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Abstract

In this paper we consider in a bounded domain  C R a Steklov-
like eigenvalue problem involving the (p, ¢)-Laplacian plus some poten-
tials. Under suitable assumptions, using the Nehari manifold method
and a variational approach, we are able to determine the full eigenvalue
set of this problem as being an open interval (A, +00) with A, > 0.
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1 Introduction

Let Q@ ¢ RY, N > 2, be a bounded domain with smooth boundary 0f.
Consider the eigenvalue problem

(1)

—Apu—Agu+p1(x) |u P 2u+pa(z) |ul?2u=0, v €Q,
Ou 4 vi(x) [u P2 utya(e) w2 u=\u|""2u, =€ d.

OVpq

Recall that, for 8 € (1,00), Ay denotes the #-Laplacian, Agu = div(]
Vu |72 Vu). In the above boundary condition we have used the notation

ou ou
— p—2 =2\~
gy = (|4 | u =) 50

where v is the outward unit normal to 0f).

The following hypotheses will be assumed throughout this paper.
(hpq) P, q € (1,00), p#g;

(hpiyi) p1 € L(Q) and 71 € L®(09), p1, 71 are nonnegative functions

such that
/pldm+/71da>0; (2)

Q o0
(hpovys) p2 € L(Q), v2 € L*(092) and ps is a nonnegative function.

It is worth pointing out that the potential function 7, is allowed to be sign
changing.

The operator (Ap—l—Aq), called (p, q)-Laplacian, occurs in many applica-
tions that include models of elementary particles ([3], [7]), elasticity theory
([17]), reaction-diffusion equations ([5]).

The solution u of (1) is understood as an element of the Sobolev space
W = whmax{r.a}(Q) satisfying equation (1), in the sense of distributions
and (1), in the sense of traces.

Definition 1. A scalar X € R is said to be an eigenvalue of the problem (1)
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if there exists uy € W\ {0} such that for allw € W

/( | Vuy P72 + | Vuy |72 ) Vuy - Vo do
Q

ﬁ/@MUAWﬁ+m!mW4)wwdw )
Q

+ / (v [ ua P72 4792 [ un |97 Yuaw do = /\/ | uy 1972 uyw do.
o0 90

This uy s called an eigenfunction of the problem (1) (corresponding to the
eigenvalue \).

According to a Green type formula (see [4], p. 71), u € W \ {0} is a
solution of (1) if and only if it satisfies (3).
Now, let us introduce the notations

Kyl = [((19al +pn [uP Yo+ [0 |ul do,

Q o0 (4)
Kq(u)::/(|Vu|q—{—p2|u|q)dx+/72|u|qd0 for all uwe W.
Q o0

For 6 > 1, the Lebesgue norms of the spaces L(Q) and L?(99) will be
denoted by || - |lg and || - |lan.e, respectively. Also, in the Sobolev space
W19(Q) we will consider the norm

1/60 1/60
Hw|]::(/Vw|9da:>/ +(/\w|9do—)/ for all w e WH(Q)  (5)

Q o0

which is equivalent to the usual norm of W%(Q).
In order to state our main results, we define

Ag:= inf iqq”) (6)
weW\{0} || w {50,

Let us now state the main result of this paper.

Theorem 1. Assume that (hpg), (hpy), © = 1,2 are fulfilled. Then, the
set of eigenvalues of problem (1) is precisely (Ay, 00).
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If p=q=2, v =0 (hence, according to (2), [, p1dz > 0), and v = 0,
then (1), is precisely the classic Steklov boundary condition. That is why
we call our problem (1) a Steklov-like eigenvalue problem. Even if the case
p = q is here excluded, this name still seems apropriate.

Eigenvalue problems for the (p, q)—Laplacian have been extensively in-
vestigated in recent years. For the case of the Dirichlet boundary condi-
tion we refer to Cherfils-Il’yasov [5], Faria-Miyagaki-Motreanu [8], Marano-
Mosconi-Papageorgiou [12], Bobkov-Tanaka [2] and references therein.

