
Integrating Learning into a BDI Agent
for Environments with Changing Dynamics

Dhirendra Singh, Sebastian Sardina, Lin Padgham

School of Computer Science and IT
RMIT University, Melbourne, Australia

{dhirendra.singh,sebastian.sardina,lin.padgham}@rmit.edu.au

Geoff James

CSIRO Energy Technology
Sydney, Australia

geoff.james@csiro.au

Abstract

We propose a framework that adds learning for im-
proving plan selection in the popular BDI agent
programming paradigm. In contrast with previous
proposals, the approach given here is able to scale
up well with the complexity of the agent’s plan li-
brary. Technically, we develop a novel confidence
measure which allows the agent to adjust its re-
liance on the learning dynamically, facilitating in
principle infinitely many (re)learning phases. We
demonstrate the benefits of the approach in an ex-
ample controller for energy management.

1 Introduction

The Belief-Desire-Intentions (BDI) agent programming
paradigm [Wooldridge, 2009; Busetta et al., 1999; Pokahr et
al., 2003; Bordini et al., 2007] is a successful and popular ap-
proach to developing complex systems that behave robustly
in situations where the environment is interacting with the
system. However, BDI agents do not incorporate learning,
and once deployed, have no ability to adjust to changes in the
dynamics of an environment that cause previously successful
approaches to fail and vice versa. In this work we maintain
the structure and advantages of a BDI agent program, but inte-
grate adaptive machine learning techniques that are generally
used to learn behaviour in a fixed environment (often off-line
with a training set), for use in online continuous learning in an
environment where what works, may well change over time.
In that way, our contribution is to agent programming—to
make BDI programs more adaptive by seamlessly integrat-
ing learning techniques—rather that to machine learning re-
search. The aim is to use the operational knowledge encoded
in the agent program, but learn refinements to it so as to cope
with changes in the dynamics of the environment.

A key issue when learning is that of exploitation vs. ex-
ploration: how much to trust and exploit the current (learnt)
knowledge, versus how much to try things in order to gain
new knowledge. In our earlier work [Singh et al., 2010a;
2010b], a “coverage-based” measure of confidence was used
to capture how much the BDI agent should trust its current
understanding (of good plan selection), and therefore exploit
rather than explore. Intuitively, this confidence was based on
the degree to which the space of possible execution options

for the plan has been explored (covered). The more this space
has been explored, the greater the confidence, and the more
likely the agent is to exploit. As recognised in this work, the
coverage-based confidence approach does not support learn-
ing in a changing environment. This is because the confi-
dence increases monotonically and, as a result, there is no
ability for the agent to become less confident in its choices,
even if its currently learned behaviour becomes less success-
ful due to changes in the environment.

Consider a smart building equipped with a large battery
system that can be charged when there is excess power, and
used (discharged) when there is excess demand, in order to
achieve an overall desired building consumption rate for some
period. A battery installation is built from independent mod-
ules with different chemistries. Initially, the embedded bat-
tery controller can be programmed (or can learn) to operate
optimally. However, over time modules may operate less well
or even cease to function altogether. In addition, modules
may be replaced with some frequency. Thus, what is needed
is a controller that, after having explored the space well and
developed high confidence in its learning, is able to observe
when learned knowledge becomes unstable, and dynamically
modify its confidence allowing for new exploration and re-
vised learning in an ongoing way. To achieve this we develop
a confidence measure based on an assessment of how well in-
formed our selections are, combined with an observation of
the extent to which we are seeing new situations.

The rest of the paper is as follows. First, we introduce
BDI systems and machine learning concepts necessary to
understand this work. We then describe our BDI learn-
ing framework, initially developed in [Airiau et al., 2009;
Singh et al., 2010a; 2010b], and extend this with our new con-
fidence measure (Section 3.2) for learning in environments
with changing dynamics. Next, we describe a battery con-
troller agent, based on a real application that requires ongoing
learning, and show how it adjusts in a variety of ways to an
environment where battery behaviour changes. We conclude
with related work and limitations requiring future work.

