On idempotent matrices.

By NISAR A. KHAN in Aligarh.

1. A square matrix A = (ay;) is called idempotent if A*=A (see [1], p. 88.).
In [2] SnAH and ANsARI have proved certain results for nilpotent matrices. The
purpose of this paper is to establish analogous results for idempotent matrices.
Let k be an integer > 1; we shall denote by A an idempotent (square) matrix
of order n > 1, with elements a; belonging to the field F of real numbers,
a; being of the form P/2¢ where P and Q are integers (positive, negative
or zero) such that P=0(mod k) and Q = k..

If X and Y be two matrices such that the elements of X— Y are (integer)
multiples of &, then we write X=Y (mod k). Also / denotes an identity
matrix, and O a null matrix whose orders will be clear from the context.
Following LEHMER we shall call an integer p a pseudoprime if 27 =2 (mod p)
and p is not a prime. (For results on pseudoprimes see [3] and references
given therein.)

By simple calculations it can be shown that

(i) If A is idempotent, so is the matrix (/— A)*, k being a positive integer,
(ii) the idempotent matrices A and (/— A)* are orthogonal, and
(iii) if the rank of A is r, the rank of (/—A)* is n—r.

2. We now prove the following
Theorem 1. /f k is a prime or a pseudoprime, then
{2(/+ A) =21 (mod k),
and conversely.

PrOOF. If k is a prime or a pseudoprime, then 2*=2(mod k); and by
hypothesis the elements of the matrix 2%A are all integer multiples of k. Hence
{2(/ A —21=2*(I + e, A+ *e A2+ - - - +Fe AF)—21 =
= (2*—=2)]+ 2" (", +"*c,+ - + ) A=

= (2 —=2)/42¢(2*—1)A=
=0 (mod k).
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Conversely, the elements of the matrix {2(/4 A)}*—2/7 or (2x—2)/ 4
+42¥(2*—1)A are multiples of k. Therefore,

2% —2=0(mod k)
or
2 =2 (mod k).

Hence k is either a prime or it must be a pseudoprime.
By using another important property of the binomial coefficients we can
similarly prove the following

Theorem 2. If k is a prime or a pseudoprime, then
{2(I—A)}*=2] (mod k),
and conversely.

3. We now establish the following theorems regarding the characteristic
roots of the polynomials f(/+ A).

Theorem 3. If f(x) is any polynomial in x with scalar coefficients
belonging to F, then the characteristic roots of f(I+ A) are f(2) with multip-
licity r and f(1) with multiplicity n—r, where r is the rank of A.

The proof of the above theorem will be facilitated by the following lemma:

Lemma. For an idempotent matrix A the characteristic polynomial is
|A—21|=(1—=2)"(—2A)"", where r is the rank of A.

PrOOF. It is well known that an idempotent matrix A is similar to
A= 1, +0,.,, where r is the rank of A and 4 denotes the direct sum.
Further, two similar matrices have the same characteristic equation and hence
the same characteristic polynomial. Therefore,

| A—al|=| A—a1| =(1—Ay (=),

r being the rank of A.
This proves the lemma.
It may be remarked here that the converse is not true. This is illustrated

by the following matrix:

G | 1 0 4
A=|0 O Ol,sothatA’-——- 0 0 0O}==A,
.01 OB S

i.e., A is not idempotent, but |A —17|=(—2)(1—21)".
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PROOF OF THEOREM 3. Let f(x)=a,+a,x+a,x*+ --- +axx¥.
fU+A)=al+a,(I+A)+a,(I+ Ay + - +ax(I+ AN =
— @+ + -+ ax) [+ 2— 1) A+ (22— 1)a,A + -+ (25— 1)ayA—
=I-f(1)+ AL f(2)—f(1)}
JU+A)—il={f(1))— I+ {f2)—f(1)} A
={f@Q)—f)A—{a—f(1)}]
=I[A—ml, where [= f(2)—f(1), m==4A—f(1),

=I[A—£;-I], if 12=0.

Now, since A is idempotent,

fU+ A=l | = :(A—-’;_‘z] —r(1—2) (=)
Thus the characteristic roots of f(/+ A) are given by

e(1=2) (2] =o.

Since 1==0, either [I—-?) =0, whence m=1[, r times; i.e., f(1)—

—f(2)=f(1)—4, r times, 4 = f(2) with multiplicity r; or m*"=0, whence
4= f(1) with multiplicity n—r.,
If [=0, or f(1)=f(2), |f(I4+A)—il|=|{A—f(1)}I|, so that
A=f(1)=f(2) with multiplicity n.
This completes the proof of the theorem.
In particular, the characteristic roots of (/-4 A)* are 2* with multiplicity
r and 1 with multiplicity n—r.
As an illustration we take the following numerical
100
Example. Let A = [2 0 0| be an idempotent matrix of rank 1. Then
300

="

m
A—TI

32 00
(I+A)5=!+3IA=[62 1 0f.
93 0 1

The characteristic roots of the above matrix are 32, 1 and 1.

