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Abstract

In this paper we consider in a bounded domain Ω ⊂ RN a Steklov-
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1 Introduction

Let Ω ⊂ RN , N ≥ 2, be a bounded domain with smooth boundary ∂Ω.
Consider the eigenvalue problem

{
−∆pu−∆qu+ ρ1(x) | u |p−2 u+ ρ2(x) | u |q−2 u = 0, x ∈ Ω,
∂u
∂νpq

+ γ1(x) | u |p−2 u+ γ2(x) | u |q−2 u = λ | u |q−2 u, x ∈ ∂Ω.
(1)

Recall that, for θ ∈ (1,∞), ∆θ denotes the θ-Laplacian, ∆θu = div(|
∇u |θ−2 ∇u). In the above boundary condition we have used the notation

∂u

∂νpq
:=
(
| ∇u |p−2 + | ∇u |q−2

)∂u
∂ν
,

where ν is the outward unit normal to ∂Ω.

The following hypotheses will be assumed throughout this paper.

(hpq) p, q ∈ (1,∞), p 6= q;

(hρ1γ1) ρ1 ∈ L∞(Ω) and γ1 ∈ L∞(∂Ω), ρ1, γ1 are nonnegative functions
such that ∫

Ω

ρ1 dx+

∫
∂Ω

γ1 dσ > 0; (2)

(hρ2γ2) ρ2 ∈ L∞(Ω), γ2 ∈ L∞(∂Ω) and ρ2 is a nonnegative function.

It is worth pointing out that the potential function γ2 is allowed to be sign
changing.

The operator
(
∆p+∆q

)
, called (p, q)-Laplacian, occurs in many applica-

tions that include models of elementary particles ([3], [7]), elasticity theory
([17]), reaction-diffusion equations ([5]).

The solution u of (1) is understood as an element of the Sobolev space
W := W 1,max {p,q}(Ω) satisfying equation (1)1 in the sense of distributions
and (1)2 in the sense of traces.

Definition 1. A scalar λ ∈ R is said to be an eigenvalue of the problem (1)
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if there exists uλ ∈W \ {0} such that for all w ∈W∫
Ω

(
| ∇uλ |p−2 + | ∇uλ |q−2

)
∇uλ · ∇w dx

+

∫
Ω

(
ρ1 | uλ |p−2 +ρ2 | uλ |q−2

)
uλw dx

+

∫
∂Ω

(
γ1 | uλ |p−2 +γ2 | uλ |q−2

)
uλw dσ = λ

∫
∂Ω

| uλ |q−2 uλw dσ.

(3)

This uλ is called an eigenfunction of the problem (1) (corresponding to the
eigenvalue λ).

According to a Green type formula (see [4], p. 71), u ∈ W \ {0} is a
solution of (1) if and only if it satisfies (3).

Now, let us introduce the notations

Kp(u) :=

∫
Ω

(
| ∇u |p +ρ1 | u |p

)
dx+

∫
∂Ω

γ1 | u |p dσ,

Kq(u) :=

∫
Ω

(
| ∇u |q +ρ2 | u |q

)
dx+

∫
∂Ω

γ2 | u |q dσ for all u ∈W.
(4)

For θ > 1, the Lebesgue norms of the spaces Lθ(Ω) and Lθ(∂Ω) will be
denoted by ‖ · ‖θ and ‖ · ‖∂Ω,θ, respectively. Also, in the Sobolev space
W 1,θ(Ω) we will consider the norm

‖ w ‖:=
(∫

Ω

| ∇w |θ dx
)1/θ

+
( ∫
∂Ω

| w |θ dσ
)1/θ

for all w ∈W 1,θ(Ω) (5)

which is equivalent to the usual norm of W 1,θ(Ω).

In order to state our main results, we define

Λq := inf
w∈W\{0}

Kq(w)

‖ w ‖q∂Ω,q

. (6)

Let us now state the main result of this paper.

Theorem 1. Assume that (hpq), (hρiγi), i = 1, 2 are fulfilled. Then, the
set of eigenvalues of problem (1) is precisely (Λq,∞).
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If p = q = 2, γ1 ≡ 0 (hence, according to (2),
∫

Ω ρ1 dx > 0), and γ2 ≡ 0,
then (1)2 is precisely the classic Steklov boundary condition. That is why
we call our problem (1) a Steklov-like eigenvalue problem. Even if the case
p = q is here excluded, this name still seems apropriate.