2 Preliminaries

2.1 BDI Agent Systems

BDI agent programming languages are typically built around
an explicit representation of propositional attitudes (e.g., be-

2525

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

liefs, desires, intentions, etc.). A BDI architecture addresses
how these components are modelled, updated, and processed,
to determine the agent’s actions. There are a plethora of
agent programming languages and development platforms in
the BDI tradition, including JACK [Busetta et al., 1999],
JADEX [Pokahr et al., 2003], and Jason [Bordini et al., 2007]
among others. Specifically, a BDI intelligent agent system-
atically chooses and executes plans (i.e., operational proce-
dures) to achieve or realise its goals, called events. Such
plans are extracted from the agent’s plan library, which en-
codes the “know-how” information of the domain the agent
operates in. For instance, the plan library of an unmanned air
vehicle (UAV) agent controller may include several plans to
address the event-goal of landing the aircraft. Each plan is as-
sociated with a context condition stating under which belief
conditions the plan is a sensible strategy for addressing the
goal in question. Whereas some plans for landing the aircraft
may only be suitable under normal weather conditions, other
plans may only be used under emergency operations. Besides
the actual execution of domain actions (e.g., lifting the flaps),
a plan may require the resolution of (intermediate) sub-goal
events (e.g., obtaining landing permission from the air control
tower). As such, the execution of a BDI system can be seen as
a context sensitive subgoal expansion, allowing agents to “act
as they go” by making plan choices at each level of abstrac-
tion with respect to the current situation. The use of plans’
context (pre)conditions to make choices as late as possible,
together with the built-in goal-failure mechanisms, ensures
that the system is responsive to changes in the environment.

By grouping together plans responding to the same event
type, the agent’s plan library may be viewed as a set of goal-
plan tree templates (e.g., Figure 1): a goal-event node (e.g.,
goal G1) has children representing the alternative relevant
plans for achieving it (e.g., PA, PB and PC); and a plan node
(e.g., PF), in turn, has children nodes representing the sub-
goals (including primitive actions) of the plan (e.g., G4 and
G5). These structures, can be seen as AND/OR trees: for
a plan to succeed all the subgoals and actions of the plan
must be successful (AND); for a subgoal to succeed one of
the plans to achieve it must succeed (OR). Leaf plans interact
directly with the environment and so, in a given world state,
they can either succeed or fail when executed; this is marked
accordingly in the figure for some particular world (of course
such plans may behave differently in other world states).

Figure 1 shows the possible outcomes when plan P is se-
lected in a given world w. In order for the first subgoal G1 to
succeed, plan PA must be selected followed by PI (successes
marked as

√
). The active execution trace1 for this selection is

described as λ1 = G[P : w] ·G1[PA : w] ·G3[PI : w] (line-
shaded path terminating in PI) where the notation G[P : w]
indicates that goal G was resolved by the selection of plan
P in world w. Subsequently subgoal G2 is posted whose
successful resolution is given by the intermediate trace λ2 =
G[P : w] ·G2[PF : w′] ·G4[PK : w′] followed by the final
trace λ3 = G[P : w] ·G2[PF : w′] ·G5[PM : w′′]. Note that
w′ in λ2 is the resulting world from the successful execution

1An active execution trace [Singh et al., 2010b] describes deci-
sion sequences that terminate in the execution of a leaf plan.

G

P

G1

PA

G3

PG

×
PH

×
PI√

PB

×
PC

×

G2

PD

×
PE

×
PF

G4

PJ

×
PK√

PL

×

G5

PM√
PN

×
PO

×

Figure 1: An example goal-plan hierarchy.

of leaf plan PI in the preceding trace λ1. Similarly, w′′ is the
resulting world from the execution of PK in λ2. There is only
one way for plan P to succeed in the initial world w, namely,
that described by the three traces λ1, λ2 and λ3. All other
execution traces lead to failures (marked as ×).

As can be seen, appropriate plan selection is crucial in
BDI systems. Whereas standard BDI platforms leverage do-
main expertise by means of fixed logical context conditions of
plans, here we are interested in ways of improving or learning
plan selection for a situated agent, based on experience.