Theorem 4. If f(x) is any polynomial in x with scalar coefficients
belonging to F, then the characteristic roots of f(I— A) are f(0) with multip-
licity r and f(1) with multiplicity n—r, where r is the rank of A.
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PROOF. Let f(x)=a,+a,x+a,x*+ --- +ayx¥.
fU—A)=a ]+ a\(I—A)+ a;(I— AP + - - +ax(I— A)¥ —=
= I-f(1)—A{f(1)—f(0)},

|fU—A)—al|=[A{f(O)—f(1)} —1-{2a—f(1)} |
=|lA—ml|, where |= f(0)—f(1) and m=i—f(1),

_r (1 —ﬂ:] [—-7”1) if 10,

The characteristic roots of f(/—A) are given by

-2 (-3,

If (1—%] —0, m=1 and 4= £(0) with multiplicity r.

If (-’?-) " —0, =J(1) with multiplicity n—r.

But, if /=0, i.e., f(1)=/(0), the characteristic roots of f(/—A) are
given by {A—f(1)}" =0, so that A= f(1)=f(0) with multiplicity n.

In particular, the characteristic roots of (/—A)* are 1 with multiplicity
r and O with multiplicity n—r.

Theorem 5. If f(x) is a polynomial in x with coefficients belonging to
F, and D is any nilpotent matrix of order n such that

J()D+{f(2)—f(1)} DA=0,
then the characteristic roots of f(I+A)+ D are f(2) with multiplicity r and
fQ1) with multiplicity n—r, where r is the rank of A.

PrROOF. To prove this theorem we apply a theorem of REID [4]. The
characteristic roots of f(/+ A)+ D and f(/+ A) are the same if D-f(/+ A)=0.

But, D-f(I+A) = Dlau/+a,(/+ A) + @I+ A + - +ax(I+ AF] =
=D[I-f()+A{fQ)—f()}]=
=f()D+{f(2—f(1)}DA=
=0, by hypothesis.

Hence the characteristic roots of f(/+ A)+ D are the same as those of

f(I+ A). But, by Theorem 3, the characteristic roots of f(/+ A) are f(2) and

f(1) with multiplicities r and n—r respectively, where r is the rank of A.
This proves the theorem.
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Corollary. If D be any square nilpotent matrix of order n with elements
in F such that D+-(2*—1)DA =0, then the characteristic roots of (I+ A)*+ D
are 2* and 1 with multiplicites r and n—r respectively, where r is the
rank of A.

Theorem 6. If D be any n X n nilpotent matrix with elements in F
such that D=DA, then the characteristic roots of (I—A)+ D are 0 with
multiplicity r and 1 with multiplicity n—r, where r is the rank of A.

Proor. With the help of the theorem by REID [4], we see that the charac-
teristic polynomials of (/—A)¥+ D and (/—A)* are the same if D(/—A)*=0.

But, D(/—A)* = D[I—*¢,A+"c,A'— -+ +(—1) ¥, A¥] = D (I—A) =
= D—DA =0, by hypothesis.

Hence the characteristic roots of (/—A)*+ D are the same as those of
(I—A).

But, by Theorem 4, the roots of (/—A)* are 0 with muitiplicity r and
1 with multiplicity n—r.

This proves the theorem.

In general, let g(x)=a,x+a.x*+4 --- +anx x¥ be a polynomial in x with
coefficients belonging to F and with no term independent of x. Then

|g(/—A)+ D—4il|=|g(I—A)—4il],
for D is nilpotent and
D.g(I—A)=Dla,(I—A)+a,(I— Ay +a;(I— Ay + -+« +an(/I— A)¥] =
— Dla,(I—A) + ao(I—A) + a;(I— A) + -+ + an(I— A)] =
=(@+a+:-+ay)D(I—A)=
=g(1)D(I—A)=0, by hypothesis.
Therefore, the characteristic roots of g(/—A)+ D are 0 with multiplicity
r and g(1) with multiplicity n—r, r being the rank of A.

Remark. To show that there exist matrices which satisfy the hypothesis
of the above theorem, consider

(1 0 0)
A=|2 0 0|, an idempotent matrix of order 3 and rank 1.
\3 6 0)
(0 0 0)
D=|0 0 0], a nilpotent matrix of order 3.
\1 0 0)
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00O
-2 1 0].
—2 0 1
The characteristic roots of this rnatrix are 0, 1 and 1.
Finally, 1 wish to thank Professor S. M. SHAH for drawing my attention
to this problem and for helptul criticism on this paper.

Here D(I—A)=0, also (/—AY+D=I—A+D=
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