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STEADY CONVECTION IN MHD

BÉNARD PROBLEM WITH HALL

AND ION-SLIP EFFECTS∗

Lidia Palese†

Abstract

In this paper we study the nonlinear Lyapunov stability of the
thermodiffusive equilibrium for a viscous thermoelectroconducting par-
tially ionized fluid in a horizontal layer heated from below.
The classical L2 norm is too weak to evaluate some stabilizing or in-
stabilizing effects of the electroanisotropic currents.
A more fine Lyapunov function is obtained by reformulating the initial
perturbation evolution problem in terms of the poloidal and toroidal
scalar fields.
In such a way, if instability occurs as stationary convection, we obtain
the coincidence of linear and nonlinear stability bounds.
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1 Introduction

Several variants of the classical energy method can be found in literature [1]-
[13] to investigate the Lyapunov stability for non-stationary equations, with
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the aim of determining the largest stability domain in the parameter space
and, sometimes, the coincidence of the linear and nonlinear stability bounds
[1]- [13] .

The papers [14], [15]and [16] dealt with an extension of the Joseph’s paramet-
ric differentiation method applied to study of the stability of the conduction
diffusion state for a binary mixture, in the presence of thermoanisotropic
Soret and Dufour currents.

In [17], [18] and [19] the stability problem for a binary mixture in a plane
layer, with chemical surface reactions, was reformulated to obtain an equiv-
alent one with better symmetry properties. In such a way the coincidence
of linear and nonlinear stability bounds was obtained, in the region of sta-
tionary convection of the linear instability theory.

In [20] the nonlinear stability of the thermodiffusive equilibrium for the
magnetohydrodynamic anisotropic Bénard problem is studied by the energy
splitting [11], obtaining conditional nonlinear asymptotical stability results.

In [21], [22], [23] and [24] the perturbation evolution equations are refor-
mulated by splitting their potential and solenoidal parts. The resulting
equations, where the unknown are the independent poloidal and toroidal
scalar fields, allows us to preserve the contribution of some physical effects,
such as the rotation [22]-[23] and the magnetic field [24].

If instability occurs as stationary convection we recover the coincidence of
the nonlinear stability bound with the linear one obtained by the classical
normal modes technique, for the rotating Bénard problem in the hydrody-
namic case [21]- [23], for the classical magnetohydrodynamic Bénard prob-
lem [24], for the electroanisotropic magnetohydrodynamic Bénard problem
[25], in the presence of Hall effect.

This paper dealts with the nonlinear Lyapunov stability of the thermodiffu-
sive equilibrium of a viscous thermoelectroconducting partially ionized fluid
in a plane layer heated from below in the Oberbeck-Boussinesq approxima-
tion.

After formulating the mathematical model (Sec. 2), we derive some ad-
ditional evolution perturbation equations in terms of poloidal and toroidal
fields (Sec. 3), we study the Lyapunov stability of the thermodiffusive equi-
librium (Sec. 4), obtaining the coincidence of linear and nonlinear stability
bounds (Sec. 5), if instability occurs as stationary convection.
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2 Mathematical model

Let us consider a Newtonian thermo-electroconducting viscous fluid in a
horizontal layer S, bounded by the planes z = 0 and z = 1 in a Cartesian
frame of reference (O, i, j,k), with k vertical upwards unit vector.
The fluid, heated from below, is subject to a vertical temperature gradient,
in an external constant magnetic field H0 = H0k.
In the Oberbeck-Boussinesq approximation the (dimensionless) mathemat-
ical model is the following [1], [26], [27]:

∂v
∂t + v · ∇v = −∇P +M2H · ∇H− [1−R(T−T0)] k + ∆v,

∂H
∂t = ∇× (v ×H) + Pm

Pr ∆H + βH
Pm
Pr ∇× (H×∇×H)+

βI
Pm
Pr ∇×

(
H× (H×∇×H)

