Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[9]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:28
  • preuzimanja u poslednjih 30 dana:22

Sadržaj

članak: 1 od 1  
2016, vol. 57, br. 4, str. 600-604
Katalitička piroliza otpadne plastike u tečno gorivo
aSs 'Cyril and Methodius' University in Skopje, Faculty of Technology and Metallurgy, Skopje, Republic of Macedonia
bSs 'Cyril and Methodius' University in Skopje, Faculty of Technology and Metallurgy, Skopje, Republic of Macedonia + Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Skopje, Macedonia

e-adresakarminamiteva@gmail.com
Ključne reči: piroliza; otpadna plastika; katalitička konverzija; gorivo; fizička svojstva
Sažetak
Proces pirolize je termohemijski postupak koji se izvodi na visokim temperaturama i obično u prisustvo katalizatora. Različite vrste katalizatora, prirodnih i sintetičkih, može se koristiti za konverziju iz organskog otpada u vredna goriva. Cilj ovog rada je konverzija otpada poliolefinske mešavine u proizvodnju tečnih goriva, koristeći mešavinu Al2O3 i SiO2 kao katalizator. Mešavina otpada je podvrgnuta procesu pirolize u temperaturnom opsegu 400-550oC i dobijeni proizvodi su tečno gorivo, gas i malo čvrsti ostatak. Pod optimalnim reakcionim uslovima, kondenzovana tečna frakcija je mnogo veća od gasovite frakcije. Korišćene su različite količine katalizatora i poliolefinske mešavine kao sirovine. Prema dobijenim rezultatima, retenciono vreme i procenat SiO2 u katalizatorskoj smeši imaju dominantan uticaj na iznos tečnog proizvoda. Smanjenje količine SiO2 u smeši katalizatora poveća prinos tečnog proizvoda. Fizičke osobine dobijenih tečnih proizvoda su okarakterisane po izmerenoj vrednosti. Tečno gorivo spada u lake frakcije dizel goriva.
Reference
Almustapha, M.N., Andrésen, J.M. (2012) Recovery of Valuable Chemicals from High Density Polyethylene (HDPE) Polymer: a Catalytic Approachfor Plastic Waste Recycling. International Journal of Environmental Science and Development, 3(3), 263-267
Ammar, S.A., Shubar, S.D.A. (2008) Pyrolysis of high-density polyethylene for the production of fuel-like liquid hydrocarbon. Iraqi Journal of Chemical and Petroleum Engineering, 9 (1); 23-29
Artetxe, M., Lopez, G., Amutio, M., Elordi, G., Bilbao, J., Olazar, M. (2012) Light olefins from HDPE cracking in a two-step thermal and catalytic process. Chemical Engineering Journal, 207-208: 27-34
Ballice, L., Yüksel, M., Sağlam, M., Reimert, R., Schulz, H. (1998) Classification of volatile products evolved during temperature-programmed co-pyrolysis of Turkish oil shales with low density polyethylene. Fuel, 77(13): 1431-1441
García, R.A., Serrano, D.P., Otero, D. (2005) Catalytic cracking of HDPE over hybrid zeolitic–mesoporous materials. Journal of Analytical and Applied Pyrolysis, 74(1-2): 379-386
Kaminsky, W., Zorriqueta, I.N. (2007) Catalytical and thermal pyrolysis of polyolefins. Journal of Analytical and Applied Pyrolysis, 79(1-2): 368-374
Kim, J. (2004) Pyrolysis of plastic wastes using the non-catalytic Hamburg-process and a catalytic process using the cycled-spheres-reactor. Environmental Engineering Research, 9(1): 31-37
Lee, K., Shin, D., Suh, J. (2005) Catalytic degradation of waste high-density polyethylene into liquid product. Environmental Engineering Research, 10(2): 54-61
Marcilla, A., Gómez-Siurana, A., Valdés, F.J. (2008) Influence of the temperature on the composition of the coke obtained in the catalytic cracking of low density polyethylene in the presence of USY and HZSM-5 zeolites. Microporous and Mesoporous Materials, 109(1-3): 420-428
Miteva, K., Aleksovski, S., Bogoeva-Gaceva, G. (2015) Kinetic study of pyrolysis of waste polyolefine mixture using integral fitting kinetic model. u: ICSD, Belgrade, Serbia, proceedings, 235-242
Moinuddin, S., Rashid, M.M. (2013) Food container waste plastic conversion into fuel. International Journal of Engineering and Applied Science, 3(1); 1-7
Sarker, M., Rashid, M.M., Rahman, M.S. (2012) High density polyethylene (HDPE) waste plastic conversion into alternative fuel for heavy vehicles. Journal of Environmental Research and Development, 7(1); 1-9
Sarker, M., Rashid, M.M., Rahman, M.S., Molla, M. (2012) A New Kind of Renewable Energy: Production of Aromatic Hydrocarbons Naphtha Chemical by Thermal Degradation of Polystyrene (PS) Waste Plastic. American Journal of Climate Change, 01(03): 145-153
Serrano, D., Aguado, J., Escola, J., Garagorri, E. (2001) Conversion of low density polyethylene into petrochemical feedstocks using a continuous screw kiln reactor. Journal of Analytical and Applied Pyrolysis, 58-59: 789-801
Usman, M.A., Alaje, T.O., Ekwueme, V.I., Adekoya, T.E. (2012) Catalytic degradation of water sachet waste (LPDE) using mesoporous silica kit-6 modified with 12-tungstophosphoric acid. Petroleum & Coal, 54 (2), 85-90
Wojciechowski, B.W., Corma, A. (1986) Catalytic cracking catalyst, Chemistry and Kinetics. New York: Marcel Dekker
 

O članku

jezik rada: engleski
vrsta rada: naučni članak
DOI: 10.5937/ZasMat1604600M
objavljen u SCIndeksu: 23.12.2016.

Povezani članci

Nema povezanih članaka