Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:[6]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:31
  • preuzimanja u poslednjih 30 dana:13

Sadržaj

članak: 1 od 1  
Interakcije takrolimusa sa drugim lekovima
aVojnomedicinska akademija, Centar za kliničku farmakologiju, Beograd, Srbija
bVojnomedicinska akademija, Centar za transplantaciju solidnih organa, Beograd, Srbija
cUniverzitet u Novom Sadu, Medicinski fakultet, Zavod za farmakologiju, toksikologiju i kliničku farmakologiju, Srbija

e-adresanece84@hotmail.com
Projekat:
Analiza strukture troškova i uticaja na zdravstveni budžet Republike Srbije epidemiološki najmasovnijih i/ili najskupljih oboljenja i procena odnosa troškovi / efektivnost / korisnost medicinskih intervencija (MPNTR - 175014)
Analiza genskih polimorfirzama CIP izoenzima u populaciji Srbije (MPNTR - 175093)

Ključne reči: takrolimus; P-glikoprotein; CYP3A enzimi; interakcije lekova
Sažetak
Uvod: Takrolimus, potentni imunosupresivni lek, ima veliku inter i intra-individualnu farmakokinetsku varijabilnost. Cilj: Cilj ove aktuelne teme jeste da opiše značajne interakcije takrolimusa sa drugim lekovima. Farmakokinetske interakcije između takrolimusa i drugih lekova: S obzirom na činjenicu da je ovo lek sa malom terapijskom širinom, interakcije takrolimusa sa drugim lekovima preko P-glikoproteina i CYP3A enzima su potencijalno veoma značajne. Zaključak: Interakcije takrolimusa sa određenim lekovima vode ili ka preteranom izlaganju takrolimusu što je povezano sa značajnom toksičnošću, ili ka koncentracijama leka u krvi ispod minimalnih željenih što može dovesti do odbacivanja transplantiranog organa.
Reference
Bowman, L.J., Brennan, D.C. (2008) The role of tacrolimus in renal transplantation. Expert Opinion on Pharmacotherapy, 9(4): 635-643
Christians, U., Jacobsen, W., Benet, L.Z., Lampen, A. (2002) Mechanisms of Clinically Relevant Drug Interactions Associated with Tacrolimus. Clinical Pharmacokinetics, 41(11): 813-851
Finch, A., Pillans, P. (2014) P-glycoprotein and its role in drug-drug interactions. Australian Prescriber, 37(4): 137-139
Gabardi, S., Olyaei, J.A. (2010) Solid organ transplantation. u: Chisholm-Burns M.A., Schwinghammer T.L., Wells B.G., Malone P.M., Kolesar J.M., Dipiro J.T. [ur.] Pharmacotherapy Principles and Practice, New York: McGraw Hills Companies, Inc, 939-64
Hane, K., Fujioka, M., Namiki, Y., Kitagawa, T., Kihara, N., Shimatani, K., Yasuda, T. (1992) Physico-chemical properties of (-)-(1R,9S,12S,13R,14S,17R,18E,21 S,23S,24R,27R)-17-allyl-1,14-dihydroxy-12-[(E)- 2-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]- 1-methylvinyl]-23,25-dimethoxy-13,19,21,27-tetramethyl- 11,28-dioxa-4-azatricyclo[22.3.1.04. Iyakuhin Kenkyu, 23, 33-43
Hosohata, K., Masuda, S., Ogura, Y., Oike, F., Takada, Y., Katsura, T., Uemoto, S., Inui, K. (2008) Interaction between Tacrolimus and Lansoprazole, but not Rabeprazole in Living-Donor Liver Transplant Patients with Defects of CYP2C19 and CYP3A5. Drug Metabolism and Pharmacokinetics, 23(2): 134-138
