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Abstract: The Gaussian process has been one of the most important approaches for emulating computer simula-

tions. However, the stationarity assumption that is common to Gaussian process emulation and computational

intractability for large-scale datasets limit accuracy and feasibility in practice. In this article, we propose a

clustered Gaussian process model which simultaneously segments the input data into multiple clusters and fits

a Gaussian process model in each. The model parameters and the clusters are learned through the efficient

stochastic expectation-maximization, which allows for emulation for large-scale computer simulations. Im-

portantly, the proposed method provides valuable model interpretability by identifying clusters, which reveal

hidden patterns in the input-output relationship. The number of clusters, which controls the bias-variance trade-

off, is efficiently selected via cross-validation to ensure accurate predictions. In our simulations as well as a

real application to solar irradiance emulation, our proposed method has smaller mean squared errors than its

main competitors, with competitive computation time, and provides valuable insights from data by discovering

the clusters. An R package for the proposed methodology is provided in an open repository.

Key words and phrases: Non-stationarity, large-scale data, uncertainty quantification, mixture models, solar

irradiance emulation

1. Introduction

Gaussian processes (GPs) have been one of the most popular modeling tools in various research

topics, such as spatial statistics (Stein, 2012), computer experiments (Fang et al., 2005; Santner
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et al., 2018; Gramacy, 2020), machine learning (Rasmussen and Williams, 2006), and robot

control (Nguyen-Tuong and Peters, 2011). Gaussian processes provide the flexibility for a prior

probability distribution over functions in Bayesian inference, and the posterior can be used not

only to estimate the unknown function at an unknown point but also to quantify uncertainty

in this estimate. This explicit probabilistic formulation for GPs has proved to be powerful

for general function learning problems. However, its use is often limited due to the following

challenges. First, GP posterior involves O(N3) computational complexity and O(N2) storage

where N is the sample size, so that GP emulation becomes infeasible for moderately large

datasets, say N = 103. Second, a GP model often utilizes a stationary covariance function, in

the sense that the outputs with the same separation of any two inputs are assumed to have an

equal covariance. We call a GP with a stationary covariance function a stationary GP throughout

this article. This assumption is violated in many practical applications. Figure 1 demonstrates

an illustrative example in Gramacy and Lee (2009) where a stationary GP may perform very

poorly when the underlying function indeed consists of two different functions: a relatively

rough function in the region x ∈ [0, 10] and a simple linear function in the region x ∈ [10, 20].

Figure 1 shows that a stationary GP results in very poor prediction particularly in the region

x ∈ [10, 20] with very high uncertainty. See more examples in Higdon et al. (1999); Paciorek

and Schervish (2006); Bui-Thanh et al. (2012).

These two challenges to GP modeling are common in practice and have attracted lots of at-

tention lately. To name a few, sparse approximation (Quiñonero-Candela and Rasmussen, 2005;

Sang and Huang, 2012), covariance tapering (Furrer et al., 2006), inducing inputs (Snelson and

Ghahramani, 2006; Titsias, 2009), multi-step interpolation (Haaland and Qian, 2011), special
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Figure 1: An example of stationary Gaussian process emulation applied to a non-stationary
function. Black line is the true function, black dots represent collected data. Blue dashed line
represents a stationary Gaussian process emulator, with the gray shaded region providing a
pointwise 95% confidence band.

designs (Plumlee, 2014), and multi-resolution approximation (Nychka et al., 2015), address

the computational issue for large datasets. For non-stationarity, Higdon et al. (1999); Higdon

(2002); Paciorek and Schervish (2006); Plagemann et al. (2008); Plumlee and Apley (2017)

adopted nonstationary covariance functions for Gaussian processes. Tresp (2001); Rasmussen

and Ghahramani (2002); Kim et al. (2005); Gramacy and Lee (2008) considered multiple Gaus-

sian processes by segmentation in the input spaces. Ba and Joseph (2012) proposed a composite

of two Gaussian processes, which respectively capture a smooth global trend and local details.

However, only few of them are able to tackle the non-stationarity and computational issues si-

multaneously. Exceptions include the multi-resolution functional ANOVA approximation (Sung

et al., 2020), which uses a group lasso algorithm to identify important basis functions, and the

local Gaussian process approximation, which selects a small subsample to fit a Gaussian process

model for each predictive location (Gramacy and Apley, 2015).

In this article, we propose a clustered Gaussian process (clustered GP) to address the two
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challenges simultaneously. The clustered GP makes use of the divide-and-conquer idea, which

segments the input data into clusters with a hard-assignment clustering approach, in each of

which a Gaussian processes is fitted. This makes the computation more tractable for large-scale

datasets while retaining the mixture model structure to address the non-stationarity issue. As

latent variable models often suffer from computational difficulties, the stochastic EM algorithm

(Celeux and Diebolt, 1985) is employed to learn the clusters efficiently. Although combining

mixture GP and efficient SEM algorithm has shown to have a potential to simultaneously ad-

dress non-stationarity and computation challenges, it has not been carefully studied. In addition,

the number of the clusters plays a crucial role for a mixture GP model, which controls the flex-

ibility and non-stationarity of the model, and thus a systematic criteria to select the tuning pa-

rameter is necessary; however, little attention has been paid in this regard. The cross-validation

criterion, which retains efficient computation, is carefully studied in this article. Importantly,

unlike many existing methods, the clustered GP retains the features of unsupervised learning

approaches which reveal hidden patterns in the data that can lead to interesting model interpre-

tation, and provide important insights about the underlying aspects of the problem by showing

some grouping structures.

It is worth noting that, unlike traditional unsupervised learning, such asK-means clustering

and the GP clustering of Kim and Lee (2007), which aims to partition the observations into

groups based on their similarities in the input space and does not make use of information

contained in the output, the main purpose of clustered GP is to build a flexible model that

can produce accurate prediction at new input locations, and the assignments to each cluster are

determined by both inputs and outputs. These clusters indicate that the observations within each
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of the clusters share similar behavior of input-output relationships, and they can be used for data

compression in a supervised fashion to save computational and storage costs as in Joseph and

Mak (2021).

