Glacial refugia and migration routes of the Neotropical genus Trizeuxis (Orchidaceae)

Marta Kolanowska

Abstract


The morphology and anatomy of the monotypic genus Trizeuxis make this taxon almost impossible to recognize in fossil material and hereby difficult object of historical geographic studies. To estimate the distribution of potential refugia during the last glacial maximum and migration routes for Trizeuxis the ecological niche modeling was performed. The potential niche modeling was done using maximum entropy method implemented in Maxent application based on the species presence-only observations. As input data climatic variables and the digital elevation model were used. Two models of suitable glacial habitats distribution were prepared – for the studied species and for its host. The compiled map of the suitable habitats distribution of T. falcata and P. guajava during the last glacial maximum (LGM) indicate two possible refugia for the studied orchid genus. The first one was located in the Madre de Dios region and the other one in the Mosquito Coast. The models suggest the existence of two migration routes of Trizeuxis species. The results indicate that the ecological niche modeling (ENM) is a useful tool for analyzing not only the possible past distribution of the species, but may be also applied to determine the migration routes of the organisms not found in the fossil material.

Keywords


ecological niche modeling; habitats; last glacial maximum; Neotropics; phorophyte

Full Text:

PDF

References


Lindley J. Trizeuxis falcata. Collect Bot. 1821;1:t.2.

Schlechter R. Orchideenfloren der Suedamerikanischen Kordillerenstaaten, V. Bolivia. Feddes Repert Beih. 1922;10:52.

Schweinfurth C. Orchidaceae, Orchids of Peru. Fieldiana Bot. 1960;30(3):784–785.

Dressler RL, Dodson CH. Classification and phylogeny in the Orchidaceae. Ann Mo Bot Gard. 1960;47:25–68.

Szlachetko DL. Systema Orchidalium. Fragm Flor Geobot. 1995;3 suppl:1–152.

Neubig KM, Whitten WM, Williams NH, Blanco MA, Endara L, Burleigh JG, et al. Generic recircumscriptions of Oncidiinae (Orchidaceae: Cymbidieae) based on maximum likelihood analysis of combined DNA datasets. Bot J Linn Soc. 2012;168(2):117–146. http://dx.doi.org/10.1111/j.1095-8339.2011.01194.x

Dodson CH, Dodson PM. Trizeuxis falcata. In: Dodson CH, editor. Orchids of Ecuador. Sarasota: The Marie Selby Botanical Gardens; 1980. p. 350. [vol 1(4)].

Van der Cingel NA. An atlas of Orchid pollination: America, Africa, Asia and Australia. Rotterdam: A.A. Balkema Publishers; 2001.

Stern WL, Carlsward BS. Comparative vegetative anatomy and systematics of the Oncidiinae (Maxillarieae, Orchidaceae). Bot J Linn Soc. 2006;152(1):91–107. http://dx.doi.org/10.1111/j.1095-8339.2006.00548.x

Carstens BC, Richards CL. Integrating coalescent and ecological niche modeling in comparative phylogeography. Evolution. 2007;61(6):1439–1454. http://dx.doi.org/10.1111/j.1558-5646.2007.00117.x

Marske KA, Leschen RAB, Buckley TR. Reconciling phylogeography and ecological niche models for New Zealand beetles: looking beyond glacial refugia. Mol Phylogenet Evol. 2011;59(1):89–102. http://dx.doi.org/10.1016/j.ympev.2011.01.005

Peterson AT, Nyári AS. Ecological niche conservatism and Pleistocene refugia in the Thrush-like Mourner, Schiffornis sp., in the neotropics. Evolution. 2008;62(1):173–183. http://dx.doi.org/10.1111/j.1558-5646.2007.00258.x

Waltari E, Hijmans RJ, Peterson AT, Nyári AS, Perkins SL, Guralnick RP. Locating pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS ONE. 2007;2(6):e563. http://dx.doi.org/10.1371/journal.pone.0000563

Provan J, Bennett KD. Phylogeographic insights into cryptic glacial refugia. Trends Ecol Evol. 2008;23(10):564–571. http://dx.doi.org/10.1016/j.tree.2008.06.010

Svenning JC, Normand S, Kageyama M. Glacial refugia of temperate trees in Europe: insights from species distribution modelling. J Ecol. 2008;96(6):1117–1127. http://dx.doi.org/10.1111/j.1365-2745.2008.01422.x

Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, et al. The last glacial maximum. Science. 2009;325(5941):710–714. http://dx.doi.org/10.1126/science.1172873

Harvey PH, Pagel MD. The comparative method in evolutionary biology. Oxford: Oxford University Press; 1991.

Prinzing A, Durka W, Klotz S, Brandl R. The niche of higher plants: evidence for phylogenetic conservatism. Proc Biol Sci. 2001;268(1483):2383–2389. http://dx.doi.org/10.1098/rspb.2001.1801

Cooper N, Freckleton RP, Jetz W. Phylogenetic conservatism of environmental niches in mammals. Proc Biol Sci. 2011;278(1716):2384–2391. http://dx.doi.org/10.1098/rspb.2010.2207

Lavergne S, Evans MEK, Burfield IJ, Jiguet F, Thuiller W. Are species’ responses to global change predicted by past niche evolution? Phil Trans R Soc Lond B. 2013;368(1610):20120091. http://dx.doi.org/10.1098/rstb.2012.0091

Crisp MD, Arroyo MTK, Cook LG, Gandolfo MA, Jordan GJ, McGlone MS, et al. Phylogenetic biome conservatism on a global scale. Nature. 2009;458(7239):754–756. http://dx.doi.org/10.1038/nature07764

Pridgeon AM, Cribb P, Chase MW, Rasmussen FN. Genera Orchidacearum Volume 4: Epidendroideae. Oxford: Oxford University Press; 2005.

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib. 2011;17(1):43–57. http://dx.doi.org/10.1111/j.1472-4642.2010.00725.x

Phillips SJ, Dudík M, Schapire RE. A maximum entropy approach to species distribution modeling. In: Proceedings of the twenty-first international conference on Machine learning. New York NY: ACM; 2004. p. 655–662.

Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190(3–4):231–259. http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026

Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr. 2007;34(1):102–117. http://dx.doi.org/10.1111/j.1365-2699.2006.01594.x

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Clim. 2005;25(15):1965–1978. http://dx.doi.org/10.1002/joc.1276

Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, et al. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum. Part 1: experiments and large-scale features. Clim. 2007;3(2):261–277. http://dx.doi.org/10.5194/cp-3-261-2007

Urbina-Cardona JN, Loyola RD. Applying niche-based models to predict endangered-hylid potential distributions: are neotropical protected areas effective enough. Trop Conserv Sci. 2008;1(4):417–445.

Olson JS, Watts JA, Allison LJ, United States Dept of Energy Office of Basic Energy Sciences Carbon Dioxide Research Division, Oak Ridge National Laboratory, Union Carbide Corporation, et al. Carbon in live vegetation of major world ecosystems. Washington DC: U.S. Department of Energy; 1983.

Arditti J. Fundamentals of orchid biology. New York NY: Wiley; 1992.

Yam TW, Yeung EC, Ye XL, Arditti J. Orchid embryos. In: Kull T, Arditti J, editors. Orchid biology VIII – reviews and perspectives. Dordrecht: Kluwer Academic Publishers; 2002. p. 287–385.




DOI: https://doi.org/10.5586/asbp.2013.024

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society