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On generalized Berwald manifolds with semi-symmetric
compatible linear connections

By CSABA VINCZE (Debrecen)

Abstract. Generalized Berwald manifolds are special Finsler manifolds admitting

compatible linear connections on the base manifold. Compatibility means that the par-

allel transports preserve the Finslerian length of tangent vectors. It is known [13] that

any compatible linear connection is Riemann metrizable by the averaged Riemannian

metric which is given as the integral of the Riemann-Finsler metric over the indicatrix

hypersurfaces. The basic questions are the unicity of the compatible linear connection

and its expression in terms of the canonical data of the Finsler manifold (intrinsic char-

acterization). Here we discuss the case of Finsler manifolds admitting compatible linear

connections with vanishing trace-less part in the torsion. Our main results are the in-

trinsic characterization and the proof of the uniqueness of such a linear connection (if

exists).

1. Introduction

I. Let M be a differentiable manifold with local coordinates u1, . . . , un on

U ⊂ M . The induced coordinate system on the tangent manifold consists of the

functions

x1 := u1 ◦ π, . . . , xn = un ◦ π and y1 := du1, . . . , yn = dun,

where π : TM → M is the canonical projection. A Finsler structure on a dif-

ferentiable manifold M is a smoothly varying family F : TM → R of Finsler–

Minkowski functionals in the tangent spaces satisfying the following conditions:
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• each non-zero element v ∈ TM has an open neighbourhood such that the

restricted function is of class at least C4 in all of its variables x1, . . . , xn and

y1, . . . , yn,

• F is positively homogeneous of degree one, i.e. F (rv) = rF (v) for any

positive real number r and F (v) = 0 if and only if v is the zero element of

the tangent space,

• (regularity condition) the Hessian matrix

gij :=
∂2E

∂yj∂yi

of the energy function E := (1/2)F 2 with respect to the variables y1, . . . , yn

is positive definite.

Using the regularity condition we can introduce the metric tensor g = gijdy
i⊗dyj

on the tangent spaces. The so-called Riemann–Finsler metric g is defined only on

the punctured space TpM \{0} because the second order partial differentiability of

the energy function at the origin does not follow automatically. Further canonical

objects are

dµ =
√
det gij dy1 ∧ . . . ∧ dyn,

the Liouville vector field C := y1∂/∂y1 + . . . yn∂/∂yn and the induced volume

form

µ =
1

F
ιCdµ =

√
det gij

n∑
i=1

(−1)i−1 y
i

F
dy1 ∧ . . . ∧ dyi−1 ∧ dyi+1 . . . ∧ dyn

on the indicatrix hypersurface ∂Kp := F−1(1) ∩ TpM belonging to the Finsler–

Minkowski functional of the tangent space. The Riemann–Finsler metric (together

with the associated canonical objects) can be also interpreted as a Riemannian

metric (volume forms, vector field) on the vertical subbundle or the pull-back

bundle by the canonical projection. For the foundations of Finsler geometry see

[3], [8] and [10].
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II. Let f : TM → R be a zero homogeneous function and let us define the

average-valued function1

Af (p) :=

∫
∂Kp

f µp.

Especially we can introduce the averaged Riemannian metric

γp(v, w) :=

∫
∂Kp

g(v, w)µ. (1)

The basic version (1) of the averaged Riemannian metric tensors was introduced

in [13]. For further processes to construct Riemannian metric tensors by averaging

we can refer to [4], see also [2]. Weighted versions by the measure of the indicatrix

body can be also used. For more technical results including the expression of the

Lévi–Civita connection in terms of Finslerian objects see [4] and [17].

Definition 1. A linear connection on the base manifold is compatible with

the Finslerian structure if the parallel transports preserve the Finslerian norm of

tangent vectors. Finsler manifolds admitting compatible linear connections are

called generalized Berwald manifolds.

Theorem 1 ([13]). If a linear connection on the base manifold is compatible

with the Finslerian structure then it must be metrical with respect to the averaged

Riemannian metric γ.