)
,

∂T
∂t + v · ∇T = 1

Pr
∆T,

∇ · v = 0,

∇ ·H = 0,

(1)

where v, H, T , P are velocity, magnetic, temperature and pressure fields,
respectively. T0 represents a reference temperature. M2, R2, Pr, Pm, βH , βI
denote dimensionless Hartmann, Rayleigh, Prandtl, magnetic Prandtl, Hall
and ion-slip numbers, respectively. To the system ( 1) we add the boundary
conditions [26]:

v · n = 0, n×D · n = 0, H = H0, n · ∇ ×H = 0, z = 0, 1,

T = T 0, z = 0,

T = T 1, z = 1,
(2)

for stress free, thermal conducting and electrically non conducting planes.
In (2) D is the strain rate tensor, n is the outer (unit) normal to the bound-
ary ∂S
Moreover (1)1,3,4 are, in the Oberbeck-Boussinesq approximation, the bal-
ance equation for momentum, energy and mass, (1)2 follows taking into
account the generalized Ohm’s law for the Maxwell equations Galileo in-
variant.
We consider, for a not too large temperature gradient β, the conduction
state [28] (

v = 0, H = H0, T = T 0 − βz, P = P (z)
)
, (3)
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in the periodicity cell V = V × [0, 1], where V =
[
0, 2πkx

]
×
[
0, 2πky

]
and

k2 = k2x + k2y is the wave number.

For increasing gradient β the fluid has a stationary motion, periodic in the
x and y directions, i.e. the thermal horizontal convection, that becomes non
stationary, till the turbulence [28].

3 Perturbation model

Let us denote with v = v + u, H = H + h, P = P + p, T = T + ϑ the
perturbed fields around the conduction state (3).

Then dimensionless equations governing the evolution of the perturbation
(u,h,p, ϑ) of (3) are the following:

∂u

∂t
+ u · ∇u = −∇p + M2

(
∂h

∂z
+ h · ∇h

)
+Rϑk + ∆u,

∂h

∂t
=
∂u

∂z
+∇× (u× h) +

Pm
Pr

∆h + βH
Pm
Pr
∇×

(
(h + k)×∇× h

)
+

βI
Pm
Pr ∇×

(
(h + k)× ((h + k)×∇× h)

)
∂ϑ

∂t
+ u · ∇ϑ =

1

Pr

(
∆ϑ+Rw

)
,

∇ · u = 0,

∇ · h = 0,
(4)

with the boundary conditions:

∂u

∂z
=
∂v

∂z
= w = 0,h = 0, ϑ = 0 on (∂V )0 ∪ (∂V )1, (5)

where

(∂V )0 =

{
(x, y, z) ∈ R3 | 0 ≤ x ≤ 2π

kx
, 0 ≤ y ≤ 2π

ky
, z = 0

}
,

(∂V )1 =

{
(x, y, z) ∈ R3 | 0 ≤ x ≤ 2π

kx
, 0 ≤ y ≤ 2π

ky
, z = 1

}
.
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If the mean values of the components of velocity and magnetic fields vanish
over V, that is if the conditions [4] [29]∫

V
u(x, y, z) dx dy =

∫
V
v(x, y, z) dx dy

=

∫
V
w(x, y, z) dx dy = 0, ∀z ∈ [0, 1], (6)

∫
V
h1(x, y, z) dx dy =

∫
V
h2(x, y, z) dx dy

=

∫
V
h3(x, y, z) dx dy = 0, ∀z ∈ [0, 1], (7)

are satisfied, then the velocity u and the magnetic field h have the unique
decomposition [4], [29]:

u = u1 + u2, h = h1 + h2, (8)

with
∇ · u1 = ∇ · u2 = k · ∇ × u1 = k · u2 = 0, (9)

∇ · h1 = ∇ · h2 = k · ∇ × h1 = k · h2 = 0, (10)

u1 = ∇∂
χ

∂z
− k∆χ ≡ ∇×∇× (χk), u2 = k×∇ψ = −∇× (kψ), (11)

h1 = ∇∂
χ′

∂z
−k∆χ′ ≡ ∇×∇×(χ′k), h2 = k×∇ψ′ = −∇×(kψ′). (12)

In (11), (12) the doubly-periodic functions χ, χ′ and ψ, ψ′, are the poloidal
and toroidal potentials, satisfying [4], [29]:

∆1χ = −k · u = −w, ∆1ψ = k · ∇ × u, (13)

∆1χ
′ = −k · h = −h3, ∆1ψ

′ = k · ∇ × h, (14)

where

∆1 ≡
∂2

∂x2
+

∂2

∂y2
. The boundary conditions (5) written in terms of χ,

ψ, χ′, ψ′ become [4]:

χ =
∂2χ

∂z2
=
∂ψ

∂z
= 0, χ′ =

∂χ′

∂z
= ∆1ψ

′ = 0, z = 0, 1. (15)
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The third component of (4)2, give us:

∂h3
∂t

=
∂w

∂z
+∇· [(u×h)×k]+

Pm
Pr

∆h3+βH
Pm
Pr
∇·
[(

(h+k)×∇×h
)
×k
]
+

(16)

βI
Pm
Pr
∇ · [

(
(h + k)× ((h + k)×∇× h)

)
× k

]
.