2.2 Machine Learning Concepts

Our aim is to determine a plan’s applicability (context) con-
dition by learning the structure of a decision tree [Mitchell,
1997] from experiences of trying the plan in different situ-
ations. The idea is that the learnt structure will summarise
the set of experiences (i.e., plan failed in world w1, passed
in w2, etc.) into a compact form, i.e., correctly classify them
(as pass or fail), and may be used to decide the likely out-
come in unseen situations. We use decision trees because (i)
they support hypotheses that are a disjunction of conjunctive
terms and this is compatible with how context formulas are
generally written; (ii) they can be converted to human read-
able rules and validated by an expert; and (iii) they are ro-
bust against “noisy” data such as generally successful plans
nevertheless failing due to unobservable factors. Specifically,
we use the algorithm J48 (a version of C4.5) from the weka
learning package [Witten and Frank, 1999].

The second concept important for this work is that of con-
fidence: how much should the agent rely on its current learn-
ing, given that it must act while learning. Confidence deter-
mines the exploration strategy: the lower it is, the less reliable
the learning is and the more the agent explores the options
available to it; the higher it is, the more it exploits its (learnt)
knowledge. Typically (e.g., in reinforcement learning) the ex-
ploration strategy is fixed upfront (constant or monotonically
decreasing, e.g., in ε-greedy and Boltzmann exploration [Sut-
ton and Barto, 1998]). The basic assumption is that learning
is a one-off process that improves over time. We argue, how-
ever, that for an embedded learning agent this assumption is
too limiting. Instead, we assume that in the course of its life-
time the deployed agent will likely experience many changes
in the environment: some of which will cause previously
learnt solutions to no longer work. For this reason, we pro-
pose a dynamic confidence measure (Section 3.2) that adapts
accordingly with changes in performance, and forms the basis
for a more practical heuristic for guiding exploration.

2526

3 The Integrated BDI Learning Framework

We now describe our BDI learning framework [Airiau et
al., 2009; Singh et al., 2010a; 2010b], which is a seamless
integration of standard Belief-Desire-Intention (BDI) agent-
oriented programming [Wooldridge, 2009] with decision tree
learning [Mitchell, 1997]. Within the framework, three mech-
anisms are crucial. First is a principled approach to learn-
ing context conditions based on execution experiences (Sec-
tion 3.1). Second is a dynamic confidence measure in ongo-
ing learning to decide how much trust to put in the current
understanding of the world (Section 3.2). Finally, an ade-
quate plan selection scheme compatible with the new type of
plans’ preconditions is required (Section 3.3).

3.1 Learning Context Conditions from Experience

As discussed in our earlier work [Airiau et al., 2009; Singh et
al., 2010a; 2010b], plans’ context conditions are first gener-
alised to decision trees [Mitchell, 1997], which can be learnt
over time. The idea is simple: the decision tree of an agent
plan provides a judgement as to whether the plan is likely to
succeed or fail in the given situation. By suitably learning
the structure of and adequately using such decision trees, the
agent is able to improve its performance over time, lessening
the burden on the domain modeller to encode “perfect” plan
preconditions. Note that the classical boolean context condi-
tions provided by the designer could (and generally will) still
be used as initial necessary but possibly insufficient require-
ments for each plan that will be further refined in the course
of trying plans in various world states.

When it comes to the learning process, the training set for
a given plan’s decision tree contains samples of the form
[w, e, o], where w is the world state—a vector of discrete
attributes—in which the plan was executed, e is the vector
of parameters for the goal-event that this plan handles, and
o is the execution outcome, namely, success or failure. Ini-
tially, the training set is empty and grows as the agent tries
the plan in various world states for different event-goal pa-
rameter values and records each execution result. Since the
decision tree inductive bias is a preference for smaller trees,
one expects that the learnt decision tree consists of only those
world attributes and event-goal parameters that are relevant to
the plan’s (real) context condition.

