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The cohomology of S-sets

By PIERRE ANTOINE GRILLET (New Orleans)

Abstract. The triple cohomology theory of semigroup acts is studied.

Introduction

The cohomology of S-sets, where S is any given monoid, can be ap-
proached in two ways.

In [4] we defined group coextensions of a right S-set A by an abelian
group valued functor G on A, and showed that equivalence classes of group
coextensions of A by G are the elements of an abelian group. If for in-
stance S is commutative, this abelian group classifies the ways in which
an arbitrary S-set can be constructed from an atransitive S-set and sim-
ply transitive group actions. This invites a general cohomology theory for
S-sets, with abelian group valued functors for coefficients, whose second
group would classify group coextensions.

In [2] Beck showed that every variety has a triple cohomology the-
ory, with certain abelian group objects as coefficients, whose second group
(called H' in [1],[2]) classifies certain extensions. This general construc-
tion yields a number of algebraic cohomology theories [2], [1], including
the usual cohomology of groups, the Leech cohomology of monoids [5], [8],
and commutative semigroup cohomology [3].
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Key words and phrases: S-set, semigroup act, monoid act, cohomology, triple cohomol-
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For the variety of right S-sets we show in this article that the two ap-
proaches agree in dimension 2. Given a right S-set A we show in Section 1
that the abelian group objects which serve as coefficients in the triple co-
homology of A may be identified with abelian group valued functors on A
(up to an equivalence of categories). With this identification, we show in
Section 2 that Beck extensions of an abelian group valued functor G by
A may be identified with group coextensions of A by G (up to an isomor-
phism of categories); and we obtain in Section 3 a more concrete definition
of the triple cohomology of right S-sets, along with its basic properties.

1. Abelian group objects

1. In what follows, S is a monoid and A is a given right S-set (a set
A on which S acts so that al = 1 and (as)t = a(st) for all a € A and
s,t € S). A homomorphism of right S-sets is a mapping f which preserves
the action of S (f(xs) = f(x)s for all  and s). Right S-sets and their
homomorphisms are the objects and morphisms of a category C.

A right S-set over A is a pair X = (X, ¢) of a right S-set X and an
action preserving mapping £ : X — A; we use the exponential notation z*
for the action of S on X to distinguish it from forthcoming group actions.
Equivalently, X is a right S-set which is a disjoint union X = J .4 X4 in
which X? C X,; then (x) = a when = € X,,.

A homomorphism f : X — Y = (Y,v) of right S-sets over A is an
action preserving mapping f : X — Y such that v o f = &; equivalently,
f(X,) CY, for all @ € A. Right S-sets over A and their homomorphisms
are the objects and morphisms of a category C.

An abelian group object of C is a right S-set G = (G, ) over A together
with an “external” abelian group operation on every Homg(X, G), which
we write additively, such that Homg(—,G) is a (contravariant) abelian
group valued functor on €; equivalently, such that

(g+h)ef=(gof)+(holf)

whenever f: X — Y and g,h : Y — G are morphisms in €. Abelian group
objects can also be defined by an “internal” addition G x G — G, as in [6]
or in Lemma 1.2 below.
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A homomorphism ¢ : G — H of abelian group objects of € is a mor-
phism in € such that Homg(—, ¢) is a natural transformation; equivalently,
such that

po(g+h)=(pog)+(poh)

whenever ¢g,h : X — G are morphisms in C. Abelian group objects of €
and their homomorphisms are the objects and morphisms of a category.

2. To probe right S-sets over A we use the following construction.

Lemma 1.1. Let S° be the right S-set in which S acts on itself by
right multiplication (s' = st).
(1) For every right S-set X and x € X there is a unique homomorphism
x* 1 8% — X such that 2*(1) = x, namely z*(s) = x°.
(2) For every a € A, S, = (S°,a*) is a right S-set over A.
(3) For every right S-set X over A and x € X, z* is the unique homomor-
phism f : S, — X such that f(1) = x; hence x +— z* and f — f(1)
are mutually inverse bijections between Homg(S,, X) and X,,.
PROOF. z* is action preserving since z*(s') = x*(st) = 25t = (%)t =
x*(s)! for all s,t € S. Then z* is the unique action preserving mapping
S% — X such that 2*(1) = z, since s = 1°. If X = (X, &) is a right S-set
over A and = € X,, then £ o z* = a*, since £(2*(1)) = &£(x) = a = a*(1),
and z* € Homg(S,, X). Then z +— 2* and f — f(1) are mutually inverse
bijections between Homgp(S,, X) and X,, by (1). O
Applying Lemma 1.1 to an abelian group object G = (G, 7) of € yields
a partial addition on G.
Lemma 1.2. When G = (G,7) is an abelian group object over A:
(1) 7 is surjective;

(2) For every a € A an abelian group addition on G, is defined by
g+h=(g"+n")1)

for all g,h € G,, and satisfies (g + h)* = g* + h*;
(3) (g+h)® =g°+ h® for all g,h € G, and s € S;
(4) The addition on Homg(X,G) is pointwise for every X.
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PROOF. (1, 2): Let g,h € G,. Then g*, h* € Homp(S,,G) by Lem-
ma 1.1; ¢*, h* may be added in Homg(S,,G); and g + h € G, may be
defined as in (2). Then

(g+h)*=g"+h",

since (g + h)*(1) =g+ h = (¢* + h*)(1). Then g — g* is an isomorphism
of G, onto Hom@(Sa, G), by Lemma 1.1, and G, is an abelian group under
addition. In particular, G, # 0 for all a; hence 7 is surjective.