The remainder of this article is organized as follows. In Section 2, the clustered GP model

is introduced, along with its relationship to existing methods. In Section 3, our estimation and

prediction to fit the clustered GP model using a stochastic expectation-maximization algorithm

is described. Computational details are discussed in Section 4. In Section 5, some synthetic

examples are demonstrated to show the tractability and prediction performance of the proposed

method. A real data application for predicting solar irradiance over the United States is pre-

sented in Section 6. Some potential future work is discussed in Section 7. Mathematical proofs

are given in Supplementary Materials, and an R package, GPcluster, is provided in an open

repository for practitioners to implement the methodology.

2. Clustered Gaussian Process

2.1 Preliminary: Gaussian Processes

A brief review for Gaussian processes is first given in this section. A Gaussian process (GP) is a

stochastic process whose finite dimensional distributions are defined via a mean function µ(x)

and a covariance function Σ(x, x′) for d-dimensional x, x′ ∈ χ ⊆ Rd. If the function y(·) is a

draw from a GP, then we write

y(·) ∼ GP(µ(·),Σ(·, ·)).

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



2.1 Preliminary: Gaussian Processes6

In particular, given n inputsX = (x1, . . . , xn), if y(·) is a GP, then the outputs Y = (y(x1), . . . , y(xn))

have a multivariate normal distribution,

Y |X ∼ N (µ(X),Σ(X,X)),

where µ(X) ∈ Rn and Σ(X,X) ∈ Rn×n are defined as (µ(X))i = µ(xi) and (Σ(X,X))i,j =

Σ(xi, xj), respectively. Conventionally, µ(·) is often assumed to be a constant mean, i.e.,

µ(·) = µ, and Σ(·, ·) is assumed to have the form σ2Φγ(·, ·), where Φγ is a correlation func-

tion with Φγ(x, x) = 1 for any x ∈ χ and contains the unknown parameter γ. In addi-

tion, Φγ is often assumed to depend on the displacement between two input locations, that

is, Φγ(x, x
′) = R(x − x′) for some positive-definite function R. Such a correlation func-

tion is called stationary correlation function which implies the process y(·) is stationary, since

y(x1), . . . , y(xL) and y(x1 + h), . . . , y(xL + h) have the same distribution for any h ∈ Rd and

x1, . . . , xL, x1 + h, . . . , xL + h ∈ χ. A common choice for Φγ is a power correlation function

Φγ(x, x
′) = exp{−‖γT (x− x′)‖p2}, (2.1)

where p is often fixed to control the smoothness of the output surface, and γ = (γ1, . . . , γd)
T

controls the decay of correlation with respect to the distance between x and x′. Hence, the

parameters include µ(·), σ2 and γ and can be estimated by either maximum likelihood esti-

mation or Bayesian estimation. See Fang et al. (2005), Rasmussen and Williams (2006) and

Santner et al. (2018) for more details. Importantly, when the interest is in the prediction at an

untried xnew, whose response could be denoted as ynew, the predictive distribution of ynew can
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be derived by the conditional multivariate normal distribution. In particular, one can show that

ynew|Y,X, xnew ∼ N (µ∗, (σ∗)2), where

µ∗ = µ(xnew) + Φγ(xnew, X)Φγ(X,X)−1(Y − µ(X)) and (2.2)

(σ∗)2 = σ2
(
1− Φγ(xnew, X)Φγ(X,X)−1Φγ(X, xnew)

)
. (2.3)

In practice, the unknown parameters µ(·), σ2 and γ in (2.2) and (2.3) are replaced by their

estimates.

2.2 Clustered Gaussian Process

In practice, we might expect the unknown function that we are trying to approximate to exhibit

some degree of non-stationarity. A natural conceptual model to take into account such a circum-

stance would be a mixture GP, where each component of the mixture acts as an approximately

stationary model with high accuracy for a subset of the data. That is,

y(·) | z(·) = k ∼ GP(µk(·), σ2
kΦγk(·, ·)), k = 1, . . . , K,

Pr(z(x) = k) = gk(x;ϕk), k = 1, . . . , K, (2.4)

where µk(·), σ2
k and Φγk are the mean function, variance, and stationary correlation function

of the k-th GP, and gk(x, ϕk) is the probability that z(x) = k with unknown parameter ϕk

satisfying
∑K

k=1 gk(x;ϕk) = 1 for any x. It can be seen that in this model, z(·) takes the

role of a latent function, which assigns y(·) to one of the K GPs. These models introduce a
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non-stationarity by assuming different parameters of the stationary correlation functions in each

cluster, dependent on the input space, which allows for the local smoothness of the function

of interest, while the conventional GP lacks the ability to adapt the smoothness in the function.

This input-dependent smoothness is essential in various applications, such as geo-science, traffic

simulations, and robotics (Plagemann et al., 2008). For example, modeling the solar irradiance

in Section 6 requires the ability to deal with a varying data density and to account for the local

smoothness potentially dependent on the input locations, where the discontinuities may arise

at geographic features such as mountain ranges. Such features can help scientists to discover

interesting insights that differentiate these clusters.