The typical offline use of decision trees assumes availabil-
ity of the complete training set. In our case, however, learn-
ing and acting are interleaved in an online manner: the agent
uses its current learning to make plan choices, gaining new
knowledge that impacts subsequent choices. This raises the
issue of deciding how “good” the intermediate generalisa-
tions are. We have previously addressed this issue in two
different ways. The first [Airiau et al., 2009] is to be se-
lective in recording experiences based on how sensible the
related decisions were. Referring to Figure 1, consider the
case where plan selection results in the failed execution trace
λ′
3 = G[P : w] ·G2[PF : w′] ·G5[PN : w′′], after traces

λ1 and λ2 have been successfully carried out. In this case,
if a negative outcome is recorded for PF and P , this is mis-
leading. These non-leaf plans failed not because they were
a bad choice for worlds w′ and w respectively but because
a bad choice (PN for G5 in w′′) was made further down in

the hierarchy. To resolve this issue, we used a stability fil-
ter in [Airiau et al., 2009] to record failures only for those
plans whose outcomes are considered to be stable, or “well-
informed.” The second approach is to record always, but in-
stead adjust a plan’s selection probability based on some mea-
sure of confidence in its decision tree. In [Singh et al., 2010a;
2010b], we considered the reliability of a plan’s decision tree
to be proportional to the number of sub-plan choices (or paths
below the plan in the goal-plan hierarchy) that have been ex-
plored currently: the more choices that have been explored,
the greater the confidence in the resulting decision tree.

The approach of using confidence to adjust plan selection
weights is more generally applicable to learning in BDI hi-
erarchies, as we showed in [Singh et al., 2010a; 2010b], and
is the one we use in this study. However, the traditional as-
sumption that learning is a one-off process is no longer ap-
plicable for embedded learning agents that operate over long
time frames. These must in fact often un-learn and re-learn
as necessary, due to ongoing changes in the environment dy-
namics. The measure of confidence—that effectively defines
the exploration strategy—is therefore no longer a monoton-
ically increasing function, and must dynamically adjust ac-
cordingly if previously learnt solutions no longer work. Our
new confidence measure for such environments with chang-
ing dynamics is presented next. Importantly, this measure
subsumes the functionality of the former methods, in that it
has equivalent convergence properties when used in environ-
ments with fixed dynamics.

3.2 Determining Confidence in Ongoing Learning

We now describe our confidence measure for learning in envi-
ronments with continually changing dynamics and where the
agent must invariably “keep on learning.” It uses the notion
of stability that we introduced in [Airiau et al., 2009], and
defined in [Singh et al., 2010b] as follows: “A failed plan
P is considered to be stable for a particular world state w
if the rate of success of P in w is changing below a certain
threshold.” Here the success rate is the percentage of suc-
cessful executions in the last few experiences in w. Stability
is then calculated by looking at the difference in consecu-
tive rates. Our aim is to use this notion to judge how well-
informed the decisions the agent has made within a particu-
lar execution trace were. This is particularly meaningful for
failed execution traces: low stability suggests that we were
not well-informed and more exploration is needed before as-
suming that no solution is possible (for the trace’s top goal in
question). To capture this, we define the degree of stability
of a (failed) execution trace λ, denoted ζ(λ) as the ratio of
stable plans to total applicable plans in the active execution
trace below the top-level goal event in λ. Formally, when
λ = G1[P1 : w1] · · ·G�[P� : w�] we define

ζ(λ) =
|⋃�

i=1{P | P ∈ Δapp(Gi, wi), stable(P,wi)}|
|⋃�

i=1 Δapp(Gi, wi)|
,

where Δapp(Gi, wi) denotes the set of all applicable plans
(i.e., whose boolean context conditions hold true) in world
wi for goal event Gi, and stable(P,wi) holds true if plan P is
deemed stable in world wi, as defined in [Singh et al., 2010b].

2527

For instance, take the failed execution trace λ′
3 = G[P :

w] ·G2[PF : w′] ·G5[PN : w′′] from before and suppose that
the applicable plans are Δapp(G,w) = {P}, Δapp(G2, w

′) =
{PD, PF }, and Δapp(G5, w

′′) = {PM , PN , PO}. Say also
that PD and PN are the only plans deemed stable (in worlds
w′ and w′′, respectively). Then the degree of stability for the
whole trace is ζ(λ′

3) = 2/6. Similarly, for the two subtraces
λa = G2[PF : w′] ·G5[PN : w′′] and λb = G5[PN : w′′] of
λ′
3, we get ζ(λa) = 2/5 and ζ(λb) = 1/3.
The idea is that every time the agent reaches a failed execu-

tion trace, the stability degree of each subtrace is stored in the
plan that produced that subtrace. So, for plan P we store de-
gree ζ(λa) whereas for plan PF we record degree ζ(λb). Leaf
plans, like PN , make no choices so their degree is assigned 1.
Intuitively, by doing this, we record against each plan in the
(failed) trace, an estimate of how informed the choices made
“below” the plan were. Algorithm 1 describes how this (hi-
erarchical) recording happens given an active execution trace
λ. Here RecordDegreeStability(P,w, d) appends degree d for
plan P in world state w to the list of experiences.