(4): Let g,h : X — G. For every x € X, we have goz* = g(z)*, since
g(z*(1)) = g(x). Hence

(G+h)ox* = (goa*) + (hox*) = gla)" + h(x)" = (§(x) + h(x));

evaluating at 1 yields (g + h)(z) = g(x) + h(x).

(3): Since addition on Homg(S,, G) is pointwise we have
(g+h)°=(g+n)(s)=(¢g"+h)(s) =g"(s) + h"(s) =g + . DI

By Lemma 1.2, g — ¢° is a homomorphism v, s : G4 — G5 for every
a, 8; Yq,1 is the identity on G, and Yas,¢ © Va,s = Va,s¢ for all a, s, ¢, since
(9°)" = g*".

This suggests an abelian group valued functor on the transitivity cat-
egory T(A) of A [4], whose objects are the elements of A and whose mor-
phisms are all pairs (a,s) € Ax .S, with (a,s) : a — as and (as,t)o(a,s) =
(a, st); the identity on a € A is (a,1). An abelian group valued functor
G = (G,7) on A (actually, on T(A)) assigns an abelian group G, to each
a € A and a homomorphism v, s : G, — Ggs to each (a,s) € A x S, so
that ~,,1 is the identity on G, and Y4t © Ya,s = Va,st, for all s,t € S and
a € A. It is convenient to write

Ya,s(9) = 9° € Gys when g€ G,

so that
(g+h)°=¢"+h% ¢ =g, and (¢°)' =g

for all g,h € G, and all s, t. We call G thin when 7, , depends only on a
and as (when as = at implies 74 s = Ya,t)-
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When G is an abelian group object over A, then the functor (G,~)
constructed after Lemma 1.2 is an abelian group valued functor on A. We
state this as part of:

Proposition 1.3. When G is an abelian group object over A, then
FG = (G, ) is an abelian group valued functor on A. When ¢ : G — H is
a homomorphism of abelian group objects over A, then Fy = (a90|Ga)aeA
is a natural transformation from FG to FH.

PRrROOF. First, p(G,) C H,, since ¢ is a homomorphism of right S-sets

over A. Let v, = ¢|g, be the restriction of ¢ to G,. For every g,h € G,
polg+h)=pol(gd"+h")=(pog’)+(poh’);

evaluating at 1 yields ¢(g + h) = ¢(g9) + ¢(h), so that every ¢, is a
homomorphism of abelian groups. Finally let FG = (G,v) and FH =
(H,§). Every square

q, —2, Hm,

’Ya,sl l‘s‘l’s

Gas H(IS
as

commutes: since ¢ preserves the action of S we have

¢as (1a,5(9)) = ¢(9°) = (9)" = da,s(al9))
for all g € G,, and Fy is a natural transformation from FG to FH. O

3. The converse of Proposition 1.3 is:

Proposition 1.4. Let G = (G, ) be an abelian group valued functor
on A. Let G=(G', ), where G is the disjoint union G’ = ¢ 4 (Ga % {a}),
(9,0)° = (Va,5(9),as) = (¢°,as), and 7(g,a) = a. With the addition on
Homg (X, Q) defined for every X by

(g + f_L)({E) = (9z + hz,a), where x € Xq, §(x) = (9, a), f_L({E) = (hs,a),

OG = G is an abelian group object of C. When ¢ : G — H is a natural
transformation of abelian group valued functors on A, then Oy : (g,a) —
(va(g),a) is a homomorphism of abelian group objects of C.
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PROOF. G’ is a right S-set since (g,a)! = (g,a) and ((g,a)s)t =

(g,a)* when g € G,. Moreover 7 is action preserving. Hence G is a right
S-set over A.

Let g,h: X — G be morphisms in C. If x € X,, then g(z), h(z) € G,
and g(z) = (gz,a), h(z) = (hsg,a) for some g, hy € Gy; hence a mapping
G+ h: X — G’ may be defined by (g + h)(z) = (gz + he,a) as in the
statement. Since g and h are homomorphisms of right S-sets over A we

have g(l,s) = g(x)s = (gxaa)s = (giaas)a h(xs) = (h;aas)a and
(g +h) (@) = (95 + h3,as) = (g2 + heya)® = ((§+ h) (@))%

thus g + h is a homomorphism of right S-sets over A. Addition on
Homg(X, G) is commutative and associative like the addition on every G,.
The identity element z : X — G of Homg(X, G) is given by z(z) = (0,q)
when z € X,: indeed

zZ(2®) = (0,as) = (0,a)’

z(x)”,
so z € Homp(X,G), and zZ + g = g for all § € Homg(X,G). The opposite
of g: X — G is similarly defined by (—g)(z) = (—gz,a) when x € X, and
g(z) = (gz,a); —g is a homomorphism since g(z®) = (g3, as) and
(=9)(@°) = (=gz,as) = ((=g2)°, a5) = (=gu, a)” = (=g)(z)".