Now, a little notation is introduced. Given n inputs X = (x1, . . . , xn), denote the corre-

sponding outputs as Y = (Y (x1), . . . , Y (xn)). For cluster k = 1, . . . , K, let Pk = {i : z(xi) =

k} denote the set of indices of the observations in cluster k. Additionally, let YPk
and XPk

re-

spectively denote the (ordered) responses and input locations for the observations from cluster

k. Then, given Z = (z1, . . . , zn) ≡ (z(x1), . . . , z(xn)), the output YPk
in each cluster k has the

multivariate normal distribution

YPk
|XPk

∼ N (µk(XPk
), σ2

kΦγk(XPk
, XPk

)), (2.5)

where the observed yi’s depend on the response values and locations of the other cluster mem-

bers, in addition to their corresponding input location xi within each cluster. The latent clus-

ter/mixture component assignments zi is assumed to be independent across observations i but

dependent on input location xi, so that the (unobserved) cluster assignment likelihood is given

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)
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by

f(Z|X) = Pr(z(x1) = z1, . . . , z(xn) = zn)

=
n∏
i=1

gzi(xi;ϕzi) =
K∏
k=1

∏
i∈Pk

gk(xi;ϕk). (2.6)

Then, by combining (2.5) and (2.6), the likelihood function of complete data is

f(Y, Z|X) =f(Y |X,Z)f(Z|X)

=

(
K∏
k=1

fk(YPk
|XPk

; θk)

)(
K∏
k=1

∏
i∈Pk

gk(xi;ϕk)

)
, (2.7)

where fk is the probability density function of a multivariate normal distribution with parameters

θk ≡ {µk(·), σ2
k, γk}.

The clustered GP in (2.4) is related to some existing methods. If z(·) is a Bayesian treed

model (Chipman et al., 1998, 2002), the model becomes similar to the Bayesian treed GP of

Gramacy and Lee (2008). If z(·) assigns cluster memberships based on a Voronoi tessellation,

the model bears some similarity to the model of Kim et al. (2005). When z(·) is assumed to be

a Dirichlet process or a generalized GP, the model becomes similar to the mixtures of GPs of

Tresp (2001) and Rasmussen and Ghahramani (2002), respectively. Despite the similarity, their

application is limited in large-scale data setting due to their costly MCMC sampling. Some

other work, such as Nguyen-Tuong et al. (2009); Zhang et al. (2019), chose the assignment

based on traditional unsupervised clustering methods, such as K-means clustering.

Our modeling approach belongs to the popular model based clustering approach using la-
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tent variables within an Expectation-Maximization (EM) framework (e.g., Fraley and Raftery,

2002). A likelihood-based EM approach to estimate the unknown parameters is, however,

not straightforward, because strong dependencies among observations due to the GP correla-

tion structure makes computation difficult. One may want to compute the cluster probability

f(Z|X, Y ), whether for implementing the E-step in the EM algorithm (soft assignment), or up-

dating cluster membership in a K-means type algorithm (hard assignment). Unfortunately, the

cluster probability f(Z|X, Y ) does not factor beyond being proportional to (2.7), so we cannot

compute the cluster membership for each observation separately from one another even though

zi is independent of each other. In the next section, we adopt a stochastic EM algorithm to

address this issue, along with computational details associated with our approach.

3. Statistical Inference via Stochastic EM Algorithm

In this section, we present our estimation and prediction approach for the model in (2.4). Our

proposed method addresses the aforementioned challenges using the stochastic EM algorithm

(SEM, Celeux and Diebolt, 1985). SEM algorithm is particularly suitable for our challenges as it

leads to a computationally efficient algorithm in clustered GP while avoiding insignificant local

maxima of likelihood functions. SEM herein is a general approach to calculate the conditional

expectation required in the E-step of the EM algorithm, while recent studies, such as Cappé and

Moulines (2009) and Chen et al. (2018), particularly focuses on the stochastic approximation of

the gradient when optimizing the parameters in the M-step, which is applicable to independent

observations but is not straightforward for dependent observations like the data herein.
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3.1 Stochastic E-step

In the EM-algorithm, the E-step computes the expected value of the log posterior of complete

data given the observed data Y :

E[log f(Y, Z|X)|X, Y,θ,ϕ] + log π(θ) + log π(ϕ), (3.8)

where θ = {θk}Kk=1, ϕ = {ϕk}Kk=1, while π(θ) and π(ϕ) are priors of θ and ϕ. We assume θk

and ϕk are mutually independent through k = 1, . . . , K so

log π(θ) =
K∑
k=1

log π(θk) and log π(ϕ) =
K∑
k=1

log π(ϕk). (3.9)

Computing the expected value requires the cluster probabilities f(Z|X, Y ), which cannot be

explicitly evaluated. Instead, we adopt a Gibbs sampling, or iterative stochastic hard assign-

ment. The key quantity for this approach is the cluster membership probability for observation

i given the data X, Y and the other cluster memberships Z−i,

f(zi = k|X, Y, Z−i) ∝ f(Y |X,Z−i, zi = k)f(zi = k|X,Z−i)

=

(
fk(YPk∪{i}|XPk∪{i}; θk)

∏
j 6=k

fj(YPj\{i}|XPj\{i}; θj)

)
gk(xi;ϕk).

(3.10)

Despite our highly dependent situation, (3.10) can be calculated in a simple form as shown in

Proposition 1. The proof is deferred to Supplementary Material S1.
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Proposition 1. Under the complete data likelihood given in (2.7),

f(zi = k|X, Y, Z−i) ∝ φ((yi − µ∗k)/σ∗k)gk(xi;ϕk), where (3.11)

µ∗k = µk(xi) + Φγk(xi, XPk\{i})Φγk(XPk\{i}, XPk\{i})
−1 (YPk\{i} − µk(XPk\{i})

)
,

(σ∗k)
2 = σ2

k

(
1− Φγk(xi, XPk\{i})Φγk(XPk\{i}, XPk\{i})

−1Φγk(XPk\{i}, xi)
)
,

(3.12)

where φ is the density probability function of a standard normal distribution.

Proposition 1 implies the cluster is assigned very intuitively. For an unknown predictive

location xi, the predictive distribution of each cluster k is a normal distribution with mean

µ∗k and variance (σ∗k)
2 as in (2.2) and (2.3). Thus, the membership of zi can be determined

from the probability density function of cluster k at yi, and the probability mass function gk of

membership k at xi. The membership is likely to be assigned to kth class if (a) yi is closer to µ∗k

with regard to the scale σ∗k; (b) gk has a high mass probability at location xi.