The case of the (p, ¢)-Laplacian (unaccompanied by any potential) with
a Robin boundary condition was investigated by Gyulov-Morosanu [11]. Let
us also mention the recent paper by Papageorgiou-Vetro-Vetro [13] concern-
ing the case p;1 =0, 1 =0, 2 = const. > 0, with the potential function ps
being sign changing.

While in the previous papers [11] and [13] only subsets of the corre-
sponding spectra were determined, in this paper the presence of the poten-
tial functions p;, 7; satisfying assumptions (h,,~,), i = 1,2, allows the full
description of the spectrum.

2 Preliminary results

In this section we state some auxiliary results which will be used in the
proofs of our main results.
Let 6, r € (1,00) andr < (N—1)/(N—0)if0 < N.Let o € L>®(R), 8 €

L>(9€) be nonnegative functions such that [« dz+ [ 8 do > 0 and define
Q o0

ky(u) ::/a|u|Td:n+/ﬁ|u|TdJVu€W1’9(Q).
Q o0

1
Note that u — (k,(u))" is a seminorm on W?(Q) which satisfies

(i) 3d > 0 such that kr(u)% <d| ullwre) Yu€ W9(Q), and

(ii) if u = constant, then k,(u) = 0 implies u = 0.

Hence, from [6, Proposition 3.9.55] we obtain the following result

Lemma 1. Under the assumptions mentioned above on r, 6, a and 3, the
1

norm || u |lg,:=[l Vu [lg +(kr(u))™ ¥V u € WH(Q) is equivalent to the usual

norm of the Sobolev space W0 ().

Remark 1. As a consequence of Lemma 1 we obtain that under assumptions

(hpryi)s K;/p(-) is a norm equivalent to the usual norm of the Sobolev space
Whr(Q).
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Next, for 6 > 1, we consider the eigenvalue problem

~Agu+p(x) |u|®2u=0 inQ,
{ (7)

| Vu 972 9% 4 y(z) |u |’ 2u=X|u|""2uon 09,

where p € L>®(f2) and v € L*>°(09) are given functions, with p > 0 a.e. on
Q.

As usual, the number A\ € R is said to be an eigenvalue of problem (7) if
there exists a function uy € W9(Q) \ {0} such that

/ | Vuy 972 Vuy, - Vw dx + /,0 | uy 772 upw da
Q Q (8)
+ /’y | uy |°~2 upw do = )\/ | uy |72 upw do ¥V w € WH(Q).
oN o0
Define the C! functional
Ky (v)

| v ||gQ,9

where Kg(v) := [ (| Vo [’ +p|v | )dz+ [ v ]|v | do.
Q o9

Qg : WH(Q)\ {0} = R, Oy(v) := Voew?Q)\ {0},

Lemma 2. If p € L™®(Q), v € L®(0Q) and p > 0 a.e. on Q then, there
exists ux, € WH9(Q)\ {0} such that
Op(us) = Mg := inf C) .
6(tx) = Ag e o o(w)

In addition, \g is the smallest eigenvalue of the problem (8) and wuy is an
etgenfunction corresponding to Ag.

Proof. First of all, note that functional ©y is positively homogeneous of de-
gree zero. Therefore, we can find a minimizing sequence (“")n c WhH(Q)\
{0} for

Ao 1= nf Op(w),

wGWllvg(Q)\{O}

such that || u, [|ane=1 Vn >1,1. e,

O¢(un) = Ko(uy) — inf Oy(w) = Ng. 9
0(un) = Ko(un) et o o(w) = Ay (9)
In particular, as p > 0 a.e. on (2, we have that \g > — || v [|an,c thus,

Ag # —oo. Obviously, the sequence (un)n is bounded in W19(Q) and so,
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we may assume that there exist u, € WH?(Q) and a subsequence of (un)n,
again denoted (un)n, such that u, — u, in WH9(Q) and wu,, — u, in L(Q)
as well as in L(0Q). As || up, [|ane= 1Y n > 1, we have || u, [|an,e= 1, thus
Uy 7 0.