Homg(X, G) is now an abelian group. If f : W — X is a morphism in C,
then (g+h)of = (gof)+(hof) forall g, h: X — G; hence G is a abelian
group object of C.

Let ¢ : G — H = (H,n) be a natural transformation of abelian group
valued functors on A. Then ¢ : (g,a) — (pq(g),a) satisfies

@((97 a)s) = @(’Ya,S(g)a as) = (SDaS(’Ya,S(g))a as)
= (na,s(%(g)),as) = (‘Pa(g)aa)s = (@(gak))s

(pa(hz),a), and
(950§+95OB)($) = (‘Pa(gx)‘i'@a(hx)aa) = (‘Pa(gx“‘hx)aa) = @((§+B)(x))

Thus Oy = @ is a homomorphism of abelian group objects of C. O
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Proposition 1.5. The functors F and O in Propositions 1.3 and 1.4
are equivalences of categories.

PROOF. Let G be an abelian group object of €. Then OFG = G’ =
(G',7), where G’ is the disjoint union G’ = [J,c4 (Ga x {a}), (g,a)® =

(9,
(Ya.s(9),as), and 7(g,a) = a, and the addition on every Homg(X,G’) is
defined by

(g + h)(x) = (gz + ha,a), where z € X, §(z) = (gu,a), h(x) = (hy,a).

Define 6 : G’ — G by g(g,a) = g € G,. Then ¢ is an isomorphism of
right S-sets over A. If moreover ¢ : G — H is a homomorphism of abelian
group objects, then g = OF¢p sends (g,a) to (p(g),a) and we see that
0y o @ = ¢ o fg. Thus 6 is natural in G.

Conversely let G = (G,7) be an abelian group valued functor on A;
then OG =G '= (G, ), where G is the disjoint union G'= |J (G, x {a}),
(9,0)* = (Yas(9),as), and 7(g,a) = a, and the addition on *€4
every Homg(X,G') is defined by

(g + h)(x) = (gz + ha,a), where z € X, §(z) = (gu,a), h(x) = (hy,a).
The induced addition on G/, = G, x {a} is given as before by
(9,a) + (h,a) = ((g,)" + (h,a)")(1)
for all (g,a), (h,a) € G/, using the mappings z* in Lemma 1.1; that is,
(9,a) + (h,a) = ((g,0)" + (h,a)*) (1) = (g + h,a)

since (g,a)*(1) = (g,a) and (h,a)*(1) = (h,a). Thus 8, : (g,a) — g is an
isomorphism of abelian groups of G/, onto G,. Moreover the homomor-
phism &, s in FG' = (G',§) are given by 0, 5(g,a) = (g9,a)* = (Va.5(9), as),
which show that 6 = (0,)qca is an isomorphism from FG' to G. It is
immediate that 6 is natural in G. O

2. Beck extensions

1. In @, a left action of an abelian group object G on an object E
assigns to every object X of C a left group action . of Homg(X,G) on
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Homg (X, E) which is natural in X; equivalently, such that
(g-€)of=(gof) (eof)

for all morphisms g: X — G, e: X — E, f: W — X. This “external”
group action can be replaced by an “internal” action G x E — E as in
Lemma 2.1 below.

In ©, a Beck extension of an abelian group object G by A is a right
S-set E = (E,7) over A together with an action of G on E such that

(BEl) Umop = 1ya for some p: UA — UE, where U : € — Sets is
the forgetful functor; in Sets this merely states that = is surjective;

(BE2) for every X the action of Homg(X,G) on Homg(X, E) pre-
serves projection to A : mo (g-€) = moé for every g : X — G and
e: X — E';

(BE3) for every X the action of Homg(X,G) on Homp(X, E)
simply transitive: for every €, f : X — F there exists a unique g : X —
such that - = f.

i

Q5

A homomorphism ¢ : E — F of Beck extensions of G by A is a
morphism in € which preserves the action of G:

po(g-e)=g-(poe)
for all X and morphisms g: X — G, é: X — E.

2. Applying Lemma 1.1 to a Beck extension E of G by A yields a
partial action of G on E.

Lemma 2.1. Let E be a Beck extension of G by A; let FG = (G, 7).
(1) For every a € A a simply transitive group action of G, on E, is defined
by
g-x=(g"2")(1)
for all g € G,, x € E,, and satisfies (g-z)* = g* - z*.
(2) (g-x)*=g°-a° forallg e G,, x € X,, and s € S.
(3) The action of Homg(X,G) on Homg(X, E) is pointwise, for every X.
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PrROOF. (1): When g € G, and = € E,, then g* € Homgp(
r* € Homgp(S,, E) by Lemma 1.1, and g* - 2* is defined in Homg(
and g-z € E, may be defined by g-z = (¢*-2*)(1). Then

Sa; G),
SaaE)a

since (g-x)*(1) = g-z = (¢*-2*)(1). The isomorphism g — ¢* and bijec-
tion x — z* take the action of G, on E, to the action of Homg(S,,G) on
Hom@(ga, E); therefore the former is, like the latter, a simply transitive
group action.