It is well-known that metrical linear connections are uniquely determined by

the torsion tensor. Consider the decomposition

T (X,Y ) := T1(X,Y ) + T2(X,Y ),

where

T1(X,Y ) := T (X,Y )− 1

n− 1

(
T̃ (X)Y − T̃ (Y )X

)
,

T2(X,Y ) :=
1

n− 1

(
T̃ (X)Y − T̃ (Y )X

)
and T̃ is the trace tensor of the torsion. The trace-less part T1 is automatically

1Integration is taken with respect to the orientation induced by the coordinate vector fields

∂/∂y1, . . . , ∂/∂yn. It can be easily seen that the integral∫
K

f dµp =

∫
y(K)

f ◦ y−1
√

det gij ◦ y−1 dy1 . . . dyn

is independent of the choice of the coordinate system (orientation). Actually, the orientation is

convenient but not necessary to make integrals of functions sense [18].
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zero in case of n = 2. In case of n ≥ 3 the trace-less part can be divided into two

further components A1 and S1 by separating the axial (or totally anti-symmetric)

part A1. This means that its lowered tensor with respect to the Riemannian

metric is totally anti-symmetric:

T (X,Y ) = A1(X,Y ) + S1(X,Y ) + T2(X,Y ).

Then we have eight classes of metrical linear connections depending on that the

terms A1, S1 and T2 are surviving or not [1]. At the same time we have eight

classes of generalized Berwald manifolds. They correspond to the elements of

(Z2)
3 in such a way that we use the term 1 if the corresponding component is not

identically zero. Generalized Berwald manifolds of type

• (0, 0, 0) are the classical Berwald manifolds admitting torsion-free compatible

linear connections on the base manifold [12].

• (0, 0, 1) are Finsler manifolds admitting compatible linear connections with

vanishing trace-less part in the torsion (the only surviving term is T2). In

an equivalent terminology, such a metrical linear connection is called semi-

symmetric.

• (1, 0, 0) are Finsler manifolds admitting compatible linear connections with

totally anti-symmetric torsion tensor (the only surviving term is A1). It is

a well-known [1] that metric connections with totally anti-symmetric torsion

have the same geodesics as the Lévi–Civita connection, i.e. all of these con-

nections have an associated spray in common (the spray of the Lévi–Civita

connection of the averaged Riemannian metric).

2. Problems and solutions

The paper is devoted to the discussion of generalized Berwald manifolds of

type (0, 0, 1). This means that we have a Finsler manifold admitting a compatible

semi-symmetric linear connection on the base manifold. There are some partial

results [14] in case of torsion tensors of the form

T =
1

2
(1⊗ dα− dα⊗ 1) , (2)

where α : M → R is a smooth function. Hashiguchi–Ichyjio’s theorem [7] states

that a Finsler manifold admits a compatible linear connection with torsion (2) if

and only if it is conformal to a Berwald manifold: the conformal change Eα =
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eα◦πE results in a Berwald manifold. Conformally Berwald Finsler manifolds or

Finsler manifolds admitting compatible semi-symmetric linear connections with

exact 1-forms in the torsion are called exact Wagner manifolds. A more general

case is to consider closed 1-forms in the torsion2: for any point p ∈ M there exist

an open neighbourhood around p and a smooth function αp : Up → R such that

dαp = β and T =
1

2
(1⊗ β − β ⊗ 1) . (3)

Let us introduce the notion of closed Wagner manifolds for Finsler spaces ad-

mitting compatible semi-symmetric linear connections with closed 1-forms in the

torsion. The main question is how to generalize Hasiguchi–Ichijyo’s theorem. It

is clear from the global version of the theorem that for any point of a closed

Wagner manifold has a neighbourhood over which it is conformal equivalent to a

Berwald manifold. This means that closed Wagner manifolds are locally confor-

mal to Berwald manifolds. What about the converse? The exterior derivatives

of the local scale functions constitute a globally well-defined 1-form if and only if