Once (3.11) is available for each i and k, a random cluster assignment can be drawn from

a multinomial distribution. Each step of this Gibbs scheme satisfies detailed balance (assum-

ing none of the probabilities/densities in (3.11) equal zero), so eventually this process produces

samples from f(Z|X, Y ). Hence, the cluster membership samples can be used to approximate

quantities depending on f(Z|X, Y ), such as the expectation in (3.8). Further, partitioned ma-

trix inverse and determinant formulas (Harville, 1998) allow one to update the augmented and

diminished Gaussian densities in O(n2
k) time, where nk is the number of observations in cluster

k. The details are provided in Supplementary Material S2. In total, each iteration going through
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all the observations would take at most O(
∑K

k=1 n
3
k). One may ease computational burden by

controlling the maximum number of observations in each cluster, denoted by nmax, then the total

computation becomes O(Kn3
max). Computation in this step can be easily distributed over mul-

tiple cores, in particular, (3.12) can be done separately for different k. The detailed algorithm is

given in Stochastic E-step of Supplementary Material S3.

3.2 M-step

Once a random assignment drawn from P̃k = {i : z̃i = k} is available from the stochastic E-

step, we can proceed to the M-step. Let Z̃ denote the random assignment, and P̃k = {i : z̃i = k}

the set of indices of the observations in cluster k assigned in Z̃, respectively. From (2.7) and

(3.9), the log posterior of complete data in (3.8) is approximately by

log f(Y, Z̃|X,θ,ϕ) + log π(θ) + log π(ϕ)

=
K∑
k=1

log fk(YP̃k
|XP̃k

; θk) +
K∑
k=1

∑
i∈P̃k

log gk(xi;ϕk) +
K∑
k=1

log π(θk) +
K∑
k=1

log π(ϕk).

The maximum a posteriori probability (MAP) estimate {θ̂k}Kk=1 and {ϕ̂k}Kk=1 can then be ob-

tained by maximizing

K∑
k=1

log
(
fk(YP̃k

|XP̃k
; θk)π(θk)

)
and

K∑
k=1

∑
i∈P̃k

log gk(xi;ϕk) + log π(ϕk)

 ,

respectively. In particular,
∑K

k=1 log
(
fk(YP̃k

|XP̃k
; θk)π(θk)

)
can be optimized by maximizing

each component fk(YP̃k
|XP̃k

; θk)π(θk), which is proportional to the posterior distribution of the
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k-th GP. The choice for the prior of θk and its resulting posterior can be found in Chapters 3 and

4 of Santner et al. (2018). The computation for M-step can be done for K clusters separately,

which can be efficiently parallelized as in Supplementary Material S3.

3.3 Prediction

Predicting the responses ynew at a new input location xnew can be challenging, since the cluster

assignment znew at the new location is unknown. Given the assignment Z̃ = (z̃(x1), . . . , z̃(xn))

and the estimates {θ̂k, ϕ̂k}Kk=1 returned in the SEM algorithm, we perform the predictive distri-

bution of ynew by weighted averaging across the clustered GPs:

f(ynew|xnew, X, Y, Z̃) =
K∑
k=1

f(ynew|znew = k, xnew, X, Y, Z̃)f(znew = k|xnew, X, Y, Z̃)

=
K∑
k=1

φ((ynew − µ̂∗k)/σ̂∗k)gk(xnew; ϕ̂k),

where

µ̂∗k = µ̂k(xnew) + Φγ̂k(xnew, XP̃k
)Φγ̂k(XP̃k

, XP̃k
)−1
(
YP̃k
− µ̂k(XP̃k

)
)
,

(σ̂∗k)
2 = σ̂2

k

(
1− Φγ̂k(xnew, XP̃k

)Φγ̂k(XP̃k
, XP̃k

)−1Φγ̂k(XP̃k
, xnew)

)
.

Thus, the prediction mean of ynew is

ŷnew := E[ynew|xnew, X, Y, Z̃] =
K∑
k=1

µ̂∗kgk(xnew; ϕ̂k), (3.13)
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with its variance

V[ynew|xnew, X, Y, Z̃] =E[V[ynew|znew, xnew, X, Y, Z̃]] + V[E[ynew|znew, xnew, X, Y, Z̃]]

=
K∑
k=1

(σ̂∗k)
2gk(xnew; ϕ̂k) +

K∑
k=1

(µ̂∗k)
2gk(xnew; ϕ̂k)−

(
K∑
k=1

µ̂∗kgk(xnew; ϕ̂k)

)2

.

The q-th quantile of ynew, which will be used for constructing confidence intervals, has no closed

form but can be calculated by finding the value of y for which
∫ y
−∞ f(t|xnew, X, Y, Z̃)dt = q,

which is equivalent to solving

K∑
k=1

(∫ y

−∞
φ((t− µ̂∗k)/σ̂∗k)dt

)
gk(xnew; ϕ̂k) = q.

The summation and integration are interchangeable because the probability density function is

finite. The equation can be solved numerically, for example, using a line search or generating

Monte Carlo samples.

