Akcije

Kragujevac Journal of Science
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:[3]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:4
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 1 od 1  
2015, br. 37, str. 35-48
Creep behavior of rotating FGM disc with linear and hyperbolic thickness profiles
(naslov ne postoji na srpskom)
aDepartment of Mechanical Engineering, Punjabi University, Patiala, India
bDepartment of Physics, S.D. College, Barnala, Punjab, India

e-adresaguptavk_70@yahoo.co.in
Ključne reči: modeling; creep; rotating disc; functionally graded material; thickness profile
Sažetak
(ne postoji na srpskom)
Mathematical model has been developed to investigate steady state creep in a variable thickness rotating disc made of functionally graded Al-SiCp. The SiCp content in the disc is assumed to decrease from the inner to outer radius. The creep behavior of the disc material is described by threshold stress based law with a stress exponent of 5. The stresses and strain rates in the disc are estimated by solving creep constitutive equations along with the equilibrium equation for a rotating disc. The stresses and strain rates have been estimated for similar FGM discs with three different thickness profiles i.e. constant thickness, linearly varying thickness and hyperbolic varying thickness. The FGM disc having hyperbolic thickness profile exhibits the lowest stresses and strain rates compared linear or constant thickness disc. The tangential and radial strain rates in FGM discs with linear and hyperbolic thickness profiles are respectively lower by about two and three orders of magnitude when compared to a constant thickness FGM disc. The FGM discs having linear and hyperbolic thickness profiles possess lesser chances of distortion due to relatively uniform distribution of radial strain rate.
Reference
Aidy, A. (2012) The effect of ceramic in combinations of two sigmoid functionally graded rotating disks with variable thickness. Scientific Research and Essays, 7(25): 2174-2188
Bayat, M., Saleem, M., Sahari, B.B., Hamouda, A.M.S., Mahdi, E. (2007) Thermo elastic analysis of a functionally graded rotating disk with small and large deflections. Thin-Walled Structures, 45(7-8): 677-691
Bayat, M., Saleem, M., Sahari, B.B., Hamouda, A.M.S., Mahdi, E. (2008) Analysis of functionally graded rotating disks with variable thickness. Mechanics Research Communications, 35(5): 283-309
Chen, J., Ding, H., Chen, W. (2007) Three-dimensional analytical solution for a rotating disc of functionally graded materials with transverse isotropy. Archive of Applied Mechanics, 77(4): 241-251
Deepak, D., Gupta, V.K., Dham, A.K. (2010) Creep modeling in functionally graded rotating disc of variable thickness. Journal of Mechanical Science and Technology, 24(11): 2221-2232
Farshi, B., Bidabadi, J. (2008) Optimum design of inhomogeneous rotating discs under secondary creep. International Journal of Pressure Vessels and Piping, 85(7): 507-515
Farshi, B., Jahed, H., Mehrabian, A. (2004) Optimum design of inhomogeneous non-uniform rotating discs. Computers & Structures, 82(9-10): 773-779
Gupta, S.K., Sharma, S., Pathak, S. (2000) Creep Transition in a Thin Rotating Dise Of Variable Density. Defence Science Journal, 50(2): 147-153
Gupta, V.K., Singh, S.B., Chandrawat, H.N., Ray, S. (2005) Modeling of Creep Behavior of a Rotating Disc in the Presence of Both Composition and Thermal Gradients. Journal of Engineering Materials and Technology, 127(1): 97
Gupta, V.K., Chandrawat, H.N., Singh, S.B., Ray, S. (2004) Creep behavior of a rotating functionally graded composite disc operating under thermal gradient. Metallurgical and Materials Transactions A, 35(4): 1381-1391
Gupta, V.K., Kwatra, N., Ray, S. (2007) Artificial neural network modeling of creep behavior in a rotating composite disc. Engineering Computations, 24(2): 151-164
Hassani, A., Hojjati, M.H., Farrahi, G.H., Alashti, R.A. (2012) Semi-exact solution for thermo-mechanical analysis of functionally graded elastic-strain hardening rotating disks. Communications in Nonlinear Science and Numerical Simulation, 17(9): 3747-3762
Hojjati, M.H., Hassani, A. (2008) Theoretical and numerical analyses of rotating discs of non-uniform thickness and density. International Journal of Pressure Vessels and Piping, 85(10): 694-700
Jahed, H., Farshi, B., Bidabadi, J. (2005) Minimum weight design of inhomogeneous rotating discs. International Journal of Pressure Vessels and Piping, 82(1): 35-41
Kordkheili, S., Naghdabadi, R. (2007) Thermoelastic analysis of a functionally graded rotating disk. Composite Structures, 79(4): 508-516
Laskaj, M., Murphy, B., Houngan, K. (1999) Improving the efficiency of cooling the front disc brake on a V8 racing car. Melbourne: Monash University, Project report
Ma, Z.Y., Tjong, S.C. (2001) Creep deformation characteristics of discontinuously reinforced aluminium-matrix composites. Composites Science and Technology, 61(5): 771-786
Nieh, T.G., Xia, K., Langdon, T.G. (1988) Mechanical Properties of Discontinuous SiC Reinforced Aluminum Composites at Elevated Temperatures. Journal of Engineering Materials and Technology, 110(2): 77
Orcan, Y., Eraslan, A.N. (2002) Elastic-plastic stresses in linearly hardening rotating solid disks of variable thickness. Mechanics Research Communications, 29(4): 269-281
Pandey, A.B., Mishra, R.S., Mahajan, Y.R. (1994) High-temperature creep of AlTiB2 particulate composites. Materials Science and Engineering: A, 189(1-2): 95-104
Pankaj, T., Satya, B.S., Jatinder, K. (2014) Elastic-plastic stresses in a thin rotating disk with shafthaving density variation parameter under steady-state temperature. Kragujevac Journal of Science, br. 36, str. 5-17
Reddy, J.N. (2000) Analysis of functionally graded plates. International Journal of Numerical Method Engineering, 47, 663-684
Sharma, S., Sahai, I., Kuma, R. (2013) Creep Transition of a Thin Rotating Annular Disk of Exponentially Variable Thickness with Inclusion and Edge Load. Procedia Engineering, 55: 348-354
Singh, S.B., Ray, S. (2002) Modeling the anisotropy and creep in orthotropic aluminum-silicon carbide composite rotating disc. Mechanics of Materials, 34(6): 363-372
Singh, S.B., Ray, S. (2001) Steady-state creep behavior in an isotropic functionally graded material rotating disc of Al-SiC composite. Metallurgical and Materials Transactions A, 32(7): 1679-1685
Suresh, S., Mortensen, A. (1998) Fundamentals of functionally graded materials. London: Institute of Materials
Timoshenko, S.P., Goodier, J.N. (1970) Theory of elasticity. Singapore: McGraw-Hill
Tjong, S. (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science and Engineering: R: Reports, 29(3-4): 49-113
You, L.H., You, X.Y., Zhang, J.J., Li, J. (2007) On rotating circular disks with varying material properties. Zeitschrift für angewandte Mathematik und Physik, 58(6): 1068-1084
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/KgJSci1537035D
objavljen u SCIndeksu: 15.12.2016.

Povezani članci

Nema povezanih članaka