If every term of (16) belongs to W 2,2(V ), taking into account (13), (14)
and the imbedding of W 2,2(V ) in C(V ) [30], [31], the equation (16) can be
written as follows:

∇·
[ ∂
∂t
∇1χ

′−∇1
∂χ

∂z
+(u×h)×k−Pm

Pr
∆∇1χ

′+βH
Pm
Pr

(
(h+k)×∇×h)

)
×k+

(17)

βI
Pm
Pr

(
(h + k)× ((h + k)×∇× h)

)
× k

]
= 0,

where ∇1 ≡
(
∂
∂x ,

∂
∂y

)
.

It follows that there exists a vector field B such that

∂

∂t
∇1χ

′−∇1
∂χ

∂z
+(u×h)×k− Pm

Pr
∆∇1χ

′+βH
Pm
Pr

(
(h+k)×∇×h

)
×k+

(18)

βI
Pm
Pr

(
(h + k)× ((h + k)×∇× h)

)
× k = ∇×B.

From the Weyl decomposition theorem of L2(V ) [8], [30], it follows:

−(u× h)× k = ∇U0 +∇×A0, (19)

−
(
h×∇× h

)
× k = ∇U1 +∇×A1, (20)

−
[
h×

(
(h + k)×∇× h

)]
× k = ∇U2 +∇×A2, (21)

where Ui and Ai, i = 0, 1, 2 are scalar and vector fields verifying the rela-
tions:

∂

∂z
Ui + k · ∇ ×Ai = 0 i = 0, 1, 2. (22)

The scalar functions Ui , i = 0, 1, 2 are the solutions of some interior Neu-
mann problems [31] in the periodicity cell V , and the necessary and sufficient
conditions for the existence of a solution , are fulfilled [31].
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Substituting (19), (20), (21) in (18), using the identities

(
k×∇× h

)
× k = −∇× (∆χ′k)−∇1

∂ψ
′

∂z
, (23)

[(
k× (k×∇× h)

)]
× k = −∇1(∆χ

′) +∇× (
∂ψ
′

∂z
k), (24)[(

k× (h×∇× h)
)]
× k = ∇× (U1k) +

∂A1

∂z
−∇(A1 · k), (25)

and, assuming ∇ ·A1 = 0,[(
k× (h×∇× h)

)]
× k = ∇× (U1k) +∇× (A1 × k)−∇(A1 · k), (26)

we obtain:

∂

∂t
∇1χ

′ = ∇1
∂χ

∂z
+∇U0+(1+βI)

Pm
Pr
∇1∆χ

′+βH
Pm
Pr
∇U1+βH

Pm
Pr
∇1

∂ψ
′

∂z
+

(27)

βI
Pm
Pr
∇
(
U2 + A1 · k

)
,

taking into account that only the null vector belongs to both subspaces of
potential and solenoidal vectors [8] [30].

From (27) it follows that

∂

∂z

(
Uo + βH

Pm
Pr

U1 + βI
Pm
Pr

(U2 + A1 · k)
)

= 0 (28)

∇1(
∂

∂t
χ′−∂

χ

∂z
−U0−(1+βI)

Pm
Pr

∆χ′−βH
Pm
Pr

(U1+
∂ψ
′

∂z
)−βI

Pm
Pr

(U2+A1·k)) = 0.

(29)
Hence we denote the function on the right hand side of (29) with F (z):

∂

∂t
χ′−∂

χ

∂z
−U0−(1+βI)

Pm
Pr

∆χ′−βH
Pm
Pr

(U1+
∂ψ
′

∂z
)−βI

Pm
Pr

(U2+A1·k) = F (z).

