On the conditional laws of large numbers I

By I. G. KALMAR (Debrecen)

1. Introduction

In 1954 A. RENyI [3] has given a new axiomatic theory of probability in which
the conditional probability is the fundamental concept. He has also shown that
his theory has the same relation with reality as Kolmogorov's one, that is the most
important laws of large numbers hold true.

Our interest in this note will focus only the weak laws of large numbers®).
The proofs are generally based on an inequality (see Lemma 3.2) which is a general-
ization of the Markov’s inequality to conditional probability field. To study the
weak laws related to weakly dependent random variables we shall define the con-
ditional correlation-coefficient of two random variables.

2. Basic concepts and notations

We now define the basic concepts and give a list of symbols and conventions
frequently used in this paper without further explanation.

We shall denote the conditional probability field by [#, T,, T,. p], where #
is a non empty set, 7, is a g-algebra of subsets of #, 7,< 7T, is non empty, and
finally, the set function p(A4|B) of two set variables is defined for every Ac7,,
B¢ T,. Furthermore, it is supposed that the set function p(A4 ' B) satisfies the follow-
ing threec axioms:

(i) p(A4|B)=0,p(B|B)=1 if A€T,, B¢ T,.

(ii) For any fixed B<T, p(A| B) is a g-additive set function of A€ 7;.
(ii1) p(A!BC)p(B|C)=p(AB|C), provided that all expressions involved exist. Here
AB denotes the product of 4 and B.

4

Let @ denote an arbitrary element of # and let {={(w) be a T,-measurable
real valued function on . & is called random variable.

If CeT, is fixed then [, Ty, p(-|C)] is trivially a probability field and ¢ is
a random variable in ordinary sence. This allows one to define the conditional distri-
bution function F(x|C), conditional expectation E(E|C), conditional variance D(E|C),
conditional independence, etc. with respect to C, as the distribution function, ex-
pectation, variance, etc. in [, Ty, p(+|C)).

*) In Part II. we want to be concerned with strong laws of large numbers.
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For example
EGIC) = [&(w)dp(A]C),
>

where on the right-hand side is the abstract Lebesque integral of ¢ with respect
to the measure p(-|C).

Let &,, &, ... be a sequence of random variables. We say that &, converges
to & weakly with respect to CeT, if for all £=0

lim p(|&,—¢] = ¢/C) = 0.

For this kind of convergence the symbol

¥

ol

&2 8

r

1s used. We say that &, converges to & with probability 1 with respect to C if &, (w)—~
—~&(w) except on a set of p(-|C)-measure 0. We write

S €

For convenience we employ some constant notation: Let &, &,, ... be random
variables on the conditional probability field [, T,. T,, p] and let Q be a Borel
set of the real line. Let C¢T, and assume that

ENO)ET,, YOS C.
B, =¢{Y0), p.=p(BIC), E,=E(¢)B), D,=D(.lB),
provided that E(Z,|B,), D(£,|B,) exist. At last let

S ]) ‘EIGQ .
s,-{O, 540 =12 ...)

T, = 2;8,- and v, = ‘_g;a,-(g'i—b',-).

=

We put

3. Weak laws of large numbers

One of the most important problem to investigate some kind of limit of the
mean value of those observations (with respect to &,, &,, ...) which gave such result
that the conditionals B,, B,,... occured respectively. We can express this con-
ditional mean in terms of the following formula:

n
ZEIC.'
i=1
Tl

Rényi has already studied weak laws in [3]. From one of his strongest theorem
([3], Theorem 4.c.) follows that if &;, ,, ... are identically distributed and mutually
independent with respect to C€T, with finite expectation and variance E, D and
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D p,=< then
k=1
o
2, 8.'5:
Tn Cc
and what is more
n
Z 8¢
= . E.
% c

As Rényi also remarked J p;=< is a natural condition, because by Borel-
i=1

Cantelli lemma if > p,<< then with probability 1 (with respect to the measure

i=1
p(+|C)) only finitely many events of {B,,n=1,2, ...} may occur.
First of all we prove two lemmas for later use.

