion 

The only physical model that would readily predict 
two relaxation times would be two immiscible phases. 
Even though there is a possibility that these relaxation 
times be single they should be separated by many 
orders of magnitude, since one of the immiscible 
phases in the silicate system is usually almost pure 
Si02 with its associated high viscosity (very long re­
laxation time). Also, had there been such an immisci­
bility then the te mpe rature cycling of Spinner and 
Napolitano would not have been reproducible. 

We will now present a microscopic model to explain 
the distribution of relaxation times. The topological 
model will consist of a distribution of micro regions 
in space, each with a different relaxation time. Such 
regions have been postulated by various authors . For 
example, Bockris et a1. [15], pictured an "iceberg 
structure" for silicate glasses. Litovitz and McDuffie 
[16] and Macedo and Litovitz [5] have proposed that 
the distribution of relaxation times as well as the non­
Arrhenius temperature dependence of the structural 
relaxation time in associated liquids is due to the co­
operative behavior of molecules and the possible ex­
istence of clusters. 

In order to explain the conductivity experiments, 
which will be described below, the glass is assumed to 
have two microdisperse regions which are intercon­
nected. This should be expected from both the im­
miscibility work of Haller [17] and the immiscibility 
precursor stage investigated by Ohlberg and Parsons 
[18]. The dimension of these micro regions must be 

smaller than 150 A in order not to be detected by light 
scattering or (ordinarily) by the e lectron microscope. 
(Zarzycki and Mezard [19] claim to have seen such 
regions even in single component glasses by an elabo­
rate process using transmission in an electron micro­
scope.) It is assumed that the relaxation time of 
each region is a function only of its own structure, i.e., 

Ti = f(M i , T) ~ f' (Mj #i) - (14) 

This equation is equivalent to assuming that the hy­
brid equation of Macedo and Litovitz [20] is good for 
each separate region, rather than for the average 
values_ 

Evidence for the topological model can be obtained 
from the conductivity experiments of Ritland [6]. 
These conductivity measurements were made well 
below the glass transition and there were no structural 
rearrangements taking place during the measureme nts. 
The conductivity of a glass below Tg is known to be 
due to alkali diffusion through the immobile lattice. 
This ionic diffusion has been shown to have a distri­
bution of relaxation times. From rate theory one can 
calculate the conductivity due to ionic jumps for a 
single relaxational process to be 

(15) 

where a is the " jump distance"; n, the number density 
of ions; 1'/ , the ionic relaxation time; and c, a geo­
metrical constant. Let us consider the effect of these 
two microdispersed regions on the conductivity. 
First , whatever caused region one to have a shorter 
volume relaxation time, such as higher disorder, less 
intramolecular bonding, etc., may reasonably be as­
sumed to cause the ionic relaxation time in region one 
to be shorter. Thus, one can write for the conduc­
tivity of each region: 

(16) 

where the nonindex quantItIes are the same for both 
regions. Since each region is interconnected , the 
measured conductivity can be approximated by 

(17) 

In fact, if 1'/, == (1/8)1'/" then the conductivity is con­
trolled primarily by 1'/,. Note that here is where the 
topological model differs from the phenomenological 
approach. Had one assumed a distribution of re ­
laxation times in a homoge neous material then 

(18) 

and, provided 8T/, == 1'/2' the conductivity would have 
been controlled by 1'/2. 
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Figure 9 due to Ritland shows resIstIvIty versus 
index for glasses that were either cooled at constant 
rate through the glass transformation region (rate 
cooled) or quenched from an equilibri urn configura­
tion (soaked). It can be seen from this figure that 
the variation of resistivity with thermal history for a 
given index is of the same order of magnitude as the 
variation with index for a given type of annealing ex­
periment. The resistivity is not a single valued func­
tion of the average structure as represented by the 
index. Thus, any model in which the relaxation is a 
function of the average structure, such as Tool's fictive 
temperature [21], must be ruled out. In the topologi­
cal model the conductivity is only a function of Til 

which in turn is a function of Ml and not Mz. 
In a previous section, it was found that the rate 

cooled glass with an index of 1.51453 had Ml = 1.51517 
associated with TI and M2 = 1.51389 associated with 
T2. Since as a first approximation resistivity is only 
controlled by structure 1, the resistivity of the rate 
cooled sample having an index 1.51453 should be the 
same as that of the soaked sample having an index 
1.51517 because both have the same values of MI. 
This point is shown plotted in figure 9. If a line is 
drawn through the Ritland's soak specimen data points 
it will intercept his rate cooled curve. This inter­
section should only occur when the rate sample's 
cooling rate approaches the cooling rate of the chilled 
specimen. Therefore, these lines through the rate 
cooled and chilled specimen data points should be 
almost parallel. Thus for comparison a line is drawn 
parallel to the rate cooled specimen and through the 
" theoretical" point. Since this line is above one 
experimental point and below the other, it is considered 
within the experimental accuracy of the soaked data. 
Note, that eq (18) due to the phenomenological ap­
proach would predict that (T is a function of either M2 
or MI + M2 depending on the assumed functional de­
pendence of T2, neither of which will fit the data. Even 
though the data are sparse in this experiment it has 
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FIGURE 9. Resistivity versus refractive index for rate cooled. 0, 
and soak, . , samples; X predicted value. Data from reference 
[61· 