Also, we have

| Vauy ||§ < liminf || Vs, ||5,
n—oo

lim p]un|0dx:/p|u|€dx,

n—oo
Q Q
lim /fy|un\9dcr:/7|u* 19 do =
n—oo
oN Q
Kp(uy) < liminf Kp(uy,).
n—oo

Consequently, as || u« |la,0=|| un ||an,e= 1Y n > 1, it follows that

GG(U*) = KO(U*) < hrginf KO(un) = Ao, (10)
thus, we have Og(uy) = Ag.
We claim that u, € W19(Q)\ {0} is an eigenfunction of problem (7)

corresponding to the eigenvalue \g. Obviously, ©y is a C! functional on
W9(Q) \ {0}, and for every w € W19(Q) we have

0 = (0f(ux), w) = [(/ | V972 Vu, - Vo da
Q

+ /p | . |6_2 usw dx + /'y | us |9_2 Us W da) (11)
Q o0
0—2 4
- ( | wy |77% usw da)@g(u*) -
50 | s ||aQ,9

It follows from A\g = Og(u,) that identity (8) is satisfied. Therefore, u, is
indeed an eigenfunction of problem (7) corresponding to the eigenvalue \g.

Finally, let us suppose by way of contradiction that there exists another
eigenfunction of problem (7), say u, € WH?(Q) \ {0}, corresponding to the
eigenvalue p, 0 < p < Ag. But then, taking A = p and w = uy = u, in (8)
we obtain that p = Op(u,) < Ag = Og(ux). Obviously, this contradicts the
definition of Ag. ]
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We conclude this section by recalling a result which is known as the
Lagrange multiplier rule (see, e.g., [9, Theorem 5.5.26, p. 701])

Lemma 3. Let XY be real Banach spaces and let f : D — R be Fréchet
differentiable, g € C*(D,Y), where D C X is a nonempty open set. If vg is
a local minimizer of the constraint problem

min f(v), g(v) =0,

and R(g'(vo)) (the range of ¢'(vo)) is closed, then there exist \* € R, y* €
Y* not both equal to zero such that \*f'(vo) + y* o ¢'(vo) = 0, where Y*
stands for the dual of Y.

3 Proof of Theorem 1

Throughout this section we assume that the hypotheses (h,,) and (hy,,), i =
1,2, are fulfilled and will be used without mentioning them in the statements
below.

Now, for A € R define the C'* energy functional for problem (1),

1 1 A
In: W =R, Ta(u) = EKp(U) + 5Kq(u) Yy I 150, - (12)
Its derivative is given by
(T (u),v) = / (| Vu P2 Vu|"?)Vu- Vo dr
Q
+ / (pr | wlP™® +p2 | w]?? Juv da + / (v [ ur 1972 +92 [ un 972 )uv do
Q oN

—)\/\u|q_2uvda Yu,v € W.
oN

(13)

So, according to Definition 1, A is an eigenvalue of problem (1) if and only
if there exists a critical point uy € W\ {0} of Jy, i. e. Jy(uy) =0.
The proof of Theorem 1 is based on some lemmas, as follows.

Lemma 4. There is no eigenvalue of problem (1) inside the interval (—oo, Ag).
Moreover, we have the equality

C L hEw) Ky
q -

in
weW\{0} ¢ hw b,

= A,. (14)
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Proof. First, we deduce from Lemma 2 with § = ¢ that A, > ©,4(u*). More
exactly, if ¢ > p we have A; = A;. Otherwise, if ¢ < p then Ay, > ), as
W =Wtr(Q) c WHe(Q). In particular, A, is a finite real number.