Lemma 3.1. If any k of {{,.,¢&., ..., &} is independent with respect to C and
E(}|C) exists (k is a fixed natural number) then

& k
PROOF.
AN
E(7|C) = E[(_js‘] C] -
i=1
k! E(gMgme ") =
= + %' -k n‘h'nlzl m ] (81 sz --.8""'[ )._.
ml et = - " oras ne
k! E(em i
g m,+..§m wk Myimg!...m,! (*|C) ... E(e"|C) =
k!
sy +2+ m,!'m,! ... m,! (E@IC)™ ... (E@IC))™ = (py+ Pt ... + D)~
Ml wabm,, . = mes n*

Q.e.d.

Lemma 3.2. Let o be a positive real number and let &, n be two random variables
such that there exist E(&*|C), E(*|C)=0 and & =0, |§|=0,n*=0. Then for all
e=0

[ . 1 E("C)

(3.2) Pl e C] = FEmwIO)
— = = — Eﬂ =___E(é¢IC)
PROOF. Let A-{lé[—slql} and X E(qqlc)‘ Then E(XIC) E(,,alC)’

where n 2
E(x|C) = E(x]AC) p(A|C)+ E(x|AC) p(A|C) =

= E(x|4C) p(4]C).
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Thus,
E($*AC)

p(A|C) = & p(A|C).
Q.e.d.

We now give some sufficient conditions for the existence of a real constant
E for which

2 &E > &
———=E and =

= E,
c

tﬂ
Our first result is a simple generalization of the well-known classical result
of Markov.

Theorem 3.3. Let &, &, ... be pairwise independent with respect to C such that
there exist E,, D, (n=1,2,...). Assume that

(3.3) %— -0 (n - <), where S:= >pDi (n=1,2,..),
AN i=m1
o pi
i=1
2 DE,—E]|
(3.4) 0 (n o).
2 P;
i=2
T hen
n n
2 &E; 2 & ¢
gl = E and ! = F.
t o6 . €

PrOOF. Firstly we prove that our conditions implies

(3.5) o => E.

Using Lemma 3.1 and Lemma 3.2 we have

P L SR 1" 7.4 B = - l =
) | ' &2 P
(=1
EE(EJEJ'E“C) 2 bi|Ei—E|
o 2= = =1 -0 (n - ).

t'vﬂ:

& 2 P &
I

Pi

]
-
I
-

=
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This proves (3.5). On the other hand by Lemma 3.2

n n 8
S e(E—E) , E[[_z . C]
- JEC| = 5 —=8 =
T, e E(t3C)
| ig: E(aﬂﬁi — E)*C) ' E((C: Ei)s|31) 1 iZ pi D}
-2 EIC) . F E(C) T @ E@IC)
By Lemma 3.1 E(z}|C)= [2 p‘] SO
i=1
an §(—E) j p: D}
- § g L i
p‘—l-T-—igle 5?‘1_ F=rn 2—-0 (n — ).
2 ‘%' Pi] ;,21' Pi]
This means that
Z ai(gl
(3.6) 2 ‘E? 0.
Furthermore,
Zsl‘éc 2 g(Si—E) Zsti
i=1 s = + i=1
T %, %

where the right-hand side tends weakly to E with respect to the measure p(-|C),
so the theorem is proved.

Remark. Let us observe that (3.6) holds without (3.4) too, thus, under the hypo-
theses of Theorem 3.3 except (3.4) it follows that

2 El(éi T, El)
o2 SNSRIy, ]
7, c

In Theorem 3.3 the condition of independence can be considerably weakened
if we exchange condition (3.3) for a stronger one. To do this we have to give the
notion of conditional correlation-coefficient of two random variables.

Assume that for the random variables ¢, &, there exist E(&;|B;), D(&;| B;)
(i=1,2). Then E(e(¢,—E)e(f,—E,)|C) also exists. Suppose that p,, p,, D,,

D,=-0 and let
(37} é L‘f Q (“) (81(‘-1 E)Sv(g; Ez]iC)
VpypaD, D,

The quantity R(&,, &, Q, C) which is dependent on Q and C too is called the
conditional correlation-coefficient of &,, &, with respect to Q and C.