Isoda, K., Takeuchi, T., Kotani, T., Hirano-Kuwata, S., Shoda, T., Hata, K., Yoshida, S., Makino, S., Hanafusa, T. (2014) The Proton Pump Inhibitor Lansoprazole, but not Rabeprazole, the Increased Blood Concentrations of Calcineurin Inhibitors in Japanese Patients with Connective Tissue Diseases. Internal Medicine, 53(13): 1413-1418
Iwasaki, K. (2007) Metabolism of tacrolimus (FK506) and recent topics in clinical pharmacokinetics. Drug Metab Pharmacokinet, 22(5); 328-35
Jeong, H., Chiou, W.L. (2006) Role of P-glycoprotein in the hepatic metabolism of tacrolimus. Xenobiotica, 36(1): 1-13
Konig, J., Muller, F., Fromm, M.F. (2013) Transporters and Drug-Drug Interactions: Important Determinants of Drug Disposition and Effects. Pharmacological Reviews, 65(3): 944-966
Kuypers, D.R.J. (2004) The rate of gastric emptying determines the timing but not the extent of oral tacrolimus absorption: simultaneous measurement of drug exposure and gastric emptying by carbon-14-octanoic acid breath test in stable renal allograft recipients. Drug Metabolism and Disposition, 32(12): 1421-1425
Leroy, S., Fargue, S., Bensman, A., Deschênes, G., Jacqz-Aigrain, E., Ulinski, T. (2011) Tacrolimus adverse events in transplant recipients with diarrhoea or calcium channel blockers: Systematic review. Medical Case Studies, 2(7): 58-68
Li, J., Wang, X., Chen, S., Liu, L., Fu, Q., Chen, X., Teng, L., Wang, C., Huang, M. (2011) Effects of diltiazem on pharmacokinetics of tacrolimus in relation to CYP3A5 genotype status in renal recipients: from retrospective to prospective. Pharmacogenomics Journal, 11(4): 300-306
Li, Y., Yan, L., Shi, Y., Bai, Y., Tang, J., Wang, L. (2015) CYP3A5 and ABCB1 genotype influence tacrolimus and sirolimus pharmacokinetics in renal transplant recipients. SpringerPlus, 4(1):
Miura, M., Inoue, K., Kagaya, H., Satoh, S., Tada, H., Sagae, Y., Habuchi, T., Suzuki, T. (2007) Influence of rabeprazole and lansoprazole on the pharmacokinetics of tacrolimus in relation to CYP2C19, CYP3A5 and MDR1 polymorphisms in renal transplant recipients. Biopharmaceutics & Drug Disposition, 28(4): 167-175
Niioka, T., Kagaya, H., Miura, M., Numakura, K., Saito, M., Inoue, T., Habuchi, T., Satoh, S. (2013) Pharmaceutical and genetic determinants for interindividual differences of tacrolimus bioavailability in renal transplant recipients. European Journal of Clinical Pharmacology, 69(9): 1659-1665
Rančić, N. (2015) Assessment of tacrolimus concentration/dose ratio as a parameter for the therapeutic monitoring in the patients subjected to kidney transplantation. Kragujevac: Faculty of Medical Sciences, Ph.D. Thesis
Rančić, N., Dragojević-Simić, V., Vavić, N., Kovačević, A., Šegrt, Z., Drašković-Pavlović, B., Mikov, M. (2015) Tacrolimus concentration/dose ratio as a therapeutic drug monitoring strategy: The influence of gender and comedication. Vojnosanitetski pregled, vol. 72, br. 9, str. 813-822
Rendić, S., Medić-Šarić, M. (2013) Metabolizam lijekova i odabranih ksenobiotika. Zagreb: Medicinska naklada
Saeki, T., Ueda, K., Tanigawara, Y., Hori, R., Komano, T. (1993) Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem, 268: 6077-80
Shi, W., Tang, H., Zhai, S. (2015) Effects of the CYP3A4*1B Genetic Polymorphism on the Pharmacokinetics of Tacrolimus in Adult Renal Transplant Recipients: A Meta-Analysis. PLOS one, 10(6): e0127995