3): Let g: X — G and e : X — E. For every x € X, we have
gox* =g(x)*, since g(z*(1)) = g( ), and € o z* = é(x)*. Hence
(g-e)oa* = (goa™) (eox*) = g(a)*-e(x)" = (g(x)-e(x))";
evaluating at 1 yields (g-e)(x) = g(x) - e(x).
(2): Since the action of Homg(S,, G) on Homg(S,, E) is pointwise we
have

(g-2)" = (g-2)"(s) = (¢"-2")(s) = g"(s) - 2" (s) = g° - 2" O

This last equation can be rewritten

(g : l,)s = 7&,3(9) KA

and implies that F is a group coextension of A by FG as defined in [4].
Specifically, a group coextension (E,m,.) of A by a group valued functor
G = (G,~y) on A consists of a right S-set E, an action-preserving surjection
m: FE — A, and, for every a € A, a simply transitive action . of G, on E,
such that

(9-2)° =Yas(g) 2° =g° 2"
for all g € Go, x € E4, a € A, and s € S. An equivalence 0 : (E,m,.) —
(F, p,.) of group coextensions of A by G is a bijection 6 : E — F which
preserves the action of S (6(x®) = 0(x)*®), projection to A (p(0(x)) = 7(x))
and the action of G (6(g-z) =¢g-0(x)).

Proposition 2.2. Let G be an abelian group object of € and G = FG.
When E = (E, ) is a Beck extension of G by A, then CE = (E,7,.) is
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a group coextension of A by G. When ¢ : E — F is a homomorphism of
Beck extensions of G by A, then Cp = ¢ : CE — CF is an equivalence of
group coextensions.

PRrROOF. First, ¢ preserves projection to A (p(E,) C Fy) and the
action of S, since ¢ is a homomorphism of right S-sets over A. For every
g€ G, and x € E,,

pol(g-x)" =po(g-z")=g"-(pox”);

evaluating at 1 yields ¢(g-x) = g- (), so that ¢ preserves the action

3. The converse of Proposition 2.2 is:

Proposition 2.3. Let C = (C,7,.) be a group coextension of A by
an abelian group valued functor G = (G,v) on A; let G = OG. With the
action . of Homg(X,G) on Homg(X,C) defined for every X by

(§-6)(x) = g - &(x), where x € Xo, g(z) = (92 a),

C is a Beck extension EC of G by A. When 6 : C — D is an equivalence
of group coextensions of A by G, Ef = 0 is a homomorphism of Beck
extensions of G by A.

PROOF. By definition, G = (G’,a), where G’ is the disjoint union
G’ = Upea (Ga x {a}), (g,a)° = (¢°,as), a(g,a) = a, and addition on

Homg(X, G) is given by
(g + }_l)(l') = (gx + hxaa)a Where T e Xaa g(lf) = (giﬂaa)’ ]_7“(1’.) = (hiﬂaa)'

Let g : X — G and ¢ : X — C be morphisms in €. If z € X,
then ¢é(x) € Cy and g(z) € G, g(z) = (gz,a) for some g, € G,; hence a
mapping g-¢ : X — G’ may be defined by (g-¢)(z) = g, -¢(x) as in the
statement. Since g and ¢ are homomorphisms of right S-sets over A we
have g(z°) = g(2)* = (9o, 0)* = (93, as), &(z*) = ¢(x)*, and

(9-0)(°) = g3 - &2)* = (g2 2(2))” = ((g-O)(@));

thus g - ¢ is a homomorphism of right S-sets over A. The definition of g - ¢
shows that (g-¢)o f = (go f)-(co f) whenever f : W — X is a morphism
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in €. The action of Homg(X,G) on Homg(X,C) is a simple group action

like the action of G, on C,. To show transitivity let ¢,d : X — C be
morphisms in €. Define a mapping g : X — G’ as follows: when = €
X, then &(x), d(z) € C, and there exists a unique g, € G, such that

gz -&(z) = d(z); let g(z) = (gz,a). We have
d(z°) = d(z)* = (g, - &(x))” = g5 - &(2)* = g5 - &(2®);
hence
9(z%) = (g3, as) = (92, a)" = g(2)°

and g : X — G is a homomorphism of right S-sets over A. Also g-¢ = d
by definition. Hence C is a Beck extension EC of G by A.

Let  : C — D = (D,6) be an equivalence of group coextensions of
A by G. Then 6 is a morphism in €. Let g: X — Gandé: X — C
be homomorphisms of right S-sets over A. When z € X, we have g(z) =
(gx,a) for some g, € G, and

0((g-e)(x) = 0(g. - e(w)) = g 0(c(x)) = (- (0 0 0))(x);

hence fo(g-¢) = g-(foc). Thus 0 is a homomorphism of Beck extensions.
O

Proposition 2.4. The functors C and E in Propositions 2.2 and 2.3
are isomorphisms of categories.

PROOF. Let C' = (C,7,.) be a group coextension of A by G = (G, 7).

Let G = OG, so that G = (G',a), where G’ is the disjoint union G’ =

Uen (Ga x {a}) ,a)® = (Va,5(9),as), a(g,a) = a, and addition on each
Homp(X,G) is glven by

(g + h)(z) = (g2 + he,a), where x € X4, §(x) = (g2, a), h(z) = (he,a).
Then EC = C is a Beck extension of G by A; the action of Homg(X, G)
on Homg(X,C) is given by

(g-0)(z) = gz -e(x), where x € X, g(x) = (9, ).