8§ D
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To the conditional correlation-coefficient we make some simple remarks.

a) If Q=R' then C=4 and in this case R(,, &, O, C) may be regarded
as the ordinary correlation-coefficient of &;, &, in the probability field [#, T, p( - |#)).

b) If &, &, are independent with respect to C then R(¢,, &, Q,C)=0, that
is &, &, are uncorrelated.

C) |R(‘51, 62’ Qa C)lél fOI’ all 615 62’

This last property can be proved in the following simple way by the Cauchy
inequality.
Let &f=¢,(&;—E) (i=1,2). Then

(E@ (6~ EDa(&—EJIC) = [&"dp(4|C) [ & dp(4]C) =
B, By
=pipe [&"dp(A|B)) [ & dp(A|By) = pp.DiD}.

Now, the theorem in question can be stated as follows:

Theorem 3.4. Let us assume that there exist E(E,\B;), D(&\B;) (i=1,2,...) and

Zu‘ PilEi_El
(3.8) H -0 (n—- )
2 Pi

j=1

(39) S:=K2p, where S:= 3 p,Di and K is a real constant,
i=1 i=1
(3.10) R, ¢;,0,C) = R(li—j|),
where R(k) is a non-negative function on {0,1,2, ...} such that R(0)=1 and

3 R(i)

lim =0.

n—+es

T hen
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Thus, i1t will be sufficient to show that

2 &(&i—E)
- Va
—— =0
Tﬂ n C
However, by Lemma 3.2
Val 1 E(v;IC)
"[ e ‘””C] =FE@I0)
1 i§j=lE(ai(CE—Ei)aj(Cuj_Ejlc)
T E(tI[C)
Here
2 2 EC—Eye (- EpIC) = 3 3 RG.¢5,0,C) Vpip;D:D; =
n n S L n—1 n—k
= 2 21 R(li—jl) VP:PJD.‘D_:' = S§+2x2; R(k) 12; VPiPisiDiDisy =
i=1j= = =
n—1
= S7+2S; 3 R(k)
k=1

due the following computations

2Vpipi+kDiDi sk = piDi+pi ik Di s
and consequently

n—k n

n—k
ZiZ; VPiPiskDiDiyy = '_.Zl' (P D} + pisiDisy) = Zi;; p:Di = 28,.

v
p T

Hence,
e =1 e
= 8|C] = ? E(TE'C) =

| Si+253 S R(i) o, K S R()
i=1 i=1

= ;;5 = 3 = + - -0 (n = o)
s p.-] 2 P 2 Pi
f=1 1 i=1

Thus, ? = 0 and Theorem 3.4 is established.

In classical theory of probability it is known (see [1]) that a sequence n,, ns, ...
of random variables having first moment converges weakly to 0 if and only if

2
lim E 1‘,]:0

neoo \1

a.
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that is the Khinchin’s condition holds. By using this fact for

no==~ and (A Ty p(-|C)]
we can deduce that

2

L 58
R

(3.11) N =r—”?0 if and only if E[

C] -0 (n - =)

» sy : 5 v
From the above relation it follows a useful sufficient condition for —"—:;» 0,
n

furthermore, an other necessary one too.

2 ’
E(v,|C) +0 (n—+2=) then :-’3=>0-

Theorem 3.5. If E@ 1+ C) T, C

2

Proor. Let G= {wex’

‘225"}, where £=0. Then with the help of

Lemma 3.2 we get

2 Ival I"nI
N el d A|C) +
[rz_*.vﬁ ] [T+v ] f ( l )
Il ‘ ——-—-—E“’s'c’
N dp(A|C GIC)+e=——
Ao Fasa PAIC)=p(01C) e = G Frr G
This implies
V2 | _E(C)
(3.12) E["—“T:Hg ]éﬁg(ﬁwﬁlc)%

By combining (3.11) and (3.12) we obtain the statement of Theorem 3.5.