Eigenvalue problems for the (p, q)−Laplacian have been extensively in-
vestigated in recent years. For the case of the Dirichlet boundary condi-
tion we refer to Cherfils-Il’yasov [5], Faria-Miyagaki-Motreanu [8], Marano-
Mosconi-Papageorgiou [12], Bobkov-Tanaka [2] and references therein.

The case of the (p, q)-Laplacian (unaccompanied by any potential) with
a Robin boundary condition was investigated by Gyulov-Moroşanu [11]. Let
us also mention the recent paper by Papageorgiou-Vetro-Vetro [13] concern-
ing the case ρ1 ≡ 0, γ1 ≡ 0, γ2 ≡ const. > 0, with the potential function ρ2

being sign changing.
While in the previous papers [11] and [13] only subsets of the corre-

sponding spectra were determined, in this paper the presence of the poten-
tial functions ρi, γi satisfying assumptions (hρiγi), i = 1, 2, allows the full
description of the spectrum.

2 Preliminary results

In this section we state some auxiliary results which will be used in the
proofs of our main results.

Let θ, r ∈ (1,∞) and r < θ(N−1)/(N−θ) if θ < N. Let α ∈ L∞(Ω), β ∈
L∞(∂Ω) be nonnegative functions such that

∫
Ω

α dx+
∫
∂Ω

β dσ > 0 and define

kr(u) :=

∫
Ω

α | u |r dx+

∫
∂Ω

β | u |r dσ ∀ u ∈W 1,θ(Ω).

Note that u→
(
kr(u)

) 1
r is a seminorm on W 1,θ(Ω) which satisfies

(i) ∃d > 0 such that kr(u)
1
r ≤ d ‖ u ‖W 1,θ(Ω) ∀u ∈W 1,θ(Ω), and

(ii) if u = constant, then kr(u) = 0 implies u ≡ 0.
Hence, from [6, Proposition 3.9.55] we obtain the following result

Lemma 1. Under the assumptions mentioned above on r, θ, α and β, the

norm ‖ u ‖θ,r:=‖ ∇u ‖θ +
(
kr(u)

) 1
r ∀ u ∈W 1,θ(Ω) is equivalent to the usual

norm of the Sobolev space W 1,θ(Ω).

Remark 1. As a consequence of Lemma 1 we obtain that under assumptions

(hρ1γ1), K
1/p
p (·) is a norm equivalent to the usual norm of the Sobolev space

W 1,p(Ω).
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Next, for θ > 1, we consider the eigenvalue problem{
−∆θu+ ρ(x) | u |θ−2 u = 0 in Ω,

| ∇u |θ−2 ∂u
∂ν + γ(x) | u |θ−2 u = λ | u |θ−2 u on ∂Ω,

(7)

where ρ ∈ L∞(Ω) and γ ∈ L∞(∂Ω) are given functions, with ρ ≥ 0 a.e. on
Ω.

As usual, the number λ ∈ R is said to be an eigenvalue of problem (7) if
there exists a function uλ ∈W 1,θ(Ω) \ {0} such that∫

Ω

| ∇uλ |θ−2 ∇uλ · ∇w dx+

∫
Ω

ρ | uλ |θ−2 uλw dx

+

∫
∂Ω

γ | uλ |θ−2 uλw dσ = λ

∫
∂Ω

| uλ |θ−2 uλw dσ ∀ w ∈W 1,θ(Ω).

(8)

Define the C1 functional

Θθ : W 1,θ(Ω) \ {0} → R, Θθ(v) :=
Kθ(v)

‖ v ‖θ∂Ω,θ

∀ v ∈W 1,θ(Ω) \ {0},

where Kθ(v) :=
∫
Ω

(
| ∇v |θ +ρ | v |θ

)
dx+

∫
∂Ω

γ | v |θ dσ.

Lemma 2. If ρ ∈ L∞(Ω), γ ∈ L∞(∂Ω) and ρ ≥ 0 a.e. on Ω then, there
exists u∗ ∈W 1,θ(Ω) \ {0} such that

Θθ(u∗) = λθ := inf
w∈W 1,θ(Ω)\{0}

Θθ(w).

In addition, λθ is the smallest eigenvalue of the problem (8) and u∗ is an
eigenfunction corresponding to λθ.