Next, CEC = (C,7,.) is a group coextension of A by FG, in which G,
acts on C, by

(9.0) 2= ((g,a)"-2")(1)
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for all (g,a) € G/, x € Cy; that is,

((g.a)"-a")(1) =g-2"(1) = g-=,

since (g,a)*(1) = (g,a) and x*(1) = x. Thus, up to the isomorphism
FG = G, the action of G/, on C, in CEC coincides with the given action
in C, and CEC = C.

Conversely let E be a Beck extension of G by A. Then CE = C =
(E,,.) is a group coextension of A by FG, in which G, acts on E, by

g-x=(g"-2")(1)

for all g € Gy, x € E,; then the action of Homg(X, G) on Homg(X, E) is
pointwise. Next, EC = C is a Beck extension of OFG by A. Now OFG =
G’ = (G’,a), where G’ is the disjoint union G’ = J,c 4 (Aa % {a}). The
action of Homgp(X,G') on Homg(X,C) is given by

(9'-e)(x) = go - e(x), where z € Xq, §'(z) = (ga, ).

Let § € Homp(X,G), ¢ € Homp(X,C); when x € X,, then §'(z) =
(§(z),a) defines § € Homg(X,G'), and

(' -e)(z) = g(x)-e(x) = (3-O)(x),

since the action of Homg(X,G) on Homg(X, E) is pointwise. Thus, up
to the isomorphism OFG = G, E and ECE have the same action of
Homg(X,G) on Homg(X, E), and ECE = E. O

3. Cohomology

1. The ingredients of triple cohomology are: categories Z and C; a
functor U : € — Z with a left adjoint F : Z — €, providing natural
transformations 7 : 14 — UF and € : FU — 1g; an object A of C; and an
abelian group object G in the category € of objects of € over A.

The adjunction (F,U,n,¢€) lifts to an adjunction (F,U,7,¢€) between
€ and the category Z of objects of Z over UA; when ¢ : Z — UA and
p:C — A then

I_F(Z, C) = (FZ> C_)a H_J(Ca :0) = (UC> U,O), ﬁ(Z,C) =Nz, E(QP) = €C,
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where ¢ : FZ — A is the unique morphism such that U o5z = ¢ (equiva-
lently, ¢ = €4 0 F(¢). Let V= FU. When C is an object of C and n > 1,

C"(C,G) = Homp(V"C, G)
is an abelian group. The coboundary 6" : C™*(C,G) — C"TY(C,G) is

") =Y (~D'poey’
0<in
for every ¢ : V'C — G, where
eg’i = V" leyip s VIO — VO,
also 60 = 0 : 0 — CY(C,G). A standard argument, using the identity

€I o entli = i o " TLitl which holds for all 4,5 = 0,1,...,n, yields
"1 06" = 0. Hence

B"(C,G) =Imé" ! C Kerd" = Z2™(C, G)
for all n > 1. By definition
H"(C,G)=2Z"(C,G)/B"(C,G)
for all n > 1. In particular,
H™(A,G) = H"(A,G),

where A = (A, 14). In [2], [1], H*(C, G) is called H"~(C, G); here we use
a more traditional numbering.

For this cohomology, BECK proved the following properties ([2], The-
orems 2 and 6).

Theorem A. H"(FX,G) = 0 for all n > 2, and H'(VC,G) =
cYC,q).

A sequence G — G’ — G of abelian group objects and morphisms
is short V-exact when

0 — Homp(VC, G) — Homp(VC,G') — Homg(VC,G") — 0

is short exact for every C.
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Theorem B. Every short V-exact sequence & : G — G' — G" of
abelian group objects of € induces an exact sequence

CCHY(C,G) — HY(C,G') — HYC,G") — H™L(C,G)---
which is natural in & and C.

Theorem C. When € is tripleable over Z, there is a one-to-one cor-
respondence between elements of H?(A,G) and isomorphy classes of Beck
extensions of G by A.

Up to natural isomorphism, H"(C, —) is the only abelian group valued
functor for which Theorems A and B hold [1]; [1] has a similar characteri-
zation of H"(—,G).

2. Now let S be a monoid, € be the category of right S-sets and action
preserving mapping s, A be a fixed right S-set, and € be the category of
right S-sets over A and their homomorphism s, as in Sections 1 and 2;
U : € — Sets is the forgetful functor to the category Sets of sets and
mappings, which strips right S-sets of the action of S.

Every set Z has a free right S-set FZ = Z x S, in which (z,s)! =
(z,st); when f : Z — T is a mapping, then Ff : (z,5) — (f(2),s) is
action preserving. The mapping 7z : z — (2, 1) has the requisite universal
property: for every mapping f : Z — Y of Z into a right S-set Y there
is a unique action preserving mapping g : FZ — Y such that gonz = f,
namely, g(z,s) = f(2)®. Thus F = — x S is a left adjoint of U. In this
adjunction, ex : X x § = FUX — X is the action of S: indeed ex is
the unique action preserving mapping such that Uex o nx = lyx; hence
ex(z,1) = x and ex(x,s) = z°.