4. Computational details

In this section, we provide some computational details for the proposed SEM that we have

provided in Section 3. In particular, we discuss the possible choices of each element in the

algorithm, with the focus on the specific implementation that we have adopted.
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4.1 Choices for class assignment model16

4.1 Choices for class assignment model

The model for z(·) in (2.4) determines the latent class distribution of the cluster assignment,

where gk is the conditional probability that z(x) = k given an input x. The function gk de-

termines the decision boundaries between the clusters, and their flexibility controls the bias-

variance trade-off of the clustered GP. Amongst several possibilities for z(·), one may consider

a less flexible model because GP itself is fairly flexible. For example, K-class multinomial

logistic regression, which produces linear decision boundaries, can be considered. Then over-

all complexity and flexibility of the clustered GP can be determined by carefully selecting the

number of clusters, which will be described in Section 4.4. The simple decision boundaries are

useful for interpreting the clusters, which will be illustrated in Sections 5 and 6. The K-class

multinomial logistic regression has the form of

Pr(z(x) = k) = gk(x;ϕk) =
exp{β0,k + βTk x}∑K
j=1 exp{β0,j + βTj x}

,

for k = 1, . . . , K − 1 and Pr(z(x) = K) = 1 −
∑K−1

j=1 Pr(z(x) = j), where β0,k is the inter-

cept, βk is a d-dimensional coefficient of x, and ϕk = (β1, . . . , βK−1). Alternatively, one can

also consider the linear discriminant analysis (LDA) or quadratic discriminant analysis (QDA)

methods by assuming

gk(x;ϕk) = φ(x; νk,Σk) for k = 1, . . . , K,
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4.2 Initialization17

where φ(x; νk,Σk) is the density probability function of a (multivariate) normal distribution

with mean νk and covariance Σk. LDA assumes Σ1 = . . . = ΣK , while QDA assumes the

covariances can be different. The multinomial logistic regression and LDA methods are closely

connected, which often result in similar linear decision boundaries of theK classes. QDA meth-

ods, on the other hand, result in quadratic decision boundaries. From our preliminary investi-

gation, the clustered GP with these models give similar prediction results. It is also possible to

apply non-parametric or machine learning approaches, such as random forest classification, for

modeling gk. However, our preliminary investigation shows that these approaches have similar

prediction performance, and they tend to result in less interpretable clusters in low-dimensional

settings. This is because clustered GP’s main advantage is from combining flexibility of GP

assisted by the cluster structure, so gk of an excessively complex form may not help much. As

such, we only present K-class multinomial logistic regression hereinafter.

4.2 Initialization

The SEM algorithm can be sensitive to the initialization. One may run many initializations

and select the one that gives the optimal criterion. This is, however, computational intensive

especially for large data sets. One potential initialization is the K-means clusters or other un-

supervised clustering algorithms solely based on the input X . This initialization enables the

clustered GP to make the input locations of each cluster close to each other and distant from

the ones of other clusters, which often leads to nice model interpretation. Although this initial-

ization may end up with a local optimum, the cluster structure still further improves the model

performance by efficiently exchanging the class assignment over the iterations. As such, in
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Sections 5 and 6, the initialization of K-means clusters are used.

4.3 Stopping criteria

The iteration in the SEM algorithm in Supplementary Material S3 needs a stopping criterion to

determine a convergence. For this purpose, we propose to use leave-one-out cross-validation

(LOOCV), so that the algorithm stops when the cross-validated prediction error does not im-

prove. LOOCV iteratively holds out one particular location, trains on the remaining data at

other locations, and then makes prediction for the held-out location. Although LOOCV is often

too expensive to implement in many situations as the model has to fit n times in each iteration,

the clustered GP has an efficient shortcut that makes the LOOCV very affordable. Specifically,

denote ỹi as the prediction mean based on all data except i-th observation and yi as the real

output of i-th observation, then based on (3.13), ỹi =
∑K

k=1 µ̂
(−i)
k gk(xi; ϕ̂k), where

µ̂
(−i)
k = µ̂k(xi) + Φγ̂k(xi, XP̃k\{i})Φγ̂k(XP̃k\{i}, XP̃k\{i})

−1
(
YP̃k\{i} − µ̂k(XP̃k\{i})

)
.

For those is which do not belong to P̃k, µ̂(−i)
k becomes

µ̂
(−i)
k = µ̂k(xi) + Φγ̂k(xi, XP̃k

)Φγ̂k(XP̃k
, XP̃k

)−1
(
YP̃k
− µ̂k(XP̃k

)
)
,

and for those is which belong to P̃k, it can be simplified to

µ̂
(−i)
k = µ̂k(xi)−

1

qii

nk∑
j 6=i

qij(yj − µ̂k(xj)), (4.14)
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where qij is the (i, j)-th element of Φγ̂k(XP̃k
, XP̃k

)−1. Then, the LOOCV root-mean-squared

error (RMSE) is

√√√√ 1

n

n∑
i=1

(yi − ỹi)2 =

√√√√ 1

n

n∑
i=1

(
yi −

K∑
k=1

µ̂
(−i)
k gk(xi; ϕ̂k)

)2

.

This computation costs at most O(Kn3
max), which is same as the SEM algorithm.

4.4 The choice of K

The number of clusters K plays an important role for the degree of non-stationarity of approxi-

mation functions and flexibility of the model, which in turn controls the bias-variance trade-off

of the model that can affect the prediction accuracy. That is, a too largeK could lead to an over-

flexible model and a too small K could lead to an under-flexible model. A natural choice is

using cross-validation with different K’s to target a small prediction error, such as the LOOCV

RMSE described in Section 4.3. Other choices using bootstrap techniques to estimate predic-

tion error also can be considered, such as the 632+ bootstrap method of Efron and Tibshirani

(1997). Kohavi (1995) explicitly discussed the comparison between cross-validation and boot-

strap from bias and variance point of view, and comprehensive numerical experiments were

conducted therein. For the purpose of saving computational cost, we choose the K that gives

the lowest LOOCV RMSE, because LOOCV RMSE can be computed efficiently for clustered

GPs as given in (4.14).
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4.5 Remarks on alternative implementations and asymptotic properties

The SEM and prediction can be modified in a more fully Bayesian fashion using the Monte

Carlo samples from the posterior distribution of {z(xi)}ni=1, {θk, ϕk}Kk=1 with a Gibbs routine to

generate predictions. The computational burden for this direction, however, can be prohibitively

heavy in a large-data context. In particular, saving samples from the posteriors requires enor-

mous amounts of storage for large data sets. Using the returned assignment Z̃ and the MAPs

{θ̂k, ϕ̂k}Kk=1 can be an efficient alternative with representative samples for more efficient fitting

and prediction procedures.