Proof. First of all, note that functional Θθ is positively homogeneous of de-
gree zero. Therefore, we can find a minimizing sequence

(
un
)
n
⊂ W 1,θ(Ω)\

{0} for
λθ := inf

w∈W 1,θ(Ω)\{0}
Θθ(w),

such that ‖ un ‖∂Ω,θ= 1 ∀ n ≥ 1, i. e.,

Θθ(un) = Kθ(un)→ inf
w∈W 1,θ\{0}

Θθ(w) = λθ. (9)

In particular, as ρ ≥ 0 a.e. on Ω, we have that λθ ≥ − ‖ γ ‖∂Ω,∞ thus,
λθ 6= −∞. Obviously, the sequence

(
un
)
n

is bounded in W 1,θ(Ω) and so,
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we may assume that there exist u∗ ∈ W 1,θ(Ω) and a subsequence of
(
un
)
n
,

again denoted
(
un
)
n
, such that un ⇀ u∗ in W 1,θ(Ω) and un → u∗ in Lθ(Ω)

as well as in Lθ(∂Ω). As ‖ un ‖∂Ω,θ= 1 ∀ n ≥ 1, we have ‖ u∗ ‖∂Ω,θ= 1, thus
u∗ 6= 0.

Also, we have

‖ ∇u∗ ‖θθ ≤ lim inf
n→∞

‖ ∇un ‖θθ,

lim
n→∞

∫
Ω

ρ | un |θ dx =

∫
Ω

ρ | u |θ dx,

lim
n→∞

∫
∂Ω

γ | un |θ dσ =

∫
Ω

γ | u∗ |θ dσ ⇒

Kθ(u∗) ≤ lim inf
n→∞

Kθ(un).

Consequently, as ‖ u∗ ‖∂Ω,θ=‖ un ‖∂Ω,θ= 1 ∀ n ≥ 1, it follows that

Θθ(u∗) = Kθ(u∗) ≤ lim inf
n→∞

Kθ(un) = λθ, (10)

thus, we have Θθ(u∗) = λθ.

We claim that u∗ ∈ W 1,θ(Ω) \ {0} is an eigenfunction of problem (7)
corresponding to the eigenvalue λθ. Obviously, Θθ is a C1 functional on
W 1,θ(Ω) \ {0}, and for every w ∈W 1,θ(Ω) we have

0 = 〈Θ′θ(u∗), w〉 =

[(∫
Ω

| ∇u∗ |θ−2 ∇u∗ · ∇w dx

+

∫
Ω

ρ | u∗ |θ−2 u∗w dx+

∫
∂Ω

γ | u∗ |θ−2 u∗w dσ
)

−
( ∫
∂Ω

| u∗ |θ−2 u∗w dσ
)

Θθ(u∗)

]
θ

‖ u∗ ‖θ∂Ω,θ

.

(11)

It follows from λθ = Θθ(u∗) that identity (8) is satisfied. Therefore, u∗ is
indeed an eigenfunction of problem (7) corresponding to the eigenvalue λθ.

Finally, let us suppose by way of contradiction that there exists another
eigenfunction of problem (7), say uµ ∈ W 1,θ(Ω) \ {0}, corresponding to the
eigenvalue µ, 0 < µ < λθ. But then, taking λ = µ and w = uλ = uµ in (8)
we obtain that µ = Θθ(uµ) < λθ = Θθ(u∗). Obviously, this contradicts the
definition of λθ.
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We conclude this section by recalling a result which is known as the
Lagrange multiplier rule (see, e.g., [9, Theorem 5.5.26, p. 701])

Lemma 3. Let X,Y be real Banach spaces and let f : D → R be Fréchet
differentiable, g ∈ C1(D,Y ), where D ⊆ X is a nonempty open set. If v0 is
a local minimizer of the constraint problem

min f(v), g(v) = 0,

and R(g′(v0)) (the range of g′(v0)) is closed, then there exist λ∗ ∈ R, y∗ ∈
Y ∗ not both equal to zero such that λ∗f ′(v0) + y∗ ◦ g′(v0) = 0, where Y ∗

stands for the dual of Y.