(30)
Differentiating (30) with respect to z and taking into account (28) we obtain
the evolution equation for χ′:

∂2

∂t∂z
χ′ =

∂2χ

∂z2
+ (1 + βI)

Pm
Pr

∆
∂

∂z
χ′ + βH

Pm
Pr

∂2ψ
′

∂z2
+

d

dz
F (z). (31)
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If we apply to (4)2 the operator I− k⊕ k, where I is the identity operator,
we have

∂h⊥

∂t
=
∂u⊥

∂z
+ [∇× (u× h)]⊥ +

Pm
Pr

∆h⊥+ (32)

+βH
Pm
Pr

[
∇×

(
(h+k)×∇×h

)]⊥
+βI
Pm
Pr

[
∇×

(
(h+k)×((h+k)×∇×h)

)]⊥
,

where f⊥ denotes the projection of a vector field f on the plane normal to
k. From the Weyl decomposition theorem of L2(V ) [8], [30], it follows:[

∇×
(
u× h)

]⊥
= ∇U ′0 +∇×A′0, (33)[

∇×
(
h×∇× h

)]⊥
= ∇U ′1 +∇×A′1, (34)[

∇×
[
h×

(
(h + k)×∇× h

)]]⊥
= ∇U ′2 +∇×A′2, (35)

where U ′i and A′i, i = 0, 1, 2 are scalar and vector fields.
Using the identities

u⊥ = ∇1
∂χ

∂z
−∇× (ψk) h⊥ = ∇1

∂χ′

∂z
−∇× (ψ

′
k), (36)

[∇× (k×∇× h)]⊥ = ∇× (∆
∂χ′

∂z
k) +∇1

∂2ψ
′

∂z2
, (37)

{
∇×

[
k× (k×∇× h)

]}⊥
= ∇1(∆

∂χ′

∂z
)−∇× (

∂2ψ
′

∂z2
k), (38){

∇×
[
k× (h×∇× h)

]}⊥
= −∇× (

∂U1

∂z
k)− ∂2A1

∂z2
+∇(

∂A1

∂z
k), (39)

and, assuming ∇ ·A1 = 0, it follows:{
∇×

[
k×(h×∇×h)

]}⊥
= −∇×(

∂U1

∂z
k)−∇×(

∂A1

∂z
×k)+∇(

∂A1

∂z
·k). (40)

The solenoidal part of (32) give us :

−∂∇× (ψ
′
k)

∂t
= −∂∇× (ψk)

∂z
+∇×A′0−

Pm
Pr
∇×(∆ψ

′
k)+βH

Pm
Pr

[
∇×A′1+

(41)

∇×(∆
∂χ′

∂z
k)
]
+βI
Pm
Pr

[
∇×A′2−∇×(

∂2ψ
′

∂z2
k)−∇×(

∂U1

∂z
k)−∇×(

∂A1

∂z
×k)

]
.
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It follows that

−∂
ψ′k

∂t
= −∂

ψk

∂z
+ A′0 −

Pm
Pr

∆ψ
′
k + βH

Pm
Pr

[
A′1 + ∆

∂χ′

∂z
k
]
+ (42)

βI
Pm
Pr

[
A′2 −

∂2ψ
′

∂z2
k− ∂U1

∂z
k− ∂A1

∂z
× k

]
+∇F1.

Where F1 is an arbitrary scalar field.
The third component of the previous equation give us:

−∂
ψ′

∂t
= −∂

ψ

∂z
+ k ·A′0 −

Pm
Pr

∆ψ
′
+ βH

Pm
Pr

[
k ·A′1 + ∆

∂χ′

∂z

]
+ (43)

βI
Pm
Pr

[
k ·A′2 −

∂2ψ
′

∂z2
− ∂U1

∂z

]
+ k · ∇F1.

If we choose the scalar field F1 such that:

k ·A′0 + βH
Pm
Pr

k ·A′1 + βI
Pm
Pr

(
k ·A′2 −

∂U1

∂z

)
+
∂F1

∂z
= 0, (44)

we obtain the following equation for ψ
′
:

∂ψ
′

∂t
=
∂ψ

∂z
+
Pm
Pr

∆ψ
′ − βH

Pm
Pr

∆
∂χ′

∂z
+ βI

Pm
Pr

∂2ψ
′

∂z2
. (45)

In a similar way, starting from (4)1 we obtain the following evolution equa-
tion for ψ

∂ψ

∂t
= M2∂ψ

′

∂z
+ ∆ψ. (46)

4 Lyapunov stability

If we multiply (4)1 by u, (4)2 by M2h and (4)3 by bϑ, with b a scalar
parameter, adding the resulting equations, integrating over V and taking
into account the boundary conditions (5), we obtain the energy relation

dE

dt
= I − D, (47)

where

E(t) =
1

2

(
‖u‖2 +M2‖h‖2 + b‖ϑ‖2

)
, (48)

I = R
(

1 +
b

Pr

)
(ϑ,w), (49)
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D = ‖∇u‖2 +M2Pm
Pr
‖∇h‖2 +

b

Pr
‖∇ϑ‖2 +βI

Pm
Pr
‖(h + k)×∇× h‖2, (50)

and ‖·‖ and (·, ·) are, respectively, the norm and the scalar product in L2(V ).