they coincide on the intersection of overlapping neighbourhoods. In other words

the compatible linear connection on the intersection of overlapping neighbour-

hoods should be uniquely determined. This gives the question that how many

essentially different ways there are for a Finsler manifold to be conformal to a

Berwald manifold. Alternatively: are there non-homothetic and non-Riemannian

conformally equivalent Berwald spaces? This is just the Matsumoto’s problem

[9]. It has been solved in [14] and [15], see also [16]. The basic result is that up to

homothetic changes there is (at most) one way for any non-Riemannian Finsler

manifold to be conformal to a Berwald manifold. Therefore we have the following

generalization of the classical Hashiguchi–Ichyjio’s theorem.

Theorem 2 ([14], [15]). A Finsler manifold is a closed Wagner manifold if

and only if it is a locally conformally Berwald manifold.

Another important task is to express the compatible linear connection in

terms of the canonical objects of the Finsler manifold. This problem has been also

solved in [14] for closed Wagner manifolds. The main point of the present paper

is to solve the problem of the intrinsic characterization without any additional

condition for the 1-form β. As a direct consequence we also have the uniqueness

of such a linear connection (if exists).

2Semi-symmetric metric linear connections with closed 1-forms in formula (3) for the torsion are

very important in differential geometry: if β is closed then all the classical curvature properties

are satisfied which is crucial for the classification of the holonomy groups and Simon’s theory

of holonomy systems [11].
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3. The main result

Consider a generalized Berwald manifold of type (0, 0, 1). This means that we

have a Finsler manifold admitting a compatible linear connection ∇̄ with torsion

T (X,Y ) = λ(Y )X − λ(X)Y, (4)

where λ is a 1-form on the base manifold M ; for the sake of simplicity all the

constant proportional terms are involved in λ. In what follows we use the symbol

∇∗ for the Lévi–Civita connection of the averaged Riemannian metric γ. In the

sense of Theorem 1 the connection ∇̄ must be metrical with respect to γ and a

routine calculation shows that

∇̄XY = ∇∗
XY + λ(Y )X − γ(X,Y )U, (5)

where the vector field U := λ♯ is defined by the formula γ(U,X) = λ(X). We

will use the language of associated horizontal distributions. Let c be an arbitrary

curve in the base manifold and consider a parallel vector field Xt along c with

respect to ∇̄. If F is the Finslerian fundamental function then the compatibility

condition implies that F is constant along Xt. By differentiation

0 = (F ◦Xt)
′ = ck

′ ∂F

∂xk
◦Xt +Xk′ ∂F

∂yk
◦Xt

= ck
′ ∂F

∂xk
◦Xt − Γ̄k

ij ◦ c ci
′
Xj ∂F

∂yk
◦Xt = ci

′
(
∂F

∂xi
− Γ̄k

ij ◦ πyj
∂F

∂yk

)
◦Xt

which means that ∇̄ is compatible with the Finslerian structure if and only if

X h̄
i F = 0 (i = 1, . . . , n), (6)

where the vector fields of type

X h̄
i =

∂

∂xi
− Γ̄k

ij ◦ πyj
∂

∂yk

span the associated horizontal distribution. The associated spray can be given by

a simple contraction:

S̄ := yi
∂

∂xi
− Γ̄k

ij ◦ πyiyj
∂

∂yk
.

Using equation (5) we have the relationships between the associated sprays and

the horizontal distributions:

S̄ = S∗ − λj ◦ πyjC + 2E∗Uv (7)
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and

X h̄
i = Xh∗

i − λj ◦ πyjXv
i + (Xv

i E
∗)Uv, (8)

where the vector fields

Xv
1 :=

∂

∂y1
, . . . , Xv

n :=
∂

∂yn

span the vertical subspaces (recall that the vertical and the horizontal subspaces

are direct complement to each other),

C := y1Xv
1 + . . . ynXv

n

is the Liouville vector field,

E∗(v) :=
1

2
γ(v, v)

means the Riemannian energy and the vector field

Uv := U1 ◦ πXv
1 + . . . Un ◦ πXv

n

denotes the vertical lift of U . From (7) we have immediately that

UvE =
S̄E − S∗E

2E∗ +
E

E∗λj ◦ πyj

because the homogenity of the Finslerian energy implies that CE = 2E. Equation

(8) says that

X h̄
i E

E
=

Xh∗

i E

E
− λj ◦ πyj

Xv
i E

E
+ (Xv

i E
∗)
UvE

E
. (9)