F,U, 7, €) between C
and the category of sets over UA, as follows. When (Z, f) is a set over A
(where f : Z — A is a mapping), F(Z, f) = (FZ, f) = (Z x S, f), where
f:Z xS — Ais the unique morphism such that Uf o nx = 7

The adjunction (I, U, n, €) lifts to an adjunction (

fz,8) = f(2)°

equivalently, f = e4 o Ff. For any right S-set X = (X, ) over A,
UX = (UX,Ur) = (X,7) strips X of the action of S; Nx,r) = 1x; and
€(X,m) = €X-
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When X = (X, ) is a right S-set over A,
VX =FU(X,n) = (X x S,7),
where (z,5)! = (z,st) and 7(z,s) = n(z)%; if f: X — Y is a homomor-
phism of right S-sets over A, then Vf = f x S: (z,s) — (f(x), s).

We identify (X x S"71) x S with X x S", and ((:1:,31, e ,sn_l),sn)
with (z,81,...,80-1,8,). When n > 1,

V"X = (X x 8", 7,);
S acts on V"X by
(,81, .y Sn—1,50)" = (%, 81,...,Sn—1, SnS);
and 7, = T,_1 is found by induction:

T (T, 81y« s Sn—1,8n) = Tp—1(x, 81, .., Sp—1)""

= 7Tn—2(l’7 S1y. .. ,Sn_g)s”_l’s" = ...

— 7'('((17)81'“8”'_18" .

A similar induction yields ET)L(’l = V" leyig : VPTLX — V"X, First,
n7n — — .
6X —Gan.
n,n .
€ (2,81, ,8n,8n41) = (@, 81,...,80-1,8p)"" "
= (xa S1y+++5Sn—1, Snsn-‘rl)'

n—1,2

If 0 < i < n, then egL(’i = Vey 7 and

e?(’i(x, S1y+v-y8n,8n41) = (e}_l’i(fc, S1y--+55n), sn+1)
= (e} (z, 81, .. ,Sn_l)Sn,Sn+1) =
= (6X (xa 81y S0, Si-‘rl)a Si42y -5 Sn, 5n+1)
= (T, 81, -+, 81,5841, 5i42, - - -, Sn+1)-
Similarly, e?o = V"ex and
ET)L(’O(I‘, S1s-+n38nsSnt1) = (2%, 82, ..., Sny Snt1)

since egéo(a:,sl) =ex(z,s1) = x.
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3. We now turn to cochains.
Lemma 3.1. Let X = (X, m) be a right S-set over A, G be an abelian
group object over A, and G = (G,~) = FG. There is an isomorphism
0:0"X,q) — H Gr, ic
ceEYn—1X
which is natural in X and G. When v € C"(X,Q),

O(v) = (v(x, S1y.nySn_1, 1))(x,sh...,sn_l)evn—l)_{;

when u = (u(c))
by

ccyn—1%: U= O~ Y(u) is given for all (z, s1,...,5,) € V"X

(T, 81,y Sn—1,5n) = w(T,81, .-, 8n—1)"".

PrROOF. When u = (U(C))cevn*}’( € [l.cyn-1x Gro_ye, define v =
ZE(u) : VX — G for all (x,s1,...,8,) € V'X by

V(T 81,y Sn—1,8n) = u(x,81,...,8,-1)""
as calculated in G; Z(u) will be ©1(u). If a = m,_1(z,51,...,8,_1), then
u(x,$1,...,8,-1) € G4 and
V(T 81,y Sn—1,8n) = u(T,81,...,8,-1)°" € Gas,,;

thus v preserves projection to A. Also
v((x, ST,y Sn_1, sn)s) = v((w, S1yenySn_1s sns))

=u(z,81,...,8,-1)""° = (v(:l:, S1yenySn_1, sn)s).
Therefore v is a homomorphism of right S-sets over A and
v € Homp(V"X, G) = C"(X, G).

We see that ©(v) = u.

Conversely, let v be an n-cochain v € C*(X,G) = Homgp(V"X, G).
If a = mp_1(x,81,...,8,-1), then v(z,s1,...,8,-1,1) € G, and u =
O(v) € [[.cyn1x Grn_1e» since u(c) € G4 when ¢ = (x,51,...,5,-1) and
Tn—1¢ = a. The calculation above shows that v = Z(u). Thus © and =
are mutually inverse bijections. Since the addition on [] cyn-15 Gr,_,c I8
componentwise, and the addition on Hom@(V”X , A) is pointwise, © is in
fact an isomorphism. Naturality is immediate. O
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4. Lemma 3.1 suggests that we define

C"X,G)= [] Groic
ceYn—1X

Note that the latter depends only on G. Then C"(X,G) = C"(X,G)
when G = FG. The coboundary becomes:

I

Lemma 3.2. Up to the natural isomorphisms C"(X,G) = C"(X,G),

(0"u)(x, 81, ..., 8,) = u(z®, 52,...,sn)
+ Z .’13 817'"Jsi—178i8i+178i+27"'7871)
0<i<n

+ (=D "u(x, 81,y 8p-1)°"
for all u € C"(X,G).