In (47) the Hall current disappears, the ion slip current has a stabilizing
effect.

To estimate the effects of the anisotropic currents on the stability of the
conduction state we define the energy E∗(t) given by

E∗(t) = E(t) + d
M2

2
‖∇1

∂χ′

∂z
‖2 + d1

M2

2
‖∇1

∂ψ
′

∂z
‖2 + d2

1

2
‖∂
ψ

∂z
‖2 (51)

Where d, d1 e d2 are some positive parameters we determine later.

If we consider the scalar product of ∆1χ
′ with the derivative of (31) respect

to z, owing the boundary conditions (15) we obtain:

1

2

d

dt
‖∇1

∂χ′

∂z
‖2 =

(
∆1χ

′,
∂3χ

∂z3

)
+ (1 + βI)

Pm
Pr

(
∆
∂2χ′

∂z2
,∆1χ

′
)

+ (52)

βH
Pm
Pr

(
∂3ψ

′

∂z3
,∆1χ

′

)
,

because, by using (14)1 and (7)3,(
d2F

dz2
,∆1χ

′
)

=

∫ 1

0

d2F

dz2
dz

∫
V

∆1χ
′(x, y, z) dV = 0. (53)

The scalar product of ∆1ψ
′

with (45), owing the boundary conditions (15)
gives us

1

2

d

dt
‖∇1ψ

′‖2 = −
(

∆1ψ
′
,
∂ψ

∂z

)
−Pm
Pr

(
∆ψ
′
,∆1ψ

′
)

+βH
Pm
Pr

(
∆1ψ

′
,∆

∂χ′

∂z

)
−

(54)

βI
Pm
Pr

(
∆1ψ

′
,
∂2ψ

′

∂z2

)
,

From now on, to simplify notations, we will use the subscript notation for
the partial differentiation, that is fz ≡ ∂f

∂z for a function f depending on z.
From (47), (49), (50), (51), (52), (54) and (46) we have:

dE∗

dt
< I∗ −D∗ = −D∗

(
1− I

∗

D∗

)
, (55)
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where, in terms of poloidal and toroidal fields,

I∗ = −R(1+
b

Pr
)(ϑ,∆1χ)+dM2(χzzz,∆1χ

′)+M2Pm
Pr

d(1+βI)(∆1χ
′,∆χ′zz)

(56)

+βH
Pm
Pr

dM2(ψ
′
zzz,∆1χ

′)− d1M2(ψz,∆1ψ
′
) + βH

Pm
Pr

d1M
2(∆χ′z,∆1ψ

′
)

−d1M2Pm
Pr

(∆ψ
′
,∆1ψ

′
)−βI

Pm
Pr

d1M
2(∆1ψ

′
, ψ
′
zz)+d2(∆ψ,ψ)+d2M

2(ψ
′
z, ψ),

D∗ = ‖∇χxz‖2 + ‖∇χyz‖2 + ‖∇∆1χ‖2 + ‖∇ψx‖2 + ‖∇ψy‖2 + b
Pr ‖∇ϑ‖

2+

+M2Pm
Pr
{
‖∇χ′xz‖2 + ‖∇χ′yz‖2 + ‖∇∆1χ

′‖2 + ‖∇ψ′x‖2 + ‖∇ψ′y‖2
}
.

(57)
Taking into account that χ′ and ψ′ are doubly-periodic functions, the bound-
edness of the functional I

∗

D∗ can be proved [32]. Using identities:

(∆1χ
′,∆χ′zz) = −

[
‖∇χ′xz‖2 + ‖∇χ′yz‖2

]
,

(∆1ψ
′
,∆ψ

′
) = ‖∇ψ′x‖2 + ‖∇ψ′y‖2, (58)

(∆1ψ
′
, ψ
′
zz) = ‖∇1ψ

′
z‖2,

the energy inequality (55) we can written as follows:

dE∗

dt
< I∗∗ −D∗∗ = −D∗∗

(
1− I

∗∗

D∗∗

)
, (59)

with

I∗∗ = −R(1+
b

Pr
)(ϑ,∆1χ)+dM2(χzzz,∆1χ

′)+M2Pm
Pr

d(1+βI)α(∆1χ
′,∆χ′zz)

(60)

+βH
Pm
Pr

dM2(ψ
′
zzz,∆1χ

′)− d1M2(ψz,∆1ψ
′
) + βH

Pm
Pr

d1M
2(∆χ′z,∆1ψ

′
)

−d1M2β
Pm
Pr

(∆ψ
′
,∆1ψ

′
)−βI

Pm
Pr

d1M
2β(∆1ψ

′
, ψ
′
zz)+d2γ(∆ψ,ψ)+d2M

2(ψ
′
z, ψ).