It can be written into the form

X h̄
i E

E
=

Xh∗

i E

E
+ λj ◦ πyj

(
Xv

i E
∗

E∗ − Xv
i E

E

)
+

1

2

S̄E − S∗E

E

Xv
i E

∗

E∗ . (10)

We put

ρ̄ :=
dh̄E

E
− 1

2

S̄E

E

dJE
∗

E∗ , (11)

ρ∗ :=
dh∗E

E
− 1

2

S∗E

E

dJE
∗

E∗ and f := log
E∗

E
, (12)

where J is the canonical vertical endomorphism (almost tangent structure) on

the tangent manifold defined by the formulas

J

(
∂

∂xk

)
=

∂

∂yk
and J

(
∂

∂yk

)
= 0,
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h̄ and h∗ are the horizontal endomorphisms [5], [6] associated with ∇̄ and ∇∗,

respectively. In general

h

(
∂

∂xk

)
= Xh

k and h

(
∂

∂yk

)
= 0.

Recall that any 1-form (endomorphism)K on the tangent manifold can be directly

composed with the exterior derivative of a function Φ : TM → R in the following

way:

dKΦ(Λ) := K(Λ)Φ,

where Λ : TM → TTM is a vector field on the tangent manifold. By the help of

notations (11) and (12) we can write

ρ̄ = ρ∗ + λj ◦ πyjdJf (13)

and, consequently,

dJ ρ̄ = dJρ
∗ + λj ◦ πdxj ∧ dJf (14)

because of dJ
2 = 0. Let us introduce the following gradient-type vector field

Θ = E∗ ∂f

∂yi
γij ◦ π ∂

∂xj
.

Substituting Θ into formula (14)

ιΘdJ ρ̄ = ιΘdJρ
∗ + E∗λj ◦ πγij ◦ π ∂f

∂yi
dJf − 1

E∗ ∥JΘ∥2λj ◦ πdxj ,

where the norm is taken with respect to the vertical lift of the Riemannian metric

tensor γ. Explicitly

∥JΘ∥2 = E∗2γij ◦ π ∂f

∂yi
∂f

∂yj
.

On the other hand

E∗λj ◦ πγij ◦ π ∂f

∂yi
= E∗γv(JΘ, Uv) = E∗Uvf.

Using equation (7)

E∗Uvf =
S̄f − S∗f

2

because the zero homogeneity of f implies that Cf = 0. On the other hand

S∗E∗ = 0 and, consequently,

S∗f = −S∗ logE = −S∗E

E
.
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In a similar way

S̄f = − S̄E

E
.

Therefore

ιΘdJ ρ̄ = ιΘdJρ
∗ +

S∗E − S̄E

2E
dJf − 1

E∗ ∥JΘ∥2λj ◦ πdxj

and we have that

ιΘdJ ρ̄+
1

2

S̄E

E
dJf = ιΘdJρ

∗ +
1

2

S∗E

E
dJf − 1

E∗ ∥JΘ∥2λj ◦ πdxj . (15)

Let us define3 the 1-forms

η∗(Xp) :=

∫
∂K∗

p

(
dJρ

∗(Θ, Xh) +
1

2

S∗E

E
Xv

i f

)
µ∗

and

η̄(Xp) :=

∫
∂K∗

p

(
dJ ρ̄(Θ, Xh) +

1

2

S̄E

E
Xv

i f

)
µ∗.