Shiraga, T., Niwa, T., Teramura, Y., Kagayama, A., Tsutsui, M., Ohno, Y., Iwasaki, K. (1999) Oxidative Metabolism of Tacrolimus and its Metabolite by Human Cytochrome P450 3A Subfamily. Drug Metabolism and Pharmacokinetics, 14(4): 277-285
Staatz, C.E., Tett, S.E. (2004) Clinical Pharmacokinetics and Pharmacodynamics of Tacrolimus in Solid Organ Transplantation. Clinical Pharmacokinetics, 43(10): 623-653
Stefanović, N., Cvetković, T., Veličković-Radovanović, R., Jevtović-Stoimenov, T., Stojanović, D., Živković, N. (2013) Significance of CYP3A5 gene polymorphism in Serbian renal transplant patients. Acta medica Medianae, vol. 52, br. 1, str. 33-38
Sweetman, S.C., ur. (2002) Martindale: The complete drug reference. London: Pharmaceutical Press
Takahashi, K., Yano, I., Fukuhara, Y., Katsura, T., Takahashi, T., Ito, N., Yamamoto, S., Ogawa, O., Inui, K. (2007) Distinct Effects of Omeprazole and Rabeprazole on the Tacrolimus Blood Concentration in a Kidney Transplant Recipient. Drug Metabolism and Pharmacokinetics, 22(6): 441-444
U.S. Food and Drug Administration, Protecting and Promoting Your Health Drug development and drug interactions: Table of substrates, inhibitors and inducers. Last Updated: 10/27/2014. Available from: http://www.fda.gov/Drugs/DevelopmentApprovalProcess/ DevelopmentResources/DrugInteractionsLabeling/ ucm093664.htm (cited 23.10.2015.)
van Maarseveen, E.M., Rogers, C.C., Trofe-Clark, J., van Zuilen, A.D., Mudrikova, T. (2012) Drug-Drug Interactions Between Antiretroviral and Immunosuppressive Agents in HIV-Infected Patients After Solid Organ Transplantation: A Review. AIDS Patient Care and STDs, 26(10): 568-581
Vavic, N., Rancic, N., Dragojevic-Simic, V., Draskovic-Pavlovic, B., Bokonjic, D., Ignjatovic, L., Mikov, M. (2014) The influence of comedication on tacrolimus blood concentration in patients subjected to kidney transplantation: a retrospective study. European Journal of Drug Metabolism and Pharmacokinetics, 39(4): 243-253
Vavić, N., Rančić, N., Cikota-Aleksić, B., Magić, Z., Cimeša, J., Obrenčević, K., Radojević, M., Mikov, M., Dragojević-Simić, V. (2016) The distribution of genetic polymorphism of CYP3A5, CYP3A4 and ABCB1 in patients subjected to renal transplantation. Vojnosanitetski pregled, vol. 73, br. 7, str. 663-667
Velickovic-Radovanovic, R., Mikov, M., Catic-Djordjevic, A., Stefanovic, N., Mitic, B., Paunovic, G., Cvetkovic, T. (2015) Gender-dependent predictable pharmacokinetic method for tacrolimus exposure monitoring in kidney transplant patients. European Journal of Drug Metabolism and Pharmacokinetics, 40(1): 95-102
Wallemacq, P.E., Verbeeck, R.K. (2001) Comparative Clinical Pharmacokinetics of Tacrolimus in Paediatric and Adult Patients. Clinical Pharmacokinetics, 40(4): 283-295
Zhao, W., Baudouin, V., Fakhoury, M., Storme, T., Deschênes, G., Jacqz-Aigrain, E. (2012) Pharmacokinetic Interaction Between Tacrolimus and Amlodipine in a Renal Transplant Child. Transplantation, 93(7): e29-e30
 

O članku

jezik rada: engleski
vrsta rada: originalan članak
DOI: 10.5937/hpimj1503291R
objavljen u SCIndeksu: 01.12.2016.

Povezani članci

Nema povezanih članaka