Algorithm 1: RecordDegreeStabilityInTrace(λ)
Data: λ = G1[P1 : w1] · . . . ·G�[P� : w�], with � ≥ 1.
Result: Records degree of stability for plans in λ.
if (� > 1) then

λ′ = G2[P2 : w2] · . . . ·G�[P� : w�];
RecordDegreeStability(P1, w1, ζ(λ

′));
RecordDegreeStabilityInTrace(λ′);

else
RecordDegreeStability(P1, w1, 1);

As plan execution produces new failed experiences, the
calculated degree of stability is appended against it each time.
When a plan finally succeeds, we take an optimistic view and
record degree 1 against it. In other words, choices that led
to success are considered well-informed, but for failures we
want to know just how good the decisions were. The fact that
all plans do eventually become stable or succeed, means that
ζ(λ) is guaranteed to converge to 1 (for fixed dynamics).

To aggregate the different stability recordings for a plan
over time, we use the average degree of stability over the last
n ≥ 1 executions of plan P in w, denoted Cs(P,w, n). This
provides us with a measure of confidence in the decision tree
for plan P in state w. Intuitively, Cs(P,w, n) tells us how “in-
formed” the decisions taken when performing P in w were
over the n most recent executions. Notice that if the environ-
ment dynamics are constant, this measure gradually increases
from 0, as plans below P start to become stable (or succeed);
it reaches 1 when all tried plans below P in the last n execu-
tions are considered stable. This is what one might expect in
the typical learning setting. However, if the dynamics of the
environment were to change and (working) plans start to fail
or become unstable, then the measure of confidence adjusts
accordingly.

Normally, generalising using decision trees is useful, if one
has “enough” data. For us, this amounts to trying a plan in a
given world in meaningful ways (captured by Cs(P,w, n)),

as well as in different worlds. To measure the latter, we mon-
itor the rate at which new worlds are being witnessed by a
plan P . During early exploration, most worlds that a plan is
selected for will be unique, thus yielding a high rate (corre-
sponding to low confidence). Over time, the plan would get
selected in all worlds in which it is reachable and the rate of
new worlds would approach zero (corresponding to full con-
fidence). Given this, we define our second confidence met-
ric Cd(P, n) = 1 − | NewStates(P,n)|

n , where NewStates(P, n) is
the set of worlds in the last n executions of P that have not
been witnessed before. Cd normally converges to 1.0 after
all worlds where the plan might be considered are eventually
witnessed.

We now define our final (aggregated) confidence measure
C(P,w, n) using the stability-based metric Cs(P,w, n) that
reflects how well-informed the last n executions of plan P in
world w were, and the domain metric Cd(P, n) that captures
how well-known the worlds in the last n executions of plan P
were compared with what we had experienced before:

C(P,w, n) = αCs(P,w, n) + (1− α)Cd(P, n),
where α is a weighting factor used to set a preference bias be-
tween the two component metrics. Here n controls the sensi-
tivity to performance changes: smaller values make the mea-
sure more responsive; larger values yield greater stability.2

3.3 Using Learning and Confidence to Select Plans

Finally, we show how this confidence measure is to be used
within the plan selection mechanism of a BDI agent. Re-
member that for a given goal-event that needs to be resolved,
a BDI agent may have several applicable plans from which
one ought to be selected for execution. To do this, we make
the agent choose probabilistically from the set of options in
a way proportional to some given weight per plan—the more
weight a plan is assigned, the higher the chances of it being
chosen. We define this selection weight for plan P in world
w relative to its last n executions as follows:

Ω(P,w, n) = 0.5 + [C(P,w, n)× (P(P,w)− 0.5)] ,

where P(P,w) stands for the probability of success of plan
P in world w as given by P ’s decision tree. This weight def-
inition is similar to what we have used before [Singh et al.,
2010a; 2010b], except for the new confidence metric C de-
fined above. The idea is to combine the likelihood of success
of plan P in world w—term P(P,w)—with a confidence bias
(here C(· , · , ·) ∈ [0, 1]) to determine a final plan selection
weight Ω. When the confidence is maximum (i.e., 1.0), then
Ω = P(P,w), and the final weight equals the likelihood re-
ported by the decision tree; when the confidence is zero, then
Ω = 0.5, and the decision tree has no bearing on the final
weight (a default weight of 0.5 is used instead). Intuitively,
Ω describes the exploration strategy: when confidence is low,
the probability of choosing the believed high success option is
also low, leading to a strong chance of exploring alternatives.