3 Proof of Theorem 1

Throughout this section we assume that the hypotheses (hpq) and (hρiγi), i =
1, 2, are fulfilled and will be used without mentioning them in the statements
below.
Now, for λ ∈ R define the C1 energy functional for problem (1),

Jλ : W → R, Jλ(u) =
1

p
Kp(u) +

1

q
Kq(u)− λ

q
‖ u ‖q∂Ω,q . (12)

Its derivative is given by

〈J ′λ(u), v〉 =

∫
Ω

(
| ∇u |p−2| ∇u |q−2

)
∇u · ∇v dx

+

∫
Ω

(
ρ1 | u |p−2 +ρ2 | u |q−2

)
uv dx+

∫
∂Ω

(
γ1 | uλ |q−2 +γ2 | uλ |q−2

)
uv dσ

− λ
∫
∂Ω

| u |q−2 uv dσ ∀u, v ∈W.

(13)

So, according to Definition 1, λ is an eigenvalue of problem (1) if and only
if there exists a critical point uλ ∈W \ {0} of Jλ, i. e. J ′λ(uλ) = 0.

The proof of Theorem 1 is based on some lemmas, as follows.

Lemma 4. There is no eigenvalue of problem (1) inside the interval (−∞,Λq].
Moreover, we have the equality

λ̃q := inf
w∈W\{0}

1
qKq(w) + 1

pKp(w)
1
q ‖ w ‖

q
∂Ω,q

= Λq. (14)
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Proof. First, we deduce from Lemma 2 with θ = q that Λq ≥ Θq(u
∗). More

exactly, if q > p we have Λq = λq. Otherwise, if q < p then Λq ≥ λq, as
W = W 1,p(Ω) ⊂W 1,q(Ω). In particular, Λq is a finite real number.

Now, let us check that there is no eigenvalue of problem (1) in (−∞,Λq].
Assume the contrary, that there is an eigenpair (λ, uλ) ∈ (−∞,Λq] × (W \
{0}). Then (3) with w = uλ will imply

λ =
Kq(uλ) +Kp(uλ)

‖ uλ ‖q∂Ω,q

≤ Λq. (15)

If λ < Λq, we have a contradiction with the definition of Λq. On the other
hand, if λ = Λq we have Kp(uλ) = 0 which implies uλ ≡ 0 (see Remark 1).
This is impossible since uλ was assumed to be an eigenfunction.

Finally, let us check the equality (14). Note that the infimum on W \{0}
of the Rayleigh-type quotient associated to the eigenvalue problem (1) is
given by λ̃q. The estimate Λq ≤ λ̃q is obvious. On the other hand, for each
v ∈W \ {0} and t > 0, we have

λ̃q = inf
w∈W\{0}

Kq(w) + q
pKp(w)

‖ w ‖q∂Ω,q

≤ Kq(v)

‖ v ‖q∂Ω,q

+ tp−q
qKp(v)

p ‖ v ‖q∂Ω,q

.

Now letting t → ∞ if p < q and t → 0+ if p > q, then passing to infimum
over all v ∈W \ {0}, we get λ̃q ≤ Λq, which concludes the proof.

In what follows we shall prove that every λ ∈ (Λq,∞) is an eigenvalue
of problem (1). We distinguish two cases which are complementary to each
other.

3.1 Case 1: q < p

In this case we have W = W 1,p(Ω).
The following lemma shows, essentially, that the functional defined in (12)
is coercive for q < p.

Lemma 5. If q < p then, the functional Jλ is coercive on W , i.e.,

lim
‖u‖W→∞

Jλ(u) =∞.

Proof. Assume by way of contradiction that functional Jλ is not coercive.
So, there exist a positive constant C and a sequence

(
un
)
n
⊂ W such that

‖ un ‖→ ∞ as n→∞ and Jλ(un) ≤ C. Therefore

1

p
Kp(un) +

1

q
Kq(un)− λ

q
‖ un ‖q∂Ω,q≤ C ∀ n ≥ 1. (16)
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In particular,

0 ≤ 1

p
Kp(un) ≤ λ

q
‖ un ‖q∂Ω,q + ‖ γ2 ‖∂Ω,∞‖ un ‖q∂Ω,q +C ∀ n ≥ 1. (17)

It follows from estimate (17) and Lemma 1 with θ = p, r = q, α ≡ 0, β ≡ 1
that ‖ un ‖∂Ω,q→∞ as n→∞.
Define vn := un/‖ un ‖∂Ω,q ∀ n ≥ 1 and divide inequality (17) by ‖ un ‖p∂Ω,q .
As q < p, we obtain that Kp(vn)→ 0 as n→∞. Hence, vn → 0 in W (see
Remark 1) as well as in Lq(∂Ω). In particular, ‖ vn ‖∂Ω,q→ 0, as n→∞, but
this contradicts the fact that ‖ vn ‖∂Ω,q= 1 for all n ≥ 1. So, Jλ is coercive
on W.