Remark. It follows simply by Lemma 3.2 that

E(v;|C) o bt T
-E-(TTCT——O implies i

=3 ()
-

By the preceding theorem in order that

L 0 if is sufficient also E(IC)

T, C I oo e

Vo E*(vi|O)
Theorem 3.6. If ;—N—?O then E(@+vFI0)

+0 (n—e0).

2

ProOF. By the Cauchy’s inequality

E*(j|C) = E((ri+ VY C)E

Vi
[ (t+v)*
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c].
Hence, applying (3.11) the proof is complete.
Let now ¢,,¢&,, ... and &7, &S, ... two sequences of random variables on
|, Ty, T, p). The two sequences are called equivalent (in the sence of Khinchin)
with respect to C if

s0
E*(C)
E((2+vIC)

=E

Vi e R
[‘(r:+v.’:)= C] i [r:+ v

._21 P& # §i|C) < o=

We shall prove that two equivalent sequences obey essentially the same weak laws.

In addition to the notation already adopted let us introduce some new one: B,=

=¢&"Y(a), pa=p(B;|C), where &,-YQ)ET, and &,"Y(Q)SC (n=1,2,...) are as-

sumed. Furthermore, let

(P17, -

= SRl W 8 | T e A R
{0, Si¢Q sg; ( )

Theorem 3.7. Let us assume that the sequences &,,&,, ..., ¢y, &, ... are equi-
valent with respect to C and along with the random variables o, 0, (n=1,2, ...)
satisfy the following condition

21' &<

T

_Qn?g‘

Then, if p [ 2' 8= m|C] =1 is also fulfilled,
i=1

u ’ ’
2. £ Si :
i=1 ’ » "
7 — 0= 0y where On = Cpn—-
Ty ¢ Ta

PrROOF. Let
HAN\D = limsup {¢, = &},

B = leJ{f

g‘: g(w) = fr} :

Since p(E|C)=1 and E’p(ﬁ,-:é”(‘){m, so by the Borel—Cantelli lemma
i1

p(D|C)=1.
If W€D then &;(w)=¢E&/(w) implies &(w)=¢i(w) and only finitely many &;(w)
may be equal to {/(w). Thus, if w€EMN D then

(3.13) —
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Put ¢,= 2’8 &y On= 2' ;& and let us consider the following transformations:

Pn &=_..[¢;_ ] [<pu+(<o.. D) )=
% Ta o glg, T P

=_[<P.. tP..]

If w€ E(1 D then there exists a constant K= K(w) depended only on @ so that for
sufficiently large n we have

I(P;_‘Pn] = K.
For this o 7,(w) = (n—+=), so

(@) — ¢, (w)

1 A L e
Now, applying p(END|C)=1 we have
(3.]4) Pn— Py - 0.

TN
Thus, by using (3.13) and (3.14)

[ I A

—0,— = —— 0, = 0.
_r; n T; Tn Qlt c -
Q.e.d.
Remarks.
2 %
a) If in theorem 3.7 p,= — , where «,, a,, ... are real constants then
Z %8
g, may appear as g,=-——;

T
b) If the sequence &, ,né,. ... is bounded with probability 1 with respect to
C then
Pn
T,

? o
is also fulfilled.

In the following two theorems we give sufficient conditions for the existence
of such real constants ¢,, ¢, ... that

n

e
(3.15) = =0,
T, C
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and for the existence of real constants ¢;,, (i,n=1,2,...) such that

é; &i(Si—cin)
(3!6) _Tn— ? 0.

Theorem 3.8. Let &,, &, ... be mutually independent random variables with re-
spect to C. Let us assume that there exists a real sequence a,, a,, ... so that

(3.17) kg-,; pelsk—ail = k|C) < ==,
(3.18)
n -2 n
Zn) Zn [xdR(ta) =0 (1~ ), where F(x) = p( < xIB),
e 5 |x|=k
(3.19) 3P = alC) < .