D∗∗ = ‖∇χxz‖2 + ‖∇χyz‖2 + ‖∇∆1χ‖2 + ‖∇ψx‖2 + ‖∇ψy‖2 + b
Pr ‖∇ϑ‖

2+

+M2Pm
Pr

{
[1 + d(1− α)(1 + βI)]

[
‖∇χ′xz‖2 + ‖∇χ′yz‖2

]
+ ‖∇∆1χ

′‖2+

[1 + d1(1− β)]
[
‖∇ψ′x‖2 + ‖∇ψ′y‖2

]
+ d1(1− β)βI‖∇1ψ

′
z‖2
}

+d2(1− γ)‖∇ψ‖2.
(61)
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Where the constants α, β and γ, we determine later, must satisfy the in-
equalities

1 + d(1− α)(1 + βI) > 0, 1− β > 0, 1− γ > 0, (62)

in order to D∗∗ be positive definite. Let us define

1√
R∗a

= max
K

I∗∗

D∗∗
(63)

in the class K of the kinematically admissible functions.
From (55), if E∗(t) is positive definite, it follows that the inequality√

R∗a ≥ 1 (64)

is a sufficient condition of the linear and nonlinear asymptotic Lyapunov
stability of the conduction state.
In the next section we shall determine the region of the parameters space
where the inequality (64) is satisfied.

5 The nonlinear stability bound

We study now the variational problem (63) in terms of the independent
fields (χ, χ′, ψ, ψ′, ϑ) verifying the boundary conditions (5), (15).
The Euler equations associated to the maximum problem (63) are:

−R
(

1 + b
Pr

)
∆1ϑ−M2d∆1χ

′
zzz + 2√

R∗a
∆∆∆1χ = 0,

−R
(

1 + b
Pr

)
∆1χ+ 2√

R∗a
b
Pr∆ϑ = 0,

d∆1χzzz + 2PmPr (1 + βI)dα∆∆1χ
′
zz + βH

Pm
Pr

(
d∆1ψ

′
zzz − d1∆∆1ψ

′
z

)
+

+ 2√
R∗a
Pm
Pr

[
∆∆∆1χ

′ + d(1− α)(1 + βI)∆∆1χ
′
zz

]
= 0,

d1M
2∆1ψ

′
z + d2M

2ψ′
z + 2

[
d2[γ + 1√

R∗a
(1− γ)]∆ψ − 1√

R∗a
∆∆1ψ

]
= 0,

− d1∆1ψz + βH
Pm
Pr

(
d1∆∆1χ

′
z − d∆1χ

′
zzz

)
− 2d1β

Pm
Pr

(
∆∆1ψ

′ + βI∆1ψ
′
zz

)
−

d2ψz − 2√
R∗a
Pm
Pr

[
∆∆1ψ

′ + d1(1− β)[∆∆1ψ
′
+ βI∆1ψ

′
zz]
]

= 0.

(65)
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In the class of normal mode perturbations

(χ, χ′, ϑ, ψ, ψ′) = (X(z),K(z),Θ(z),Ψ(z),Ψ′(z)) exp[i(kxx+ kyy) + σt],
(66)

with σ ∈ C, after assuming

X(z) =
∞∑
n=0

Xn sin(nπz), (67)

where Xn ≡ (X, sin(nπz)) are the Fourier coefficients, from the Euler equa-
tions (65) we obtain:

−
[
R
(

1 +
b

Pr

)]2 Pr
b

√
R∗a
2

k2 +
2√
R∗a

B3
n = (68)

M2 Pr
Pmd

2k2n6π6BnN

2
{
n2π2k2(1 + βI)dFαBn + 1√

R∗a
B2
nk

2
}
N + 2

β2
H
M2n2π2D

.