Lemma 6. If q < p then, every λ > Λq is an eigenvalue of problem (1).

Proof. Let λ > Λq be fixed. Taking into account Lemma 5, the functional
Jλ is coercive. Since in a Banach space the norm functionals are weakly
lower semicontinuous, using a similar reasoning as in the proof of Lemma 2
we obtain that Jλ is also weakly lower semicontinuous on W. So there exists
a global minimizer u∗ ∈ W for Jλ, i.e., Jλ(u∗) = minW Jλ (see, e.g., [15,
Theorem 1.2]).

On the other hand, from Lemma 4 we have Λq = λ̃q hence, as λ > Λq,
there is some u0λ ∈W \ {0} such that Jλ(u0λ) < 0.

We note that Jλ(u∗) ≤ Jλ(u0λ) < 0, which implies u∗ 6= 0. In addition,
J ′λ(u∗) = 0. Consequently, u∗ is an eigenfunction of problem (1) correspond-
ing to the eigenvalue λ.

3.2 Case 2: q > p

In this case, W = W 1,q(Ω). If q > p we cannot expect coercivity on W of the
functional Jλ. So, we need to use another approach. Consider the Nehari
type manifold (see [16]) defined by

Nλ = {v ∈W \ {0}; 〈J ′λ(v), v〉 = 0}

= {v ∈W \ {0};Kp(v) +Kq(v) = λ ‖ v ‖q∂Ω,q}.

We shall consider the restriction of Jλ to Nλ since any possible eigenfunction
corresponding to λ belongs to Nλ. Note that on Nλ functional Jλ has the
form

Jλ(u) =
q − p
qp

Kp(u) > 0 ∀ u ∈ Nλ. (18)

In what follows, λ > Λq will be a fixed real number.
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Lemma 7. If q > p, then there exists a point u∗ ∈ Nλ where Jλ attains its
minimal value, mλ := inf

w∈Nλ
Jλ(w) > 0.

Proof. We shall follow an argument similar to that used in Barbu-Moroşanu
[1, Case 2, Steps 1-4], so, we split the proof into four steps.

Step 1. Nλ 6= ∅.
In fact, from λ > Λq and the definition of Λq (see (6)) there exists

v0 ∈ W \ {0} such that Kq(v0) < λ ‖ v0 ‖q∂Ω,q . In addition, taking into
account Remark 1 we have Kp(v0) > 0.

We claim that for a convenient τ > 0, τv0 ∈ Nλ. Indeed, the condition
τv0 ∈ Nλ, τ > 0, reads τpKp(v0) + τ qKq(v0) = λτ q ‖ v0 ‖q∂Ω,q, and this
equation can be solved for τ , more exactly,

τ =

(
Kp(v0)

λ ‖ v0 ‖q∂Ω,q −Kq(v0)

) 1
q−p

and hence, for this τ we have τv0 ∈ Nλ.

Step 2. Every minimizing sequence
(
un
)
n
⊂ Nλ for Jλ restricted to Nλ

is bounded in W.

Let
(
un
)
n
⊂ Nλ be such a minimizing sequence for Jλ. Assume by

contradiction that
(
un
)
n

is unbounded in W hence, on a subsequence, again

denoted
(
un
)
n
, we have ‖un‖ → ∞. Since

(
un
)
n
⊂ Nλ, we have (see equality

(18))

Jλ(un) =
q − p
qp

Kp(un)→ mλ ≥ 0 as n→∞, (19)

and

0 ≤ Kp(un) = λ ‖ un ‖q∂Ω,q −Kq(un) ∀ n ≥ 1. (20)

Set vn = un/ ‖ un ‖, n ≥ 1 (where ‖ · ‖ is that defined by (5) with θ = q).
Obviously, ‖ vn ‖= 1 ∀ n ≥ 1, so

(
vn
)
n

is bounded in W . Therefore, there
exists v0 ∈ W such that vn ⇀ v0 in W (hence also in W 1,p(Ω) to the same
v0) and vn → v0 in Lq(Ω) as well as in Lq(∂Ω). In addition, we also have
‖ v0 ‖= 1.

Now, dividing (19) by ‖ un ‖p and making use of ‖ un ‖→ ∞ in W , we
deduce Kp(vn) → 0, and so v0 ≡ 0 (see Remark 1). This contradicts the
fact that ‖ v0 ‖= 1. Therefore,

(
un
)
n

is bounded in W .