Now, let us check that there is no eigenvalue of problem (1) in (—oo, Ag].
Assume the contrary, that there is an eigenpair (A, uy) € (—oo, Ag] x (W'\
{0}). Then (3) with w = uy will imply

Kq(uy) + Kp(uy)

Il ux 30,

A= < A, (15)

If A < Ay, we have a contradiction with the definition of A;. On the other
hand, if A = A, we have Kj(uy) = 0 which implies uy = 0 (see Remark 1).
This is impossible since u) was assumed to be an eigenfunction.

Finally, let us check the equality (14). Note that the infimum on W\ {0}
of the Rayleigh-type quotient associated to the eigenvalue problem (1) is
given by A\;. The estimate A, < )\, is obvious. On the other hand, for each
ve W\ {0} and ¢ > 0, we have

N . Kq(w) + %Kp(w) < K,(v)

)\q — in q < 7 tp—qm
weW\{0} w150, v 30,

p H v ‘|an7q.

_|_

Now letting ¢ — oo if p < g and ¢ — 04 if p > ¢, then passing to infimum
over all v € W\ {0}, we get \; < A, which concludes the proof. O

In what follows we shall prove that every A € (A4, 00) is an eigenvalue
of problem (1). We distinguish two cases which are complementary to each
other.

3.1 Casel: g<p

In this case we have W = W1P(Q).
The following lemma shows, essentially, that the functional defined in (12)
is coercive for g < p.

Lemma 5. If g < p then, the functional Jy is coercive on W, i.e.,

lim  J)\(u) = oc.
llullw—o0
Proof. Assume by way of contradiction that functional 7 is not coercive.
So, there exist a positive constant C' and a sequence (un)n C W such that
| up, || = 00 as n — oo and Jy(uy) < C. Therefore

1 1 A
Ep(un) + Ky(un) = =l un [0, < C V21 (16)
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In particular,

1
0<  Ky(un) < = [l un oy + 192 ool un o, +C ¥ m2 1 (17)

A
q
It follows from estimate (17) and Lemma 1 with § = p,r = ¢,a=0,5=1
that || up |lan,q— 00 as n — oo.

Define vy, := uy /|| un ||o,q ¥ 7 > 1 and divide inequality (17) by || un |5, g
As g < p, we obtain that K,(v,) — 0 as n — co. Hence, v, — 0 in W (see
Remark 1) as well as in L(0). In particular, || v, ||aq,q— 0, as n — oo, but

this contradicts the fact that || v, |lan,q= 1 for all n > 1. So, J) is coercive
on W. O

Lemma 6. If ¢ < p then, every A > A, is an eigenvalue of problem (1).

Proof. Let A > A, be fixed. Taking into account Lemma 5, the functional
J» is coercive. Since in a Banach space the norm functionals are weakly
lower semicontinuous, using a similar reasoning as in the proof of Lemma 2
we obtain that J) is also weakly lower semicontinuous on W. So there exists
a global minimizer u, € W for Jy, i.e., J\(ux) = miny Jy (see, e.g., [15,
Theorem 1.2]).

On the other hand, from Lemma 4 we have A, = Xq hence, as A > Ay,
there is some ugy € W\ {0} such that Jy(upx) < 0.

We note that Jy(us) < JTa(ugx) < 0, which implies u, # 0. In addition,
J, (uy) = 0. Consequently, u, is an eigenfunction of problem (1) correspond-
ing to the eigenvalue . O

3.2 Case2: g>p

In this case, W = Wh4(Q). If ¢ > p we cannot expect coercivity on W of the
functional Jy. So, we need to use another approach. Consider the Nehari
type manifold (see [16]) defined by

Ny ={v e W\ {0} (J(v),v) = 0}

= {v e WA{0}; Kp(v) + Ko(v) = A v g}

We shall consider the restriction of J) to NV, since any possible eigenfunction
corresponding to A belongs to V). Note that on A, functional Jy has the
form
Ii(u) = %Kp(u) >0V ueN. (18)
In what follows, A > A, will be a fixed real number.
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Lemma 7. If ¢ > p, then there exists a point u, € N\ where Jy attains its
minimal value, my := inf Jy(w) > 0.
wEJ\/')\

Proof. We shall follow an argument similar to that used in Barbu-Moroganu
[1, Case 2, Steps 1-4], so, we split the proof into four steps.