been shown that the two-parameter topological model 
represents the state of the glass regardless of the 
heat treatment. 

Rate Cooling. The best experiment to show whether 
th e apparent temperature dependence of the viscosity 
is directly due to temperature or indirectly due to 
structure is the rate cooling process. 

When a glass sample is cooled through the glass 
transition region at a constant rate, initially the sample 
will follow the equilibrium index curve (see fig. 10). 
When the long volume relaxation time, T2, becomes 
comparable with the cooling rate, M2 will lag behind 
the equilibrium value N",. As the temperature con­
tinues to lower T2 becomes longer and longer compared 
with the cooling rate, and eventually the structure is 
thermally arrested at a value of the relaxation time, 
TH, which is governed by the cooling rate. Upon 
further cooling M2 remains constant. MI will follow a 
similar history and 71 will also be finally arrested at 
the same value, TH. 

Thus as a sample is cooled through the glass tran­
sition at a constant rate each relaxing process will be 
thermally arrested at the same value of relaxation 
time , TH, which is a function of the cooling rate. If 
the values of the relaxation times are only a function 
of structure, then, at any temperature, all the relaxa­
tion times in a rate cooled glass cooled at the same 
rate should be equal. The crossover data of Ritland, 
figure 8, clearly demonstrates that this is not the case. 

If we assume that the hybrid equation is completely 
controlled by the activation energy (i.e., f(T) is given 
by eq (11)), the difference in index MI - M2 in the rate 
cooled glass represents the difference in temperatures 
required for TI to equal T2. One, then, can write for 
the activation energy 
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FIGURE 10. Plot of index versus temperature for a rate cooled 
sample. 

Equilibrium index (N;r,) curve is also s hown plotted. 
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III which T1 = Til - N1 / ~~ and similarly for T2 ; Til is 

the crossover temperature of Ritland; and aN/aT was 
taken from Spinner and Napolitano. The activation 
energy calculated from eq (19) is 122 kcal/mol (5.12 
X 105 J/mol) which corresponds favorably with the 
140 kcal/mol (5.86 X 105 J/mol) obtained from the vis· 
cosity data. 

One must conclude that most of the apparent activa· 
tion energy of viscous flow is due to a true activation 
energy effect. This is in direct contradiction with 
recent papers on the interpretation of the Fulcher 
equation by W.L.F. [22], Cohen and Turnbull [23], 
but agrees with the work of Maurer [24], who an· 
nealed glass under pressure. 

5. Conclusion 

It has been shown how one can obtain the distribu­
tion of relaxation times by proper analysis of annealing 
experiments. A physical model for the distribution 
was proposed, and it, the topological model, was 
found to explain not only the temperature dependence 
of viscosity, but also the resistivity experiments of 
Ritland_ In doing so, Tool's fictive temperature was 
extended to two parameters, which can explain both 
equilibrium and nonequilibrium behavior of glasses. 
The temperature dependence of the viscosity was 
found to be due to a true activation energy rather than 
a free volume effect. The stress (thermal) strain 
experiment gives a distribution many decades narrower 
than the stress (pressure) strain work previously done 
[25, 26] in the relaxation region. Since no pressure 
was applied, no "delayed elastic relaxation" takes 
place in the thermal experiment. Thus, there is the 
added advantage of only measuring the structural 
distribution of relaxation times. 

This analysis was applied to a borosilicate crown 
glass, and it was found that T2/T1 = 8 (Gaussian b=O.6). 
This narrow distribution indicates that the flow in 
this material is monomeric rather than polymeric 
(103 < 72/T1 ~ 106). The monomeric nature of sili­
cate glasses has been postulated by Bockris et al. 
[15], from zero frequency compressibility measure­
ments at high temperatures, but was questioned 
when Westman [27] proved that phosphate glasses 
are polymeric. The present work together with 

Macedo and Litovitz [5] distribution of relaxation times 
in B20 3 indicates that the iceberg picture of Bockris 
is correct for the borates and silicates. The ratio 
of the average volume to average shear relaxation 
time was found to be = 2, in good agreement with 
other associated liquids [9]. 
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