In (68)

N = (d2−d1k2)2n2π2
Pr
Pm
− 4Bn
M2

{
d1Fβ[k4 +k2n2π2(1 +βI)] +

1√
R∗a

Bnk
2
}
·

(69){ 1√
R∗a

k2 − d2Fγ
}
,

D = k4(d1Bn − dn2π2)2Bn
{ 1√
R∗a

k2 − d2Fγ
}
, (70)

Fα = α+
1√
R∗a

(1−α), Fβ = β+
1√
R∗a

(1−β), Fγ = −γ− 1√
R∗a

(1−γ),

(71)
with Bn = n2π2 + k2.
In order to obtain the largest stability domain in the parameter space, we
must differentiate ( 68) with respect to the parameters.
Introducing the function

F12 =
(d2 − d1k2)2

Bn( 1√
R∗a
k2 − d2Fγ)

, (72)

(68) becomes:

−
[
R
(

1 +
b

Pr

)]2 Pr
b

√
R∗a
2

k2 +
2√
R∗a

B3
n =

M2

2

Pr
Pm

d2k2n6π6Bn· (73)
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G12{
n2π2k2(1 + βI)dFαBn + 1√

R∗a
B2
nk

2
}
G12 +

β2
H
M2n2π2k4(d1Bn − dn2π2)2

,

where:

G12 = n2π2
Pr
Pm

F12 −
4

M2

{
[k4 + k2n2π2(1 + βI)]d1Fβ +

1√
R∗a

Bnk
2
}
. (74)

The partial derivative of the right hand side (73), with respect to d2, is zero
iff:

d2 = k2
( 2

Fγ
√
R∗a
− d1

)
. (75)

Substituting (75) into (73) we have:[
−R

(
1 +

b

Pr

)]2 Pr
b

√
R∗a
2

k2 +
2√
R∗a

B3
n = 2M2 Pr

Pm
d2k2n6π6Bn· (76)

H1

4Bn

{
n2π2k2(1 + βI)dFα + 1√

R∗a
Bnk2

}
H1 + β2Hn

2π2k2(d1Bn − dn2π2)2
,

where H1 is given by

H1 = M2 Pr
Pm

n2π2

BnF 2
γ

(
d1Fγ−

1√
R∗a

)
−
{
d1Fβ

[
k2+n2π2(1+βI)

]
+

1√
R∗a

Bn

}
.

(77)
The partial derivative of the right hand side of (76) , with respect to d1, is
zero iff

d1 = −dn
2π2

Bn
+

2√
R∗a

Xn

Ynβγ
(78)

where

Xn = Bn +M2 Pr
Pm

n2π2

BnF 2
γ

(79)

Ynβγ = M2 Pr
Pm

n2π2

BnFγ
− Fβ

[
k2 + n2π2(1 + βI)

]
. (80)

Introducing (78) in (76) we have:

−
[
R
(

1 +
b

Pr

)]2 Pr
b

√
R∗a
2

k2 +
2√
R∗a

B3
n =

M2

2
d2
Pr
Pm

n6π6Bn· (81)

Ynβγ{
n2π2(1 + βI)dFα + 1√

R∗a
Bn

}
BnYnβγ + β2Hn

2π2Bn

(
Bn√
R∗a

Xn
Ynβγ

− dn2π2
) .
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The partial derivative of the right hand side of (81), with respect to d, is
zero iff

d = − 2√
R∗a

Bn
Ynβγ

Y 2
nβγ + β2Hn

2π2Xn

n2π2(1 + βI)FαYnβγ − β2Hn4π4
. (82)

If d is given by (82), (81) becomes:

−R
(

1 +
b

Pr

)2 Pr
b

√
R∗a
2

k2 +
2√
R∗a

B3
n = − 2√

R∗a
M2 Pr
Pm

n6π6Bn· (83)

Y 2
nβγ + β2Hn

2π2Xn{
n2π2(1 + βI)FαYnβγ − β2Hn4π4

}2 .

The partial derivative of the right hand side of (83) with respect to Ynβγ is
zero iff

Ynβγ = −Fα(1 + βI)Xn. (84)

In this case from (83) we obtain:

−
[
R
(

1 +
b

Pr

)]2 Pr
b

√
R∗a
2

k2 +
2√
R∗a

B3
n = − 2√

R∗a
M2 Pr
Pm

n6π6Bn· (85)

Bn +M2 Pr
Pm

n2π2

BnF 2
γ

n4π4(1 + βI)
[
Bn +M2 Pr

Pm
n2π2

BnF 2
γ

]
+ β2Hn

6π6
.