Step 1. N, # 0.

In fact, from A > A, and the definition of A, (see (6)) there exists
vo € W\ {0} such that K,(vo) < A || vo H?)Qq . In addition, taking into
account Remark 1 we have K, (vg) > 0.

We claim that for a convenient 7 > 0, Tvg € N,. Indeed, the condition
Tvg € Ny, 7 > 0, reads 7°Kp(vo) + 79Kq(vo) = A9 || vo |5, and this
equation can be solved for 7, more exactly,

1

S Kp(vo) P
Al o (150, —Kq(vo)

and hence, for this 7 we have 7vy € Ny.

Step 2. Every minimizing sequence (“”)n C N, for J, restricted to Ny
is bounded in W.

Let (un)n C N, be such a minimizing sequence for Jy. Assume by

contradiction that (un)n is unbounded in W hence, on a subsequence, again
denoted (uy), , we have |lup|| — co. Since (u,), C Ny, we have (see equality
(18))

In(un) = %Kp(un) —my >0 asn— oo, (19)

and
0 < Kp(tn) = Al tn 5 —Koltn) ¥ > 1. (20)

Set vy, = up/ || up ||, m > 1 (where || - || is that defined by (5) with 6 = q).
Obviously, || v, |[=1V n > 1, so (vn)n is bounded in W. Therefore, there
exists vg € W such that v, — vo in W (hence also in W1P(Q) to the same
vo) and v, — vo in L(2) as well as in LI(99). In addition, we also have
0 lI=1.

Now, dividing (19) by || uy, ||P and making use of || uy, ||— oo in W, we
deduce K,(v,) — 0, and so v9 = 0 (see Remark 1). This contradicts the
fact that || vo [|= 1. Therefore, (u,), is bounded in W.

Step 3. my := inf Jy(w) > 0.

wE./V}\

Suppose the contrary, that my = 0 and let (un)n C N, be a minimizing
sequence for J\. By Step 2, (un)n is bounded in W, so for some ug € W,
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unp — up (on a subsequence) in W (and also weakly in WYP(Q) to the
same ug), and u, — up in both LI(Q2) and LI(92). We have (see (19))
Kp(up) — 0, hence up = 0 (see Remark 1).

Define wy, = un/ || un ||on,q n > 1. Next, we are going to check that
(wn)n is bounded in W.

Indeed, let u € Wh4(2) be fixed. Clearly, we have

/ 72 |7 do <] 72 ool 4 o, - (21)
o)

Now, taking into account (21), we have for every ¢ > 0
Fallr= [l do =, + 1 Vuly = [22]ul?do

o0 o0N
<l ullfoq + 1| Ve lIf +e 2 lloceoll w1 + 1l 72 lloa.eoll # 50,4

which implies
(L —=e 72 llon,c0) | wl?

<|| Vu || +/ny | u|?do + (|| 72 [log,eo +1) || u anQ,q (22)
o0
< Ky(u) + (|| 72 llog,eo +1) || w ||qasz,q’

where we have used the assumption po > 0 a.e. on ().
Consequently, choosing € < 1/ || 72 |lan,cc We obtain

[ [7< C1E(u) + Co || w (15,4 (23)

where C; = (1 —¢ || 72 [lag,00) 1 Co = C1(1+ || 72 [lag,00) are positive
constants independent of w.
Dividing (20) by || un [|3q, 4 We get

Kq(wp) < A forall n>1. (24)

Now, from (24) and (23), taking into account that || wy, ||an,,= 1 for all
n > 1, it follows that

| wy |9< C1A+ Cy for all n > 1. (25)