PROOF. The coboundary C*(X,G) — C" (X, G) is really © 0 §" o
O~ ! where © : C"(X,G) — C™(X,G) is the natural isomorphism in
Lemma 3.1. When u € C*(X,G), v=0"1(u) : VX — G is given by

V(T, 81,y Sp—1,8n) = u(w S1yvny8p—1)°"

Then w = 6"(v) = Y gcjcp(=1)'vo ey’ : V"X — G is given by

W(T, 81y, SnySntl) = Z (—1)%(6?(:5, 1y 50 Snt1))
0<i<n
=v(z®,82,..., 50, Snt+1)
+ Z V(Ty STy vy i1y SiSidtls Sit2y -« s Sntl)
0<i<n
+ (—=1)"v(x, 81,y Sn—1, SnSn+1)
Hence
O(w)(x, 81, .-, 8n) = wW(T, 81, ..., 8n,1)
=v(x®,s9,...,8n,1)
+ Z V(Ty STy vy Sim1y SiSidtls Sit2y -+ Sn, 1)

0<i<n
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+ (=1D)"v(x,81,.-.,Sn-1,5n)
= u(x817827 75n)
+ Z l‘ 81,...,Si_1,8i51+1,8,‘+2,...,Sn)
0<i<n
+ (—1)”u(w,51,...,sn_1)s”. ]

In particular, a 1-cochain u € C*(X,G) = [Leevox Groe = [oex Gra
is a family v = (u(m))xex such that u(x) € Gr, for all z, equivalently
u(x) € G, for all x € X,. Its coboundary is

(ou)(z,s) = u(x®) — u(z)®.
A l-cocycle is a 1-cochain z such that z(z%) = 2(z)® = 74,4(2(z)) for all
r € X,.
A 2-cochain u € [].cyix Gric = [l 5exxs Gr)s 18 @ family u =
(u(, 5))(93 9eXxS such that u(z,s) € Gr(y), for all s, z; equivalently
u(x,s) € Ggs when xz € X,. Its coboundary is

(6u)(z,s,t) = u(z®,t) — u(z, st) + u(z,s)".

A 2-cocycle is a 2-cochain z such that z(x, st) = z(2%,t) + 2(z, s) for all s,
t, z. A 2-coboundary is a 2-cochain b of the form b(z,s) = u(x®) — u(x)*
for some 1-cochain wu.

In general, Lemma 3.2 yields:

Theorem 3.3. Let X = (X,m) be a right S-set over A, G be an
abelian group object over A, and G = (G,~) = FG. Up to an isomorphism
which is natural in X and G, the triple cohomology groups of X with
coefficients in G are the homology groups H"(X,G) of the complex

0— CYX,G) - - — O"(X,6) 5 c"(X,G) —
in Lemma 3.2.

In other words, H"(X,
Z"(X,G) = Ker é", B*(X,
placing X = (X, 7) by A =
of A.

G) =2 HY(X,G) = Z™(X,G)/B"(X,G), where
G) =Imoé"tif n > 2, and BY(X,G) = 0. Re-
(A,14) in Theorem 3.3 yields the cohomology
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5. Theorems A, B, and C yield basic properties of triple cohomology.

Theorem 3.4. If A is a free right S-set, then for every abelian group
valued functor G on A we have H"(A,G) =0 for all n > 2.

This follows from Theorem A.

Theorem 3.5. Every short exact sequence & :0 - G —- G’ - G” —
0 of abelian group valued functors on A induces an exact sequence

- H"(A,G) —» H"(A,G') - H"(A,G") — H""(A,G)---
which is natural in €.

PROOF. This follows from Theorem B, applied to X = (4,14). Ex-
actness in the abelian category of abelian group valued functors on A
is pointwise [7]: 0 - G — G’ — G” — 0 is exact if and only if
0— G, — G, — G” — 0 is exact for every a € A. When G is identified
with the corresponding abelian group object OG, Lemma 3.1 provides for
any X = (X,&) € € a natural isomorphism

Homg(VX,G) = CY(X,G) = |[ Ge-

zeX

0= []Ga— [[ G = [ GE—0

zeX rzeX rzeX

Now

is exact. Hence G — G’ — G” is short V-exact, and Theorem 3.5 follows
from Theorem B. O

Theorem 3.6. There is a one-to-one correspondence between ele-
ments of H*(A,G) and equivalence classes of group coextensions of A
by G.

This follows either from Theorem C and Proposition 2.4, or from [4]
and the above descriptions of 2-cocycles and 2-coboundaries.

6. We prove one more property. As in [3] we show that the cohomology
of A is that of a projective complex in the category F of abelian group
valued functors on A. This provides a more direct proof of Theorem 3.5.
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For each n > 1 and a € A let
Cp(a) ={(z,81,...,8,) € AXS" | xs1...8, =a}.

Let Cp,(A), be the free abelian group on Cj,(a). For each s € S there is a
unique homomorphism kg s : Cp(A)g — Cp(A)gs such that

Ka,s(Z,81,...,50) = (Z,81,...,5n—1, 5n5).
Lemma 3.7. For every n > 1:
(1) Ch(A) = (Cn(A), k) is an abelian group valued functor on A;
(2) there is an isomorphism Homg4(C,,(A),G) = C"(A, G) which is natural
in G;
(3) C,(A) is projective in F.