The MAP estimation in the M-step can be replaced by maximum likelihood (ML) esti-

mation, simply by letting the prior distributions of {θk}Kk=1 and {ϕk}Kk=1 be uniform. Under

some regularity conditions, the ML estimators {θ̂k}Kk=1 and {ϕ̂k}Kk=1 can be shown to have an

asymptotically normal distribution in such approach. We refer the asymptotic properties of the

parameter inference to Nielsen (2000).

5. Numerical study

In this section we present several exemplar functions to demonstrate the effectiveness of clus-

tered Gaussian processes. We first present examples with lower dimensional inputs to visually

present the cluster structure and the benefit from non-stationary modeling and then to an exam-

ple with higher-dimension inputs. Throughout, the iteration in the SEM algorithm stops when

LOOCV does not improve, or the number of iterations exceeds the preset maximum. We select

the assignment Z̃ which results in the lowest LOOCV RMSE during the iterations, which will

be illustrated in Section 5.2. Power correlation function of (2.1) with p = 2 is chosen. Both of
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5.1 One-dimensional synthetic data21

the mean functions µ(·) and µk(·) of the stationary GP and the clustered GP are assumed to be

constant. For each cluster, a small nugget, 10−6, is added when fitting a GP model for numerical

stability. In addition, we let the prior distributions of {θk}Kk=1 and {ϕk}Kk=1 be uniform.

5.1 One-dimensional synthetic data

Consider an example from Gramacy and Lee (2009), which is a modification of the example in

Higdon (2002). Suppose that the true function is

f(x) =


sin(0.2πx) + 0.2 cos(0.8πx), if x < 10.

0.1x− 1, otherwise

and 11 unequally spaced points from [0, 20] are chosen. The black lines in Figure 2 demonstrate

this function, and it can be seen that the function is discontinuous at x = 10. When the data are

modeled by a stationary GP, it can be seen in the left panel of Figure 2 that the prediction within

region [10, 20] performs poorly with large uncertainty. Ba and Joseph (2012) explained that the

constant mean assumption for GP is violated so the predictor tends to revert to the global mean,

whose estimate is 0.208 by maximum likelihood estimation in this example. This consequence

is frequently observed especially at the locations far away from input locations. Moreover,

the constant variance assumption for GP is also violated. The function in the region [0, 10]

is rougher than that in the region [10, 20]. Therefore, the variance estimate for region [10, 20]

tends to be inflated by averaging with that of region [0, 10], which leads to the erratic prediction

in this region. On the other hand, clustered GP introduces some degree of non-stationarity by
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considering a mixture GP, which is shown in the right panel of Figure 2. Two subsets of the

data are represented as red and green dots, which are given by the assignment Z̃ returned in

the SEM algorithm, and both are fitted by stationary GPs. The mean estimates of the GPs are

-0.045 and 0.529, respectively. It can be seen that the predictor performs much better than a

stationary GP, especially at the locations within region [10, 20], in terms of prediction accuracy

and uncertainty quantification. The most uncertain region is located on the boundary of two

clusters, which is expected because the assignment of cluster membership is more uncertain in

the region. One potential remedy of improving the accuracy on the boundaries will be discussed

in Section 7. The middle panel illustrates the composite GP of Ba and Joseph (2012), which is

a popular method in the computer experiment literature for addressing the non-stationary issue.

It shows that the prediction and uncertainty quantification are more accurate than the stationary

GP, but less accurate than the clustered GP.
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Figure 2: One-dimensional synthetic data. The left, middle and right panels illustrate the pre-
dictors by the stationary GP, the composite GP (Ba and Joseph, 2012), and the clustered GP,
respectively. Black line is the true function, black circles are input locations, and blue dotted
lines are the predictors, with the gray shaded region providing a pointwise 95% confidence
band. Red and green dots in the right panels represent different clusters.

Two more one-dimensional synthetic data generated from the exemplar functions of Xiong
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et al. (2007) and Montagna and Tokdar (2016) are presented in Supplementary Material S4,

in which both examples show that the clustered GP yields better prediction accuracy than the

stationary GP and the composite GP.

5.2 Two-dimensional synthetic data

In this section, the selection of K and the stopping rule using LOOCV RMSE will be demon-

strated. Consider a wavy function, which also appeared in Ba and Joseph (2012) and Montagna

and Tokdar (2016). The wavy function is

f(x1, x2) = sin

(
1

x1x2

)
,

where x1, x2 ∈ [0.3, 1]. The function is illustrated in Figure 3(a), in which it fluctuates rapidly

when x1 and x2 are small and gets smoother as they increase toward 1. A 40-run maximin

distance Latin hypercube design (Morris and Mitchell, 1995) from [0.3, 1]2 is chosen to select

the input locations at which the wavy function is evaluated. These locations are shown as black

dots. The stationary GP, the composite GP (Ba and Joseph, 2012), and the clustered GP with

K = 3 are fit on these locations, whose predictive surfaces are shown in Figures 3(b-d). It

can be seen that the stationary GP and the composite GP performs fairly poorly as x1 and x2

are small, while the clustered GP generally has better prediction performance over the input

space. To evaluate the prediction performance quantitatively, we predict the responses at 1296

(= 36 × 36) equally spaced points from [0.3, 1]2 as the test points, and compute their RMSEs

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)
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by (
1

ntest

ntest∑
i=1

(
f(x1, x2)− f̂(x1, x2)

)2)1/2

,

where ntest is the number of test points and f̂(x1, x2) is the predicted value at x1 and x2. In

this example, the clustered GP outperforms the composite GP and the stationary GP in terms

of prediction accuracy, where their RMSEs are 0.2081, 0.2284 and 0.3959, respectively, and

the interval scores of their 95% prediction intervals (see equation (43) in Gneiting and Raftery

(2007)) are 0.6950, 0.9635 and 2.0915 (the lower the better).
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Figure 3: Two-dimensional example: (a) the true wavy function, (b) the stationary GP, (c) the
composite GP (Ba and Joseph, 2012), and (d) the clustered GP, where the input locations are
shown as black dots.