Moreover, let Q" is the set of non zero real numbers x for which there exist y¢Q and
i=1 such that x=y—a;. Assume that

By = &Q)eT, and BISC (k=12,..)
where
& {8k(ék_ak)o glék—ayl <k
& 0 . 8,"6*—0," ::—- k.
Under such conditions

k=1

is also fulfilled and there exists a sequence ¢y, c,, ... of real numbers such that

2 Ss(fi_f':}
L SR )

P c
ProoF. Let us introduce the following notations:

*_{l, W€ B
“7 1o, wéB;

px = p(BiIC), Dy = D(&|ByY).
Firstly we shall prove that there exists a real sequence b, b,, ... such that

2 3:(5: —by)
(3.21) et =0.
&k

[V_lal

k

Il
-
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By virtue of the remark made after Theorem 3.3 to prove (3.21) it is sufficient that

2 piD;*
(3.22) =0 (n ).

(7]
To show (3.22) we could write

PiD=piEGEHBY=pt [ e(E&—a)?dp(A|B)) =

2| S —ay | <k

= [ &a@G-a)dp4I0) =p [ (G—a)*dp(4]|B) =

gl —ay | <k g |8 —ay | <k
= f (Sx—ay)*dp(A|By) = f x*dF(x+ay).

igg_akl."‘*k Jxl“h

Hence
kZ pi Di* - = T
(3.23) v (k 1p,:'] *21' Px f x2dF,(x+ay).
* e ™ | x| =k
ké; Pk]

q={b 4
. 0, &¢Q’
Then

= (S &lSi—awl <k
%10 sifi-adwk
and trivially hold the following

If =0 then g =0.
(3.24) If =1 and ¢,—a, #0 then ¢
If ¢ =1 and &, —a, =0 then g =0.

According to (3.24) we have
2 -nl=2 [P(B,C)—p(B|C)| =

= é; |p(BtIC)_p(Btm{‘ft'_ak = 0}|C)| = k‘i P(—ay = 0|C) < eo.

Consequently,
2 Px

(3.25) el (n - )
2 P

-
J
-
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Now by using (3.23) and (3.25) it is obvious that (3.22) and consequently
(3.21) hold.
On the other hand from the inequality

kz; p(& #= &IC) = *g,; pleléi—a] = k|C) <

we infer that the sequences {;} and {{;} are equivalent. Consequently, by remark b)
mentioned after Theorem 3.7 we have

2 ali— kZ{ & by

(3.26) by = ——— = 0.
2 &
k=1

With the help of the Borel—Cantelli lemma we get

ghe - |1,
1. C
2 &
Hence, if 8,=%1—4, then
(3.27) 5. = 0.

We can write

> & (& —ay) — Z er by 2 &é 2 (ax+by) Z(Et_ﬁ';)bk
=1 k=1 _ k=1 k=1 k=1

+
" Tu Tu

k

o =
" T T

Since D p(g #&/|C)< -~ we conclude that
k=1

2> (e —er) by

e
T, C
Thus, according to (3.27)
&b 2 &la,+by)
k=1 k=1
- = 0.
T T c

Let now ¢, =a,+b, (k=1,2,...). Then from the above convergence

R
Z & —a)
= = 0.

% c

Q.ed.
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Remark. If &,, &,, ... are continuously distributed random variables with re-
spect to p(+|C) then it is obvious that in the preceding theorem condition (3.19)
holds. Moreover, it may be omitted if instead of condition (3.20) a stronger one is
fulfilled. For example, the statement of Theorem 3.8 is true if besides of the in-
dependence, conditions (3.17), (3.18) and

(3.28) é P(AB,|C) < o

are fulfilled too.

By this remark one can observe that Theorem 3.8 is a generalization of [2],
Theorem 2.5.1 for conditional probability field.

Likewise, the following theorem may be compare with [2], Theorem 2.5.2.
To be more precise it generalizes a part of [2], Theorem 2.5.2.

Theorem 3.9. If &, &,, ... are independent with respect to C and there exists
a real sequence a,, a,, ... such that

(3.29) kglp(eﬂék—“xi =n|C) -0 (n—+=)

A n -2 n

(3.30) [ » p,‘] Sn [ XdE(x+a) -0 (n— ).
k=1 k=1 le-:n

Then there exist real numbers ¢, (k,n=1,2,...) such that

2 & —cu)

k=1 E=i. 0’
T &
where
Cin = O+ byys by = f xdF(x+ay), Fi(x)=p( = x|BY.
|x|<n
Proor. Let
” 4 = Ckns |Gl =m
G =8 (&i—ay), &=
G =e&(&i—a), & {0. 1€ = n
£ Chn "
dy = =, G(n) = [ {0l = (@)
Then
2 &y 2 &Sk
(3.31) p "‘T —dl=¢Cl=p “=‘T —d,| = e| N GM)|C |+ p(#\G(n)|C).

