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Abstract. Let A and G be finite groups such that A acts coprimely on G by automorphisms. We obtain a com-
plete description of the structure of finite groups in which every non-nilpotent maximal A-invariant subgroup of
order divisible by p is a TI-subgroup for any fixed prime divisor p of the order of groups.
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1. INTRODUCTION

All groups are considered to be finite. Let G be a group and H a subgroup of G. If Hg ∩H = 1 or H for
each g ∈ G, then H is called a TI-subgroup of G. In [10, Theorem 1.1] Shi and Zhang proved that every non-
nilpotent subgroup of a group G is a TI-subgroup if and only if every non-nilpotent subgroup of G is normal.
As a generalization, Shi and Li [7, Theorem 1] showed that every self-centralizing non-nilpotent subgroup
of a group G is a TI-subgroup or a subnormal subgroup if and only if every non-nilpotent subgroup of G is
subnormal. Consider the coprime action of groups, let A and G be groups such that A acts coprimely on G
by automorphisms. Shao and Beltrán [5, Theorem B] obtained that every non-nilpotent A-invariant subgroup
of G is a TI-subgroup if and only if every non-nilpotent A-invariant subgroup of G is normal. Moreover, Liu
and Shi [2, Theorem 1.1] showed that every self-centralizing non-nilpotent A-invariant subgroup of G is a TI-
subgroup or a subnormal subgroup if and only if every non-nilpotent A-invariant subgroup of G is subnormal.

Consider non-nilpotent maximal subgroups of a group, Lu, Pang and Zhong [3, Theorem 3.5] proved that
every non-nilpotent maximal subgroup of a group G is a TI-subgroup if and only if every non-nilpotent maximal
subgroup of G is normal. Combine the coprime action of groups, Shi and Liu [9, Theorem 1.8] obtained that
every non-nilpotent maximal A-invariant subgroup of a group G is a TI-subgroup if and only if every non-
nilpotent maximal A-invariant subgroup of G is normal.

Let G be a group and p any fixed prime divisor of |G|. In [8, Theorems 1.3, 1.4 and 1.6] Shi, Li and Shen
provided a complete description of group G in which every non-nilpotent maximal subgroup of order divisible
by p is normal. Moreover, Beltrán and Shao [1, Theorem C] indicated that G is solvable if every non-nilpotent
maximal A-invariant subgroup of G of order divisible by p is normal.

As a generalization of above research, Shi [6, Theorem 1.1] had the following result.

THEOREM 1.1. [6, Theorem 1.1] Let G be a group and p a fixed prime divisor of |G|. Then every maximal
subgroup of G is nilpotent or a TI-subgroup or has p′-order if and only if one of the following statements holds:
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(1) Every maximal subgroup of G is nilpotent or normal or has p′-order;
(2) G = Zq

m ⋊ (Zp ⋊H) is a Frobenius group with Zq
m being its Frobenius kernel and Zp ⋊H being its

Frobenius complement such that Zp ⋊H acts irreducibly on Zq
m, where m > 1, Zp ∈ Sylp(G), H is cyclic or a

direct product of a generalized quaternion group and a cyclic group such that [Zp,H] ̸= 1.

In this paper, as a further generalization of [6, Theorem 1.1], consider the coprime of groups, we obtain the
following result, the proof of which is given in Section 3.

THEOREM 1.2. Let A and G be groups such that A acts coprimely on G by automorphisms, let p be any
fixed prime divisor of |G|. Then every non-nilpotent maximal A-invariant subgroup of G of order divisible by p
is a TI-subgroup if and only if one of the following statements holds:

(1) every non-nilpotent maximal A-invariant subgroup of G of order divisible by p is normal;
(2) G = Zq

m ⋊ (Zp ⋊K) is a Frobenius group with kernel Zq
m and complement Zp ⋊K, where Zq

m is a
minimal A-invariant normal subgroup of G and m > 1, Zp is an A-invariant Sylow subgroup of G and K is an
A-invariant cyclic group or an A-invariant direct product of a generalized quaternion group and a cyclic group
of odd order with [Zp,K] ̸= 1.

The following result is a direct corollary of Theorem 1.2.

COROLLARY 1.3. Let A and G be groups such that A acts coprimely on G by automorphisms, let p be the
smallest prime divisor of |G|. Then every non-nilpotent maximal A-invariant subgroup of G of order divisible
by p is a TI-subgroup if and only if every non-nilpotent maximal A-invariant subgroup of G of order divisible
by p is normal.

2. TWO NECESSARY LEMMAS

LEMMA 2.1. [5, Lemma 2.3] Suppose that a group A acts coprimely on a group G. If every maximal
A-invariant subgroup of G is normal, then G is nilpotent.