Then by (15) we can write

η̄(Xp) = η∗(Xp)− 2σ(p)λ(Xp), (16)

where

σ(p) :=

∫
∂K∗

p

1

2E∗ ∥JΘ∥2 µ∗. (17)

Before dividing by the function σ we discuss its possible values. It is clear from

the definition that σ(p) = 0 if and only if ∂Kp and ∂K∗
p are homothetic, i.e.

the Finslerian indicatrix reduces to a Riemannian one (a quadratic hypersurface

with respect to the averaged Euclidean inner product at p). In the special case

of generalized Berwald manifolds we can formulate the following result.

Lemma 1. For any generalized Berwald manifold σ is a constant function.

It is identically zero or strictly positive depending on that the manifold is Rie-

mannian or not.

3Note that the integrand is semibasic and we can use arbitrary horizontal lifting process X 7→ Xh

in its second argument.
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Proof. If we have a generalized Berwald manifold then we can compare

the Finslerian indicatrices in different tangent spaces by the parallel transport

with respect to the compatible linear connection. Such a linear connection is

compatible with both the Finslerian and the averaged Riemannian structure.

Therefore we have an invariant integral (17) under changing the base point and

σ is constant. Its vanishing at a single point implies that all of the Finslerian

indicatrices reduce to Riemannian ones. �

Theorem 3. A non-Riemannian Finsler manifold is a generalized Berwald

manifold admitting a semi-symmetric compatible linear connection if and only if

σ(p) > 0 for any p ∈ M and the linear connection

∇̄XY = ∇∗
XY +

1

2σ

(
η∗(Y )X − γ(X,Y )η∗♯

)
,

is compatible with the Finslerian structure.

Proof. From the compatibility condition ρ̄ = 0 and η̄ = 0. Now the result

follows immediately from equation (16) because ∇̄ is the only metrical connection

with

T (X,Y ) =
1

2σ
(η∗(Y )X − η∗(X)Y ) , (18)

i.e.

λ :=
η∗

2σ

in formula (4) for the torsion. �

4. Conformally invariant characterization

In what follows we are going to present Theorem 3 in terms of conformally

invariant quantities (functions, differential forms).

Lemma 2. The exterior derivative

θ :=
1

σ

(
dη∗ − 1

σ
dσ ∧ η∗

)
(19)

of η∗/σ and dh̄ logE are conformally invariant.

Proof. Consider the conformal change

Eα = eα◦πE ⇒ gα = eα◦πg
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of the Riemann–Finsler metric, where α : M → R is a smooth function on the

base manifold.

First step. The averaged Riemannian metrics are also conformally related with

the same proportional term: γα = eαγ because

∂Kα =
1√
eα◦π

∂K,

i.e. the indicatrices are pointwise homothetic and

det gα = (eα◦π)
n
det g ⇒ dµα = (eα◦π)

n/2
dµ and µα = (eα◦π)

n−1
2 µ.

For any zero-homogeneous function f (especially for any component of the Ri-

emann–Finsler metric gα)∫
∂K

f µ = (eα◦π)
n−1
2

∫
∂Kα

f µ =

∫
∂Kα

f µα. (20)

Second step. As a routine calculation shows

∇∗
α(X,Y ) = ∇∗

XY +
1

2
(XαY + Y αX − γ(X,Y ) grad∗α) ,

where the gradient operator is taken with respect to the averaged Riemannian

metric γ. Therefore

∇∗
α(X,Y ) = ∇̃XY +

1

2
XαY (21)

and

X
h∗
α

i = X h̃
i − 1

2

∂α

∂ui
◦ πC, (22)

where h̃ is the horizontal distribution associated to the metric linear connection

∇̃ under the choice

λ :=
1

2
dα

in formula (4) for the torsion (cf. formula (2)). By a simple contraction

S∗
α = S̃ − 1

2
αcC, (23)

where

αc :=
∂α

∂ui
◦ πyi

is the complete lift of the function α. Another type of lifting proccess for functions

is the so-called vertical lift αv := α ◦ π. It can be easily seen that

Xhαv = (Xα) ◦ π and Sαv = αc (24)
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independently of the choice of the horizontal distribution and the associated spray.