Since p(A\Gm)|C)= 3 p(&=E4IC)= 3 p(IEl=n|C), it follows
k k
=1 =]

(3.32) p(AHNG()|C) -0 (n — ==).
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On the other hand

2 &Sy 2 &(&n—buw)
p '%—d, =¢lNGm)C|=p |*=‘ - =3C| =

% 2

E [[tz; & (C:n_ bkn)] C]
E(7,|C) '

It is easy to see that b,,=E(&,|B,) and consequently,

E(&(&t—bi)IC) = [ &(&lu—bua) dp(AIC) = [ (&lu—bin) dP(AIC) =
xn B,

I
&

[1A

= [(&Ga—bu) dp(ABY) = pi [ (&—by,) dp(A]B,) = 0.
B, »

Hence, by the independence of &,, &, ...

(3.33) E(Su((::u—bn)sf(éa_bm)) =0 (k=1.
Since
Dz(é:nlsk) = E(‘::ulak) = f 5,:2 ‘IP(A'B*) = f .\'2 dFk(x'f'ak),
[§xl<n |x]=n
with the help of (3.33) '
2 &k 2 E(ey(&ka—bin)?IC)
p *=‘T —-d|=e[NGm)C| = 12 — =
i 32( = Pn]
k=1
ZPEEH-buB)  SpDGB)  Zm [ xdFxta)
= n 2 = = n 2 = . n 2
32[2?&' 32[2!’&) 32(21’&)
k=1 k=1 k=1
From this inequality and (3.30) it follows that
l 2 &t
(3.34) p ]**‘T —df=e[nGmic| =0 @ =)
By (3.31), (3.32), (3.34) we have
Z Bl’él
e -d,=0.
A c
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We mention some simple consequences of Theorem 3.9.

Corollary 3.10. Under the conditions of Theorem 3.9 and if

(3.39) (Zn) ZnEaiBo-a-bw -0 @

then

kz &(éa— E(EBY)

= 0.
Tﬂ c
ProoF. It follows from the inequality
2 a(E(G|By) —ay— bkn) 2 P (E(fklﬂk) —ay— by,)
k=1 b — k=1
P I = | =¢glC) =

"

2N
Pr=s |

Corollary 3.11. In Theorem 3.9 condition (3.30) can be exchanged for

(3.36) (élp*]_zém{xf wdF(x+a)—( [ xdRG+a))}~0 (1~ ).

= |xl=n

Proor. It is a direct consequence of equality

(3.37) D*(GlB) = [ x*dF(x+a) —( [ xdF(x+a)"

X =n |X|=n

Corollary 3.12. If &,, &, ... are independent with respect to C having finite

E,, E,. ... and satisfving the following convergences
(3'38) 2 pk f (!Fk(.\"i‘Ef\) ~: 0 (” o ‘:"'"),
k=1 |x|=n

(3.39) Lﬁ:p,‘] "'kz';pk{ [ xdFG+E)—( [ xdF(x+E)f} ~0 (n - ).
. ¥l x|=n x| <=n

n 1 n
(3.40) Sn|l ZSpn [ xdR(x+E)~0 (n— <),
k=1 k=1

X|=n

then

Zgu(tfa'fx)
= = 0.

Ta c
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Proor. By Corollary 3.11 we have

n
gskék

—d, =0,
C
where

kgn: & (Elc == blm)

= : o b= [ xdF(x+E), F(x)=p( < x|BY.

[x[<n

It is sufficient to show that

Z"'at blm
(3.41) ‘ )

£ €
We can write

n n 2
o | e SE@C) - (2 r ~0 (n ).

This proves the theorem.
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