PROOF. (1): kg1 is the identity on C),(A),, since it leaves fixed every
generator of Cy,(A)qa; Kas,t © Ka,s = Ka,st for all s,t € S, since

Kas,t("ﬁa,s(xa 817 AR 7871)) = (xa 8].7 s 7871—17 SnSt)
= Ha,st(xa S1y. .- 7871)

for every generator of Cy,(A),.

(2): Let ¢ = (¥aq)aca be a natural transformation ¢ : C,,(A) — G =
(G,7), so that 7,5 0 @q = Pas © kqs for all a,s. For every (z,s1,...,s,) €
AxS",

gOa(l‘, 154+, Sn) = @a(“b,sn(xa 815+, 8n-1, 1))
= ,Yb,sn (QOb(IL’, S1y+++3Sn—1, 1))
where a = 251 ... 8y, b=1a51...5,-1. Therefore @ is uniquely determined
by the n-cochain u = ©(y) defined by
u(x, 81,y Sn—1) = @p(T, 81, ..., 8n-1,1) € Gp,

where b = xs1...8,-1 = mp—1(x, $1,...,8,—1). In other words, the addi-
tive homomorphism O is injective.

Conversely let u € C"(A,G) = [[.cyn-1% Grp_1c- For every a € A
there is a unique homomorphism ¢, : Cy,(A), — G, such that

QOQ(I‘, 1y S'ﬂ) = Yb,sn (’UJ(I’, 1y S'ﬂ—l))
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whenever xsq...s, = a, where b =1xs1...5,_1. Then

Pas (/fw(a:, S1,. .. ,sn)) = ©as(T, 81,y Sn—1, SnS)
= Vb,sms (u(:l:, S1,... ,sn_l))
= Ya,s (’Yb,sn (U(l’, S1y- .- 73n—1)))
= Ya,s (goa(x, S1yen., sn))

whenever xs;...5, = a, so that 7,5 0 @4 = Pas © Kas and © = (Yq)aca
is a natural transformation ¢ = ®(u) : C,,(A) — G. We have O(p) = u:
indeed

(@(gp))(w, SlyeveySn—1) = @a(®y81,...,8pn-1,1) = u(x,s1,...,8,-1)

where a = s ... 5,1, since 7,1 is the identity. If conversely ¢ : C,,(A) —
G is a natural transformation, then

@(@(gp))a(fc, 515+ 5n) = Vb.sn (@(gp)(w, S1yen., sn_l))
= Vo,on (P6(T, 81, Sn—1,1))
= Qbs,, (/*ib“gn (2,81, Sn—1, 1))
= @q(x,81,...,5n)
whenever xsy...s, = a, with b = xsy...s,_1 as before. Therefore

@(@(gp))? = ¢. Thus © and ¢ are mutually inverse isomorphisms. Natu-
rality is immediate.

(3): Epimorphisms in F are pointwise [7]. If 0 : G — H is an epi-
morphism, then every o, : G, — H, is surjective, and so is the induced
homomorphism ¢* : C"(A,G) — C"(A,H): indeed o* is given by

(a* (u)) (¢) = One (u(c))

for all ¢ € C,(A); given v € C"(A,H) there is for every v(c) € Hp.
some u(c) € Gre such that or.(u(c)) = v(c), and then v € C"(A,G)
satisfies 0*(u) = v. Then Homg4(C,(A),G) — Homg4(C,(A),H) is an
epimorphism, by (2), showing that C,,(A) is projective in F. (This also
follows from [7].) O

Proposition 3.8. Up to natural isomorphisms, H"(A,G) is the co-
homology of the projective complex

0—Ci(A) — - —Cp(A) — Cpy1(A) « ---
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where 0 : C,,(A) — C,,_1(A) is given for all n > 2 by

Oa(x,81,...,8n) = (81, 59,... ,sn)
+ E ."L‘ 81,...,Si_1,518i+1,51~+2,...,Sn)
0<i<n
whenever zs1 ..., = a.

PROOF. For every u € C"(A,G)

we show that ¢ = ®(u) o 0 satisfies O(¢) = du, where ® and © are the
natural isomorphisms in the proof of Lemma 3.7. We have
ValT,81,...,8,) = (@(u))a(ﬁ(az, S1y..-, sn))
= (@(u))a(xsl, 89y + 3 8n)

+ Z (_1)i((1)(u))a(x7817'"78i—178i8i+178i+27"'7871)
0<i<n—1

+ (-1t (®(u)), (x, 51, Sn—2,Sn—15n)

= Vo5, (W(TS1, 82, .., Sn-1))
+ Z ) Vo, (W, 51, -, 811, 80841, Si2, -5 5n1))
0<i<n—1

-+ (—1)n_1’}/c,sn_1sn (’U,(J,’, Slyevey 3n—2))

whenever xs1...s, =a, withb=1xs1...s,_1 and c = x81...8,_2. Then

( (go))(x SlyevySn—1) = pp(x,81,...,80-1,1)

( u(xsy, S, ..., sn_l))
+ Z u(w 81,---,51—1,8i8i+1,51+2,---,Sn—l))
0<i<n—1

+ (=D o5, (u(z, s1,...,50-2)) = (6u)(z,81,...,5n-1),
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since 7,1 is the identity and

w(z, 81,5 5n-2)"""" = Vo5 (u(:c, S1y..., sn_g)). O
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