We put

ρ̃ :=
dh̃E

E
− 1

2

S̃E

E

dJE
∗

E∗ (25)

ρ∗α :=
dh∗

α
Eα

Eα
− 1

2

S∗
αEα

Eα

dJE
∗
α

E∗
α

and fα := log
E∗

α

Eα
= log

E∗

E
= f. (26)

Using equation (24)

dh∗
α
Eα

Eα
= dαv +

dh∗
α
E

E

(22)
= dαv +

dh̃E

E
− dαv =

dh̃E

E

because of the homogeneity property CE = 2E. On the other hand

dJE
∗
α

E∗
α

=
dJE

∗

E∗ (27)

and
S∗
αEα

Eα

(24)
= αc +

S∗
αE

E

(23)
= αc +

S̃E

E
− αc =

S̃E

E
. (28)

Therefore

ρ∗α = ρ̃. (29)

Using that fα = f and

Θα := E∗
α

∂fα
∂yi

γij
α ◦ π ∂

∂xj
= E∗ ∂f

∂yi
γij ◦ π ∂

∂xj
= Θ

we can follow directly the procedure in section 3 to conclude that

η∗α(Xp) = η∗(Xp)− 2σ(p)λ(Xp), where λ =
1

2
dα (30)

and

σ(p) :=

∫
∂K∗

p

1

2E∗ ∥JΘ∥2 µ∗. (31)

Equation (20) says that σα = σ and, consequently,

η∗α
σα

=
η∗

σ
− dα. (32)

This means that the exterior derivative (19) is conformally invariant.
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Third step. Using that

∇̄XY = ∇∗
XY +

1

2σ

(
η∗(Y )X − γ(X,Y )η∗♯

)
we have

∇̄α(X,Y ) = ∇∗
α(X,Y ) +

1

2σα

(
η∗α(Y )X − γα(X,Y )η∗♯αα

)
. (33)

Since the sharp operators of conformally equivalent Riemannian metrics are re-

lated by the simple formula

X♯α =
1

eα
X♯

it follows that

1

2σα
η∗♯αα =

1

2

(
η∗α
σα

)♯α

=
1

2eα

(
η∗α
σα

)♯
(32)
=

1

2eα

(
η∗

σ
− dα

)♯

=
1

2eα

((
η∗

σ

)♯

− grad∗α

)

and thus

∇̄α(X,Y )=∇∗
α(X,Y )+

1

2σ

(
η∗(Y )X − γ(X,Y )η∗♯

)
− 1

2
Y αX +

1

2
γ(X,Y )grad∗α

= ∇∗
XY +

1

2
XαY +

1

2σ

(
η∗(Y )X − γ(X,Y )η∗♯

)
= ∇̄XY +

1

2
XαY.

Therefore

X h̄α
i = X h̄

i − 1

2

∂α

∂ui
◦ πC (34)

and equation (34) shows that

dh̄α
logEα = dαv + dh̄α

logE = dαv + dh̄ logE − dαv = dh̄ logE

as was to be proved. �

Theorem 4. A non-Riemannian Finsler manifold is a generalized Berwald

manifold admitting a semi-symmetric compatible linear connection if and only if

σ(p) > 0 for any p ∈ M and dh̄ logE = 0.

Corollary 1. The class of generalized Berwald manifolds admitting semi-

symmetric compatible linear connections is closed under the conformal change of

the Riemann–Finsler metric.
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As a special case of compatible linear connections with closed 1-forms in the

torsion we have the following result.

Theorem 5 ([14]). A non-Riemannian Finsler manifold is a locally confor-

mally Berwald manifold if and only if σ(p) > 0 for any p ∈ M ,

dh̄ logE = 0 and θ :=
1

σ

(
dη∗ − 1

σ
dσ ∧ η∗

)
= 0.

The local conformal change to a Berwald manifold around a point p in M is given

by a function αp : U → R satisfying dαp = η∗/σ.

Corollary 2. The class of generalized Berwald manifolds admitting semi-

symmetric compatible linear connections with closed 1-forms in the torsion is

closed under the conformal change.
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