Hence, the sequence (wn)n is bounded in W and therefore, on a subsequence,
wy, — wp in W for some wy € W and strongly in both L?(2) and L%(012),
to the same wy. and respectively to the trace of wy on 0f2.
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Now, we divide (20) by || uy, ||§Q7q and taking into account (24), (25) and
up, — 0 in both L7(Q) and LI(9%2), we get

Kp(wn) = un (1305, (A — Kq(wn)] — 0. (26)

This implies w, — 0 in W1P(Q), thus wg = 0. In particular, w, — 0 in
L9(092) which contradicts the fact that || w, [|anq= 1 for all n > 1. This
contradiction shows that my > 0.

Step 4. There exists u, € N such that J)(us) = my.

Let (un)n C N, be a minimizing sequence, i.e., J)(u,) — my. In par-
ticular, the sequence (un)n satisfies (20) and is bounded in W (by Step 2)
thus, on a subsequence, u, — u, € W and strongly in L4(§2) and L%(092)
(to the same u,).

We claim that, u, # 0. First, (20) and (23) imply that

lun 17< C1Eq(un) + Co [ un 50, < ACY [ un 50,4 +C2 I un 50,

thus,
0 <[l un < (C1 + AC2) || up [lfg,, forall n>1. (27)

If u, = 0, we get from (27) that || u, [[— 0 in W and also in W1P(Q).
Hence, (19) will give m) = 0 thus, contradicting the statement of Step 3.
Using a reasoning similar to one used in the proof of Lemma 2, by passing
to limit as n — oo in (20), we find

Kp(ua) + Kque) < M| [[fo, - (28)

If we have equality in (28) then u, € N) and the proof is complete since in
this case Jy(ux) = my. In what follows we show that the strict inequality

Kp(us) 4 Kq(ue) <Al w50, (29)

is impossible. Let us assume by contradiction that (29) holds true. Let us
check that there exists 7 € (0,1) such that 7u, € N). For this purpose, we
consider the function

f : (0,00) - Ra f(t) = tp_qKP(u*> + Kq(u*) —A H U H%Q,q '

As K,(uy) > 0, we have f(t) — oo as t — 04. Since f(1) < 0 (see (29)),
there exists 7 € (0,1) such that f(7) = 0 which implies Tu, € N). But then,
—p
ap

0 <my < In(tus) = 74 Kp(uy) < Tpnli_>Holot7,\(Un) = 7Pmy <my,

which is impossible.
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Lemma 8. If p < q then, every A € (Ay,00) is an eigenvalue of problem

(1).

Proof. We claim that the minimizer u, € N from Lemma 7 is an eigen-
function of problem (1) with corresponding eigenvalue \.
Clearly, u, is a solution of the constraint minimization problem

Jmin ), gu(v) = Kplv) £ Kolv) =3[ v 50,,= 0.

We can use Lemma 3, with X =W, D =W\ {0}, Y =R, f = 7. Note
that all the assumptions of Lemma 3 are satisfied in our case, including the
surjectivity of g;(ux«), i.e. for all £ € R there exists a w € W\ {0} such that
(9g(ux),w) = €. Indeed, if we choose in the above equations w of the form
w = Yux, X € R, and use u, € N, we obtain

X (PEp(u) + a(Kgw) = A ws 0,0) =€ & XEp(uw)(p—a) = ¢
which has a unique solution x (by Remark 1). Thus gj(u.) is indeed sur-
jective and so Lemma 3 is applicable to the above constraint minimization
problem. Therefore there exist \*, 4 € R, not both equal to zero, such that

AT (ux),v) + p{gg(us),v) =0, VveW.
Testing with v = wu, and using the fact that u, € N, we derive
1(p — @) Kp(ux) = 0,
which implies u = 0. Therefore, A* # 0, hence
(TA(us),v) =0V v eW,
i. e. A is an eigenvalue of problem (1). O

Finally, we can see that Theorem 1 follows from Lemmas 6 and 8 above.
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