Figure 4 demonstrates the stopping rule and the selection of K discussed in Section 4. The

left panel presents the LOOCV RMSEs of K = 2, 3, 4 and 5 during the 100 iterations of the

SEM algorithm. It shows that even though the LOOCV RMSE of initial iteration of K = 3 is

larger than other choices ofK, the error drops rapidly and ends up with a lower LOOCV error at

36-th iteration. For each choice ofK, we chose the assignment of the iteration that results in the

minimum LOOCV RMSE as the final assignment Z̃ for prediction. The right panel presents the
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Figure 4: The LOOCV RMSEs with K = 2, 3, 4 and 5 during the 100 iteration of the SEM
algorithm (left), and the minimum LOOCV RMSE of each choice of K (right).

minimum LOOCV RMSE of each choice of K in the 100 iterations, and it shows that K = 3

gives the lowest LOOCV RMSE so it was selected in this example. Figure 5 demonstrates the

assignments at iteration 0, 4, and 36 when K = 3. The assignment at iteration 0 represents

initial assignment, which is the K-means clusters as described in Section 4.2, whose LOOCV

RMSE is 0.294. The LOOCV RMSE then drops dramatically in the 4-th iteration from 0.294

to 0.277 with only two assignments switched, that is, the point x1 = 0.726, x2 = 0.482 is from

circle to square cluster and the point x1 = 0.702, x2 = 0.866 is from triangle to square cluster.

With more iterations and more assignments switched, the LOOCV error decreases to 0.214 at

iteration 36. The final assignment gives an intuitive explanation: the points when both of x1 and

x2 are small, where the true function has a sharp change, appear to belong to the same cluster

(see the circle cluster). To demonstrate the advantage of the clustering in terms of prediction

accuracy, we further compare the true RMSE with an supervised learning approach, K-means

clustering (left panel of Figure 5), whose RMSE is 0.2728, which is larger than the one of the
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clustered GP, 0.2081. This shows that, when the goal is making predictions, our clustering that

integrates output information can efficiently improve unsupervised learning clustering that does

not make use the output information.
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Figure 5: The cluster assignments at iteration 0, 4, and 36 of the SEM algorithm and their
LOOCV RMSEs.

5.3 Borehole function

In the section, a borehole function, a more complex exemplar function with 8-dimensional in-

put, is considered to examine the scalability of clustered GP. The borehole function models

water flow through a borehole, and has been commonly used for testing methods in computer

experiments because of its quick evaluation. The borehole function is given by

f(x) =
2πTu(Hu −Hl)

ln(r/rw)
(

1 + 2LTu
ln(r/rw)r2wKw

+ Tu
Tl

) , (5.15)

where rw, r, Tu, Hu, Tl, Hl, L and Kw are the eight inputs. We refer the detailed description of

these input variable to Morris et al. (1993).
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Consider n uniformly distributed input locations in the input space described above and

ntest = 10, 000 random input locations in the same input space for examining prediction ac-

curacy, whose outputs are evaluated from (5.15). Four methods are compared, including a sta-

tionary GP, local GP (Gramacy and Apley, 2015), multi-resolution functional ANOVA (MRFA)

(Sung et al., 2020), and clustered GP. These methods are implemented using R (R Core Team,

2015) via packages mlegp (Dancik, 2013), laGP (Gramacy, 2015), MRFA (Sung, 2019),

clusterGP, on a MacBook Pro laptop with 2.6 GHz Intel Core i7 and 16GB of RAM. For

the purpose of demonstration, K = n/200 was chosen for all the cases. For laGP, MRFA and

clusterGP, 10 CPU threads were utilized via foreach (Revolution Analytics and Weston,

2015) for parallel computing.

Table S1 shows the performance of the four methods, in terms of computation time and

prediction accuracy. It can be seen that the stationary GP is feasible only when n = 1, 000,

while other three methods can incorporates larger n. Even when a stationary GP is feasible, the

accuracy is worse than MRFA and clusterGP. Among the four methods, clusterGP has

better accuracy with reasonable computation time. MRFA has slightly larger predictive errors

with faster computation. On the other hand, local GP has larger predictive errors, even though

the computation is faster. One may consider a different setting for local GP (e.g., the size

of subsample) which may lead to better accuracy. While the proposed method yields better

prediction accuracy with reasonable prediction time, which is the main goal of emulation for

computer simulations, the model fitting time and storage can be demanding particularly for very

large-scale datasets. Some potential remedies of improving the computational efficiency will be

discussed in Section 7.
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6. Solar irradiance prediction

We leverage the statistical developments to predict solar irradiance. Predicting solar irradi-

ance, or the power per unit area produced by electromagnetic radiation, plays a very important

role in power balancing and determining the viability of potential sites for harvesting solar

power. One dataset can be brought to bear on this problem is the simulations from the North

American Mesoscale Forecast System (NAM) (Rogers et al., 2009), which is one of the major

weather models run by the National Centers for Environmental Prediction (NCEP) for produc-

ing weather forecasts. We extract the solar irradiance (global horizontal irradiance) simulations

from the NAM model at the locations of 1,535 Remote Automatic Weather Station (RAWS)

(Zachariassen et al., 2003) sites in the contiguous United States. Note that the RAWS stations

are not uniformly distributed. Figure S2 visualizes the available locations and their correspond-

ing solar irradiance with the average taken over one year, which can be seen that many promising

locations for solar farms are sparsely covered particularly in the Midwest. These locations of in-

terest are considered for solar energy forecasting. Detail description of the dataset can be found

in Hwang et al. (2018) and Sun et al. (2019b). Similar to Sun et al. (2019b), here we work with

average irradiance values over one year from the NAM simulations for each of 1535 spatial

locations (as shown in Figure S2), and the research interest of this study is making accurate

prediction for solar irradiance at those unavailable locations.