If we choose

Fα = − 1√
1 + βI

Fγ =
1√

1 + βIBn

(
M2 Pr

Pm

)−1 , (86)

after performing the partial derivative with respect to b, (83) becomes

R2R∗ak2 = B3
n +M2 Pr

Pm
n2π2Bn

·
B2
n + βIBnn

2π2 +M2 Pr
Pmn

2π2(
B2
n + βIBnn2π2 +M2 Pr

Pmn
2π2
)

(1 + βI) + β2Hn
2π2Bn

(87)

The relation (80), taking into account (84) allows us to determine Fβ =
Fβ(Fγ).
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From (78) (82), (84), (86)1 we obtain

d =
2√
R∗a

Bn
n2π2

1√
1 + βI

, d1 = 0. (88)

From (89) it follows

d2 =
2√
R∗a

k2
√

1 + βIBn

(
M2
Pr
Pm

)−1
, (89)

the energy E∗ is then positive definite.

From (71) and (86) we obtain

α = −
√

1 + βI +
√
R∗a√

1 + βI(
√
R∗a − 1)

, (90)

and

γ =

√
1 + βIBn

(
M2 Pr

Pm

)−1
+
√
R∗a√

1 + βIBn

(
M2 Pr

Pm

)−1
(1−

√
R∗a)

,

whence, for
√
R∗a > 1 α < 0, γ < 0, and the inequalities (62)1,3 are satisfied.

The inequality (62)2 is not relevant because in the energy relation the term
(1− β) disappears being d1 = 0.

The minimum of (87) with respect to n ∈ N is attained for n = 1, therefore,

as a function of x = k2

π2 , R∗a is given by:

R2R∗a = π4
1 + x

x
· (91)

{
(1+x)2+

M2

π2
Pr
Pm

(1 + x)2 + βI(1 + x) + M2

π2
Pr
Pm(

(1 + x)2 + βI(1 + x) + M2

π2
Pr
Pm

)
(1 + βI) + β2H(1 + x)

}
.

If βI = 0 from (91) we derive

R2R∗a = π4
1 + x

x
· (92)

{
(1 + x)2 +

M2

π2
Pr
Pm

(1 + x)2 + M2

π2
Pr
Pm

(1 + x)2 + M2

π2
Pr
Pm + β2H(1 + x)

}
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If βI = βH = 0 from (91) we derive

R2R∗a = π4
1 + x

x

{
(1 + x)2 +

M2

π2
Pr
Pm

}
(93)

The right hand side of (91) represents exactly the critical function of lin-
ear instability in presence of Hall and ion-slip currents, if the principle of
exchange of stabilities holds [33].

Obviously we find again, if βH = βI = 0, the results in [24] and, if βI = 0
βH 6= 0, in a simpler way, the stability bound obtained in [25]

We have so proved the following

Theorem 1. If the principle of exchange of stabilties holds, the inequality

1 ≤ R∗a, (94)

with R∗a given by (91), is a sufficient condition of linear and non linear
Lyapunov stability, that is, the linear and non linear stability bounds coincide
if instability occurs as stationary convection.

Indeed

R∗a ≥ 1⇐⇒ R2<R∗

R∗ = π4 1+xx

{
(1 + x)2 + M2

π2
Pr
Pm

(1+x)2+βI(1+x)+M
2 Pr
Pm(

(1+x)2+βI(1+x)+
M2

π2
Pr
Pm

)
(1+βI)+β

2
H(1+x)

}
,

(95)

where R∗ is exactly the Rayleigh function of the linear instability theory,
if the principle of exchange of stabilities holds [33].

Conclusions

The classical L2 norm is , as well known, too weak to evaluate some stabi-
lizing or instabilizing effects of varying-sign terms in the perturbation equa-
tions.

Iin literature there are many variants aimed to obtain the largest stability
domain in the parameter space.

In [27], in the chapter about variants of the energy method, symmetry and
optimality condition, referring to the perturbation evolution equations, we
highlighted:
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. . . the central idea of the present variant is to change just these differential
equations, and not those integral deduced from them. Moreover this sempli-
fication must be done in such a way that the energy relation assumes the
simplest form.

Following this approach in this paper the problem governing the pertur-
bation evolution is reformulated in terms of some essential variables, by
splitting the perturbation equations in the solenoidal and potential parts,
obtaining some of the equations derived in [33] to study linear instability by
the normal modes technique.

Differentiating with respect to the parameters involved in the Lyapunov
function, we obtained a nonlinear stability bound that coincides with the
linear one, in the subspace of the parameter space where instability occurs
as stationary convection.
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