2Currently n is decided by the programmer. This could be lifted
by using, say, a temporally reduced weighting for past executions.

2528

G(r,k,s)

SetCharge

k > 0
ψch(r, k, s)

set(k,+c)

G(r,k-1,s’)

SetDischarge

k > 0
ψdc(r, k, s)

set(k,−c)

G(r,k-1,s’)

SetNotUsed
k > 0
ψ0(r, k, s)

set(k, 0)

G(r,k-1,s’)

Execute
k = 0

operate()
evaluate()

(a) Goal-plan hierarchy for a k-modules battery system.

0 1 2 3

· 104

0.8

0.9

1

(b) Capacity deterioration.

0 2 4

· 104

0.6

0.8

1

(c) Partial failure.

0 1 2

· 104

0

0.5

1

(d) Complete failure.

Figure 2: The implemented BDI controller and its (success) performance (y-axis) over the number of episodes (x-axis).

4 An Embedded Battery System Controller

Large battery systems enable increasing levels of renewable
energy in our electricity system. Such installations usually
consist of multiple modules that can be controlled indepen-
dently [Norris et al., 2002]. Since battery performance is sus-
ceptible to changes over time (e.g., modules may lose actual
capacity) an adaptable control mechanism is desirable that
accounts for such changes. Here, we describe an embedded
BDI controller for a modular battery system, that regulates
overall energy consumption of a smart office building com-
prise of loads (e.g., appliances) and generators (e.g., solar
panels), by suitably ordering the battery to charge (i.e., act
as a load) or discharge (i.e., act as a generator) at determined
rates (the overall rate being the sum over the modules’ rates).

Figure 2(a) shows our implemented controller for an over-
all system capacity of c (module capacity) × kmax (number of
modules). Goal-event G(r, k, s) requests a normalized bat-
tery response rate of r ∈ [−1, 1], where −1 (1) indicates
maximum discharge (charge) rate, for a current module k and
battery state s—initially, k is set to kmax. The controller works
by recursively configuring each module (i.e., from kmax down
to 1) using plans SetCharge (charge at rate +c), SetDischarge
(discharge at rate −c), and SetNotUsed (disconnect, i.e., rate
0), and thereafter (i.e., when k = 0) physically operating the
battery for one period using the Execute plan.

Observe that the first three plans contain known domain
constraints for applicability using condition ψX . For in-
stance, plan SetCharge may not apply if the module is al-
ready charged; SetDischarge may be ruled out if discharging
the module means that no matter how the remaining mod-
ules are configured, the response will fall short of the request.
When none of the plans apply, then BDI failure recovery is
employed to backtrack and select a different configuration
path until all constraints are satisfied or all options exhausted.

Plan Execute is therefore run only with functionally cor-
rect configurations. It first operates the whole battery for the
period (operate) and then evaluates the result via a sensor
(evaluate). If the evaluation succeeds, then the desired rate
r has been met and the whole execution is deemed success-
ful. Otherwise, the evaluation step fails and so does the whole
execution of the program, since no BDI failure recovery can
be used after the battery system has been physically operated.
Over time, the system learns the real applicability conditions
of plans by training over their observed outcomes in differ-

ent situations. In this way, programmed conditions act as an
initial filter followed by learning to decide final applicability.