Step 3. mλ := inf
w∈Nλ

Jλ(w) > 0.

Suppose the contrary, that mλ = 0 and let
(
un
)
n
⊂ Nλ be a minimizing

sequence for Jλ. By Step 2,
(
un
)
n

is bounded in W, so for some u0 ∈ W ,
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un ⇀ u0 (on a subsequence) in W (and also weakly in W 1,p(Ω) to the
same u0), and un → u0 in both Lq(Ω) and Lq(∂Ω). We have (see (19))
Kp(un)→ 0, hence u0 ≡ 0 (see Remark 1).

Define wn = un/ ‖ un ‖∂Ω,q, n ≥ 1. Next, we are going to check that(
wn
)
n

is bounded in W.
Indeed, let u ∈W 1,q(Ω) be fixed. Clearly, we have∫

∂Ω

γ2 | u |q dσ ≤‖ γ2 ‖∂Ω,∞‖ u ‖q∂Ω,q . (21)

Now, taking into account (21), we have for every ε > 0

‖ u ‖q −
∫
∂Ω

γ2 | u |q dσ =‖ u ‖q∂Ω,q + ‖ ∇u ‖qq −
∫
∂Ω

γ2 | u |q dσ

≤‖ u ‖q∂Ω,q + ‖ ∇u ‖qq +ε ‖ γ2 ‖∂Ω,∞‖ u ‖q + ‖ γ2 ‖∂Ω,∞‖ u ‖q∂Ω,q,

which implies

(1− ε ‖ γ2 ‖∂Ω,∞) ‖ u ‖q

≤‖ ∇u ‖qq +

∫
∂Ω

γ2 | u |q dσ + (‖ γ2 ‖∂Ω,∞ +1) ‖ u ‖q∂Ω,q

≤ Kq(u) + (‖ γ2 ‖∂Ω,∞ +1) ‖ u ‖q∂Ω,q,

(22)

where we have used the assumption ρ2 ≥ 0 a.e. on Ω.
Consequently, choosing ε < 1/ ‖ γ2 ‖∂Ω,∞ we obtain

‖ u ‖q≤ C1Kq(u) + C2 ‖ u ‖q∂Ω,q, (23)

where C1 = (1 − ε ‖ γ2 ‖∂Ω,∞)−1, C2 = C1(1+ ‖ γ2 ‖∂Ω,∞) are positive
constants independent of u.

Dividing (20) by ‖ un ‖q∂Ω,q we get

Kq(wn) ≤ λ for all n ≥ 1. (24)

Now, from (24) and (23), taking into account that ‖ wn ‖∂Ω,q= 1 for all
n ≥ 1, it follows that

‖ wn ‖q≤ C1λ+ C2 for all n ≥ 1. (25)

Hence, the sequence
(
wn
)
n

is bounded in W and therefore, on a subsequence,
wn ⇀ w0 in W for some w0 ∈ W and strongly in both Lq(Ω) and Lq(∂Ω),
to the same w0. and respectively to the trace of w0 on ∂Ω.
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Now, we divide (20) by ‖ un ‖p∂Ω,q and taking into account (24), (25) and
un → 0 in both Lq(Ω) and Lq(∂Ω), we get

Kp(wn) =‖ un ‖q−p∂Ω,q

[
λ−Kq(wn)

]
→ 0. (26)

This implies wn → 0 in W 1,p(Ω), thus w0 ≡ 0. In particular, wn → 0 in
Lq(∂Ω) which contradicts the fact that ‖ wn ‖∂Ω,q= 1 for all n ≥ 1. This
contradiction shows that mλ > 0.

Step 4. There exists u∗ ∈ Nλ such that Jλ(u∗) = mλ.
Let

(
un
)
n
⊂ Nλ be a minimizing sequence, i.e., Jλ(un) → mλ. In par-

ticular, the sequence
(
un
)
n

satisfies (20) and is bounded in W (by Step 2)
thus, on a subsequence, un ⇀ u∗ ∈ W and strongly in Lq(Ω) and Lq(∂Ω)
(to the same u∗).