LEMMA 2.2. [9, Lemma 2.3] Let A and G be groups such that A acts coprimely on G by automorphisms.
Suppose that M is a maximal A-invariant subgroup of G, then M is either self-normalizing in G or normal in G.

3. PROOF OF THEOREM 1.2

Proof. For the necessity part.
When every non-nilpotent maximal A-invariant subgroup of G of order divisible by p is normal, it is obvious

that every non-nilpotent maximal A-invariant subgroup of G of order divisible by p is a TI-subgroup.
When G has non-normal non-nilpotent maximal A-invariant subgroups of order divisible by p. Suppose

that M is a non-normal non-nilpotent maximal A-invariant subgroup of G of order divisible by p. It is easily
seen that NG(M) is also a non-nilpotent A-invariant subgroup of G of order divisible by p and NG(M) < G.
Therefore, M = NG(M) by the maximality of M. Since M is a TI-subgroup of G by the hypothesis, it follows
that G is a Frobenius group with complement M. Let N be the kernel. Then G = N ⋊M.

Note that both N and M are Hall-subgroups of G. One has that N is a characteristic subgroup of G, which
implies that N is also an A-invariant subgroup of G. By the maximality of M, N is a minimal A-invariant normal
subgroup of G. It follows that N is a characteristic simple group which is a direct product of some isomorphic
simple groups. Since N is nilpotent by [4, Theorem 10.5.6], N is an elementary abelian group. Let N = Zq

m,
where q ̸= p, m > 1 since M is non-nilpotent.

Let P be an A-invariant Sylow p-subgroup of M. We will show that P is normal in M. Assume that P is not
normal in M. Then NM(P) < M. Note that NM(P) is also an A-invariant subgroup of M. It follows that there
is a maximal A-invariant subgroup M0 of M such that NM(P) ≤ M0. Since N ⋊M0 is a non-nilpotent maximal
A-invariant subgroup of G of order divisible by p, N ⋊M0 is a TI-subgroup of G. However, (N ⋊M0)

x ∩ (N ⋊
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M0) = (N ⋊M0
x)∩ (N ⋊M0) ≥ N ̸= 1 for each x ∈ G, which implies that N ⋊M0 is normal in G = N ⋊M.

It follows that M0 is normal in M. By Frattini’s argument, one has M = NM(P)M0 = M0, a contradiction.
Therefore, P is normal in M.

If every maximal A-invariant subgroup of M is normal, then M is nilpotent by Lemma 2.1, a contradiction.
Thus M has non-normal maximal A-invariant subgroups. Let K be a non-normal maximal A-invariant subgroup
of M. By above argument, one has that |K| is not divisible by p. Then P∩K = 1. It follows that M = P⋊K. By
the maximality of K, P is a minimal A-invariant normal subgroup of M, which implies that P is an elementary
abelian subgroup. Then P is a cyclic group of order p by [4, Theorem 10.5.6]. Let P = Zp. Then M = Zp ⋊K.
Suppose that K0 is any maximal A-invariant subgroup of K. Then N ⋊ (Zp ⋊K0) is a non-nilpotent maximal
A-invariant subgroup of G of order divisible by p. Arguing as above, one has that K0 is normal in K, which
implies that K is nilpotent. Then K is cyclic or a direct product of a generalized quaternion group and a cyclic
group of odd order by [4, Theorem 10.5.6] and [Zp,K] ̸= 1 since M is non-nilpotent.

For the sufficiency part.
We only need to verify group G that belongs to case (2). Let L be any non-nilpotent maximal A-invariant

subgroup of G of order divisible by p. Note that Zq
m is a minimal A-invariant normal subgroup of G.

When the case that Zq
m ≰ L. Then G= Zq

mL. It is easy to see that Zq
m∩L is an A-invariant normal subgroup

of G and Zq
m ∩L < Zq

m, by the minimality of Zq
m, one has Zq

m ∩L = 1. It follows that G = Zq
m ⋊L. Note that

Zq
m is a normal Hall-subgroup of G. By Schur-Zassenhaus theorem, one has that L and Zp ⋊K are conjugate

in G. It follows that L is also a Frobenius complement of G and then L is a TI-subgroup of G.
When the case that Zq

m < L. Then L = Zq
m ⋊ (L∩ (Zp ⋊K)) = Zq

m ⋊ (Zp ⋊ (L∩K)) since |L| is divisible
by p. Note that L∩K is a maximal A-invariant subgroup of K and K is nilpotent, one has that L∩K is normal
in K by Lemma 2.2, which implies that L = Zq

m ⋊ (Zp ⋊ (L∩K)) is normal in G.
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