4.1 Experimental Results

All experiments used a battery system with five modules (i.e.,
kmax = 5). Each module had a charge state in the range
0 (fully discharged) to 3 (fully charged), as well as an as-
signed configuration for the period from {+c, 0,−c}, where
c = 1/kmax. Charging adds +c while discharging adds −c to
a module’s charge state, otherwise the state is unchanged for
the period (i.e., there is no charge loss). Thus, the net bat-
tery response is in the (normalized) range [−1, 1] in discrete
intervals of ±c. The state space for the problem is given by
the modules (5), the requests (11), the charge states (45), and
the assigned configurations (35), that is, 5× 11× 45 × 35 ≈
13.7 million. The agent does not learn over the full space,
however, since the filtering of nonsensical configurations by
the plans’ context conditions ψX(· , · , ·) reduces it sub-
stantially (to ≈ 1.5 million). Each episode corresponds to
one G(r, 5, s) goal-event request: achieve overall battery re-
sponse of r given current module charge states s. For sim-
plicity of analysis, we generate only satisfiable requests. The
threshold for stability calculation is set to 0.5. We use an
averaging window of n = 5 for both the stability-based met-
ric Cs and domain metric Cd, and a (balanced) weighting of
α = 0.5 for the final confidence measure C.3 Each experi-
ment is run five times and the reported results are averages
from these runs. Finally, since in normal BDI operation only
plans deemed applicable as per their context condition are
considered for execution, then for our learning framework we
used an applicability threshold of 40%, meaning that plans
with a selection weight below this value are not considered.4

The first experiment (Figure 2(b)) represents the traditional
(one-off) learning setting. A deterioration in module capaci-
ties (at ≈ 5k episodes) causes a rapid drop in performance (to
≈ 76%) corresponding to the set of programmed/learnt solu-
tions that no longer work. Performance is subsequently recti-
fied by learning to avoid configurations that no longer work.

3Lower stability threshold gives greater accuracy (more samples)
and vice versa. α can be tuned towards Cd when the world is rela-
tively complex compared to the structure of choices, or Cs otherwise.

4The threshold does not alter overall performance, but does pre-
vent battery use when it is unlikely to succeed. We found that it
reduces operations by 12%, which is significant for battery life.

2529

The next two experiments demonstrate adaptive behaviour
when the environment dynamics is continually changing. In
Figure 2(c), the agent is exposed to partial failures from mod-
ules malfunctioning (the first module fails during [0, 20k] and
is then restored, the second during [20k, 40k], and so on), but
the battery remains capable of responding to requests using
alternative configurations. The agent successfully learns to
operate the battery without the failing module each time. Fi-
nally, in Figure 2(d)) the controller adapts in the extreme case
of complete failure (during [0, 5k]).5 The key point in all ex-
periments is that the learner does not require explicit notifi-
cation of changes: it re-learns by adjusting exploration based
on its performance (that reflects the impact of such changes).

5 Conclusion

We proposed a plan-selection learning mechanism for BDI
agent-oriented programming languages and architectures that
is able to adapt when the dynamics of the environment in
which the agent is situated changes over time. Specifically,
the proposed dynamic confidence measure provides a sim-
ple way for the agent to judge how much it should trust
its current understanding (of how well available plans can
solve goal-events). In contrast to previous proposals, the
confidence in a plan may not always steadily, and it will
drop whenever the learned behavior becomes less success-
ful in the environment, thus allowing for new plan explo-
ration to recover goal achievability. The new learning mech-
anism subsumes previous approaches in that it still preserves
the traditional monotonic convergence in environments with
fixed dynamics. Furthermore, unlike in [Singh et al., 2010a;
2010b], it does not require any account of the number of pos-
sible choices below a plan in the hierarchy, and hence scales
up for any general goal-plan structure irrespective of its com-
plexity. We demonstrated the effectiveness of the proposed
BDI learning framework using a simplified energy storage
domain whose dynamics is intrinsically changing.

Perhaps the most severe limitation of our learning frame-
work is that it cannot account for interactions between a
plan’s subgoals. If a plan involves two sub-goals (e.g., book
flight and book hotel), these are learnt independently of each
other and this “local” learning may yield sub-optimal behav-
ior. One way of addressing this may be to use extended no-
tions of execution traces that take into account all subgoals
that led to the final execution outcome.