We claim that, u∗ 6≡ 0. First, (20) and (23) imply that

‖ un ‖q≤ C1Kq(un) + C2 ‖ un ‖q∂Ω,q ≤ λC1 ‖ un ‖q∂Ω,q +C2 ‖ un ‖q∂Ω,q

thus,
0 ≤‖ un ‖q≤ (C1 + λC2) ‖ un ‖q∂Ω,q for all n ≥ 1. (27)

If u∗ ≡ 0, we get from (27) that ‖ un ‖→ 0 in W and also in W 1,p(Ω).
Hence, (19) will give mλ = 0 thus, contradicting the statement of Step 3.
Using a reasoning similar to one used in the proof of Lemma 2, by passing
to limit as n→∞ in (20), we find

Kp(u∗) +Kq(u∗) ≤ λ ‖ u∗ ‖q∂Ω,q . (28)

If we have equality in (28) then u∗ ∈ Nλ and the proof is complete since in
this case Jλ(u∗) = mλ. In what follows we show that the strict inequality

Kp(u∗) +Kq(u∗) < λ ‖ u∗ ‖q∂Ω,q (29)

is impossible. Let us assume by contradiction that (29) holds true. Let us
check that there exists τ ∈ (0, 1) such that τu∗ ∈ Nλ. For this purpose, we
consider the function

f : (0,∞)→ R, f(t) := tp−qKp(u∗) +Kq(u∗)− λ ‖ u∗ ‖q∂Ω,q .

As Kp(u∗) > 0, we have f(t) → ∞ as t → 0+. Since f(1) < 0 (see (29)),
there exists τ ∈ (0, 1) such that f(τ) = 0 which implies τu∗ ∈ Nλ. But then,

0 < mλ ≤ Jλ(τu∗) = τp
q − p
qp

Kp(u∗) ≤ τp lim
n→∞

Jλ(un) = τpmλ < mλ,

which is impossible.
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Lemma 8. If p < q then, every λ ∈ (Λq,∞) is an eigenvalue of problem
(1).

Proof. We claim that the minimizer u∗ ∈ Nλ from Lemma 7 is an eigen-
function of problem (1) with corresponding eigenvalue λ.

Clearly, u∗ is a solution of the constraint minimization problem

min
v∈W\{0}

Jλ(v), gq(v) := Kp(v) +Kq(v)− λ ‖ v ‖q∂Ω,q= 0.

We can use Lemma 3, with X = W , D = W \ {0}, Y = R, f = Jλ. Note
that all the assumptions of Lemma 3 are satisfied in our case, including the
surjectivity of g′q(u∗), i.e. for all ξ ∈ R there exists a w ∈W \ {0} such that
〈g′q(u∗), w〉 = ξ. Indeed, if we choose in the above equations w of the form
w = χu∗, χ ∈ R, and use u∗ ∈ Nλ, we obtain

χ
(
pKp(u∗) + q

(
Kq(u∗)− λ ‖ u∗ ‖q∂Ω,q)

)
= ξ ⇔ χKp(u∗)(p− q) = ξ

which has a unique solution χ (by Remark 1). Thus g′q(u∗) is indeed sur-
jective and so Lemma 3 is applicable to the above constraint minimization
problem. Therefore there exist λ∗, µ ∈ R, not both equal to zero, such that

λ∗〈J ′λ(u∗), v〉+ µ〈g′q(u∗), v〉 = 0, ∀ v ∈W.

Testing with v = u∗ and using the fact that u∗ ∈ Nλ, we derive

µ(p− q)Kp(u∗) = 0,

which implies µ = 0. Therefore, λ∗ 6= 0, hence

〈J ′λ(u∗), v〉 = 0 ∀ v ∈W,

i. e. λ is an eigenvalue of problem (1).

Finally, we can see that Theorem 1 follows from Lemmas 6 and 8 above.
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[11] T. Gyulov, G. Moroşanu, Eigenvalues of −(∆p+∆q) under a Robin-like
boundary condition, Ann. Acad. Rom. Sci. Ser. Math. Appl. 8 (2) (2016),
114–131.

[12] S. Marano, S. Mosconi, N.S. Papageorgiou, On a (p, q)−Laplacian prob-
lem with parametric concave term and asymmetric perturbation, Rend.
Lincei Mat. Appl. 29 (2018), 109–125.

[13] N.S. Papageorgiou, C. Vetro, F. Vetro, Continuous spectrum for a two
phase eigenvalue problem with an indefinite and unbounded potential,
Differ. Equ. 268 (8) (2020), 4102–4118.



44 L. Barbu, G. Moroşanu
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