In Figure S2, it appears that some relatively high solar irradiance are measured compared

to their neighborhood, such as at the location on the coordinate (−93.57, 45.99), and some rela-

tively low solar irradiance are measured such as at the location on the coordinate (−93.16, 33.69).
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These instances may suggest that heterogeneity rather than homogeneity in the input-output re-

lationships should be considered. The assumption of identical covariance function throughout

the input domain for stationary GPs, therefore, is likely to fail and may result in poor perfor-

mance, as shown in Section 5.

A clustered GP is performed on this dataset, where similar setup in Section 5.2 was used.

We first use the LOOCV to determine the number of clusters K. The left panel of Figure S3

shows the LOOCV RMSEs of K = 15, 25, 35, 45 during 20 iterations of the SEM algorithm,

and the right panel shows the minimum LOOCV RMSEs with respect to different choices of K.

Based on the right panel, it appears that K = 35 has the lowest LOOCV RMSE among K =

10, 15, 20, 25, 30, 35, 40, 45, 50, which suggests that K = 35 is a good choice for predicting

solar irradiance. Similar to the numerical study in Section 5, we chose the assignment of the

iteration which results in the lowest LOOCV RMSE as the final assignment Z̃. The assignment

Z̃ is visualized in Figure S4, where the 35 clusters are presented as different colors and numbers.

It appears that the clusters reveal interesting hidden patterns in the input-output relationship.

For example, cluster 26 are mostly located on Michigan and part of Pennsylvania and New

York, which tells us that some common aspects of the solar irradiance are shared in those areas

adjacent to Great Lakes, even though they are not spatially connected. The example shows that

the clustering can provide a useful insight for discovering groups and identifying interesting

insight of a dataset.

To examine its prediction accuracy, we use LOOCV RMSEs as the prediction error and

compare with a recent emulation method in Sun et al. (2019a), where they proposed a multi-

resolution global/local GP emulation by extending the idea of local GP (Gramacy and Apley,
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2015), and their latter work in Sun et al. (2019b) applied this method to the same NAM sim-

ulation data herein. Sun et al. (2019b) reported the LOOCV errors of the multi-resolution

global/local GP emulation as well as the ordinary stationary GP. The results together with

our proposed method are presented in Figure S5. The figure presents the true solar irradi-

ance (top left) and the LOOCV predictions of the stationary GP (top right), the multi-resolution

global/local GP (bottom left), and the clustered GP with K = 35 (bottom right), along with

their corresponding LOOCV RMSEs in the titles. It can be seen that, the stationary GP does

a poor job in predicting the solar irradiance, the LOOCV predictions of which are all essen-

tially equal which implies that almost all of the pattern remains in the errors, which in turn

gives a high LOOCV RMSE (23.20). Performances of the multi-resolution global/local GP

as well as the clustered GP on the other hand are very good, the result of which may suggest

that the non-stationarity should be taken into account for this dataset. Although the LOOCV

predictions are visually similar, the LOOCV RMSE of the clustered GP is slightly lower than

the multi-resolution global/local GP (9.11 and 9.74, respectively). In particular, it appears that

the clustered GP has better prediction accuracy in the Northeast and Southeast, whereas the

multi-resolution global/local GP tends to be more smooth over the whole space.

7. Discussion

In this paper, we proposed a clustered Gaussian process that can simultaneously reduce com-

putational burden and incorporate non-stationarity, which effectively address two of major lim-

itations of stationary GP. Unlike traditional unsupervised clustering methods, the clusters in the

clustered GP are supervised by the response - the clustered GP makes use of the response in
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order to partition the input domain that not only clusters the observations that have similar fea-

tures, but also that have the same stationary process in the response. This clustering algorithm is

implemented using a stochastic EM algorithm, which is available in an open repository. Exam-

ples including the application of solar irradiance simulations show that the method not only has

advantages in computation and prediction accuracy, but also enables discovery of interesting

insights by interpreting the clusters.

The clustered GP shows several avenues for future research. First, the stochastic EM al-

gorithm can be modified in an online fashion. That is, if the data is available in a sequential

order, then the algorithm can be modified to update the clusters and the best predictor for future

data at each step instead of starting from the new dataset augmented with the additional data.

For example, the solar irradiance simulations are available every hour, so a modified algorithm

could be used to update the clusters and predict future data in real time, which may save substan-

tial computational cost and storage especially when the training sample size is extremely large.

In addition to the online stochastic EM, sub-sampling methods can be naturally applied to the

clustered GP that can alleviate the storage limitations for large-scale data. The CURE algorithm

(Guha et al., 2001) provides an efficient way for large-scale datasets for traditional clustering

algorithms, which employs a combination of random sampling and partitioning. It is conceiv-

able to apply this technique to the our clustering algorithm. Moreover, the flexible structure of

the proposed model can be easily generalized to other applications in computer experiments.

For instance, although the focus of this paper is on the emulation for deterministic computer

simulations, the proposed method can be naturally applied to stochastic computer simulations

by including a nugget term or heteroscedastic variance function (Ankenman et al., 2010; Binois
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et al., 2018) in each of the GPs. Last but not the least, to reduce the prediction uncertainty on

the boundary between two regions (see, for example, x = 10 in Figure 2), it is conceivable to

apply the idea of “patchwork” in Park and Apley (2018) by patching the GPs on the boundary,

which can mitigate the discontinuous problem that may degrade the prediction accuracy. We

leave these to our future work.

Supplementary Materials

The online supplementary materials contain the detailed proof of Proposition 1, the detailed

SEM algorithm in Section 3, supporting tables and figures for Sections 5 and 6. An R pack-

age GPcluster for implementing the proposed method is available at https://github.

com/ChihLi/GPcluster.
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