The issue of combining learning within BDI deliberation
has not been widely addressed in the literature. Guerra-
Hernández et al. [2004] reported preliminary results on learn-
ing the context condition for a single plan, and hence do not
consider the issue of learning in plan hierarchies. Other work
has focused on integrating offline (rather than online) learn-
ing within deliberation in BDI systems, such as the work of
Lokuge and Alahakoon [2007] for ship berthing logistics and
that of Riedmiller et al. [2001] within a robotic soccer do-
main. The recent approach of Broekens et al. [2010] that in-

5Around 2k episodes, the selection weight of all plans drops
below the applicability threshold. To ensure that learning can still
progress, we use as a “soft” applicability threshold mechanism: the
40% threshold applies 90% of the time.

tegrates reinforcement learning to improve rule selection in
the GOAL agent language complements ours, and may be
used as “meta-level” learning to influence the plan selection
weight Ω. Indeed, we plan to investigate this in future work.

Acknowledgments

We thank the anonymous reviewers for their comments. We also
acknowledge the support of Agent Oriented Software and the Aus-
tralian Research Council (grant LP0882234).

References
[Airiau et al., 2009] Stéphane Airiau, Lin Padgham, Sebastian Sar-

dina, and Sandip Sen. Enhancing the adaptation of BDI agents
using learning techniques. International Journal of Agent Tech-
nologies and Systems (IJATS), 1(2):1–18, January 2009.

[Bordini et al., 2007] Rafael H. Bordini, Jomi Fred Hübner, and
Michael Wooldridge. Programming Multi-agent Systems in
AgentSpeak Using Jason. Wiley, 2007.

[Broekens et al., 2010] Joost Broekens, Koen Hindriks, and Pas-
cal Wiggers. Reinforcement learning as heuristic for action-rule
preferences. In Proceedings of PROMAS, pages 85–100, 2010.

[Busetta et al., 1999] Paolo Busetta, Ralph Rönnquist, Andew
Hodgson, and Andrew Lucas. JACK intelligent agents: Compo-
nents for intelligent agents in Java. AgentLink Newsletter, 2:2–5,
January 1999. Agent Oriented Software Pty. Ltd.

[Guerra-Hernández et al., 2004] Alejandro Guerra-Hernández,
Amal El Fallah-Seghrouchni, and Henry Soldano. Learning
in BDI Multi-agent Systems, volume 3259 of LNCS, pages
218–233. Springer, 2004.

[Lokuge and Alahakoon, 2007] Prasanna Lokuge and Damminda
Alahakoon. Improving the adaptability in automated vessel
scheduling in container ports using intelligent software agents.
European Journal of Operational Research, 177, March 2007.

[Mitchell, 1997] Tom Mitchell. Machine Learning. McGraw-Hill,
1997.

[Norris et al., 2002] B. Norris, G. Ball, P. Lex, and V. Scaini. Grid-
connected solar energy storage using the zinc-bromine flow bat-
tery. In Proc. of the Solar Conference, pages 119–122, 2002.

[Pokahr et al., 2003] Alexander Pokahr, Lars Braubach, and Win-
fried Lamersdorf. JADEX: Implementing a BDI-infrastructure
for JADE agents.EXP: In search of innovation, 3(3):76–85, 2003.

[Riedmiller et al., 2001] M. Riedmiller, A. Merke, D. Meier,
A. Hoffman, A. Sinner, O. Thate, and R. Ehrmann. Karlsruhe
brainstormers - A reinforcement learning approach to robotic
soccer. In RoboCup 2000: Robot Soccer World Cup IV, 2001.

[Singh et al., 2010a] Dhirendra Singh, Sebastian Sardina, and Lin
Padgham. Extending BDI plan selection to incorporate learn-
ing from experience. Robotics and Autonomous Systems (RAS),
58:1067–1075, 2010.

[Singh et al., 2010b] Dhirendra Singh, Sebastian Sardina, Lin
Padgham, and Steṕhane Airiau. Learning context conditions for
BDI plan selection. In Proc. of AAMAS, pages 325–332, 2010.

[Sutton and Barto, 1998] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction. MIT Press, 1998.

[Witten and Frank, 1999] Ian Witten and Eibe Frank. Data Mining:
Practical Machine Learning Tools and Techniques with Java Im-
plementations. Morgan Kaufmann, 1999.

[Wooldridge, 2009] Michael Wooldridge. Introduction to Multi-
Agent Systems. Second edition, 2009.

2530

