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Asymptotic behavior of solutions to neutral functional
differential equations with infinite delay

By YONG-KUI CHANG (Lanzhou) and XIAO-XIA LUO (Lanzhou)

Abstract. In this paper, we first introduce some classes of µ-pseudo almost au-

tomorphic type functions and establish some properties of such functions. And then,

we apply the obtained results to investigate the existence of µ-pseudo almost automor-

phic solutions to a first-order partial neutral functional differential equation with infinite

delay.

1. Introduction

The concept of almost automorphy is an important generalization of the clas-

sical almost periodicity. It was introduced by Bochner [6], [7], for more details

about this topic we refer the reader to [15], [16], [23], [24] and the references

therein. Since then, almost automorphy has become one of the most attractive

topics in the qualitative theory of evolution equations, and there have been several

interesting, natural and powerful generalizations of the classical almost automor-

phic functions. The concept of asymptotically almost automorphic functions was

introduced by N’Guérékata in [22]. Liang, Xiao and Zhang in [20], [27] pre-

sented the concept of pseudo almost automorphy. In [25], N’Guérékata and

Pankov introduced the concept of Stepanov-like almost automorphy and applied

this concept to investigate the existence and uniqueness of an almost automor-

phic solution to the autonomous semilinear equation. Blot et al. introduced the
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notion of weighted pseudo almost automorphic functions with values in a Ba-

nach space in [4], which generalizes that of pseudo-almost automorphic functions.

Xia and Fan presented the notation of Stepanov-like (or Sp-) weighted pseudo

almost automorphy in [26]. Zhang, Chang and N’Guérékata further investi-

gated some properties and new composition theorems of Stepanov-like weighted

pseudo almost automorphic functions in [29], [31]. Recently, Blot, Cieutat and

Ezzinbi in [5] applied the measure theory to define an ergodic function and they

presented the concept of µ-pseudo almost automorphic functions, and thus the

classical theory of pseudo almost automorphy becomes a particular case of their

approach.

In recent years, the existence of pseudo almost periodic type or almost auto-

morphic type solutions to some neutral differential equations has been considered

in many publications such as [1], [2], [3], [8], [9], [10], [11], [12], [13], [14], [30].

Motivated by above mentioned works, the aim of this work is to introduce the

notion of µ-pseudo almost automorphic functions of class p and the notion of

µ-pseudo almost automorphic functions of class infinity, we first establish some

basic results not only on the completeness of the space that consists of µ-pseudo

almost automorphic functions of class p but also on the composition theorems

of such functions. And finally, the previous results, are, subsequently utilized

to investigate existence results of µ-pseudo almost automorphic solutions to the

following first-order neutral functional-differential equations with infinite delay:

d

dt
[u(t) + f(t, ut)] = Au(t) + g(t, ut), (1.1)

where (X, ∥·∥) is a Banach space, A : D(A) ⊆ X → X is the infinitesimal generator

of a uniformly exponentially stable semigroup of linear operators on X, the history
ut : (−∞, 0] → X given by ut(θ) := u(t + θ), belongs to an abstract phase space

B defined axiomatically, and B is a fading memory space, f , g : R × B → X are

some suitable functions.

The rest of this paper is organized as follows. In Section 2, we introduce some

basic definitions, lemmas, and preliminary results which will be used throughout

this paper. In Section 3, we first establish some composition theorems of µ-

pseudo almost automorphic function of class p, and then we further investigate the

existence of µ-pseudo almost automorphic mild solutions to the neutral functional

differential equation (1.1).
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2. Preliminaries

This section is devoted to some preliminary results needed in the sequel. In

particular, to deal with infinite delay, we need to introduce some new classes

of µ-pseudo almost automorphic function. Throughout the paper, the notation

(X, ∥·∥) is a Banach space and BC(R,X) denotes the Banach space of all bounded

continuous functions from R to X, equipped with the supremum norm ∥f∥∞ =

supt∈R ∥f(t)∥. From now on, A : D(A) ⊂ X 7→ X denotes the infinitesimal

generator of an uniformly asymptotically stable semigroup of linear operators

(T (t))t≥0 on X and M , ω are positive constants such that

∥T (t)∥ ≤ Me−ωt

for each t ≥ 0.

We denote by B the Lebesgue σ-field of R and by M the set of all positive

measure µ onB satisfying µ(R) = +∞ and µ([a, b]) < +∞, for all a, b ∈ R(a < b).

For µ ∈ M and τ ∈ R, we denote µτ the positive measure on (R,B) defined by

µτ (A) = µ(a+ τ : a ∈ A) for A ∈ B.

From µ ∈ M, we suppose the following hypothesis ([5]) holds throughout this

paper.

(H0) For all τ ∈ R, there exist γ > 0 and a bounded interval I such that

µτ (A) ≤ γµ(A),

when A ∈ B satisfies A
∩
I = ∅.

Definition 2.1 ([24]). A continuous function f : R → X is said to be al-

most automorphic if for every sequence of real numbers {s′n}n∈N there exists a

subsequence {sn}n∈N such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R. The collection of all such functions will be denoted by AA(R,X).

Definition 2.2 ([20], [24]). A continuous function f : R × X → X is said to

be almost automorphic if f(t, x) is almost automorphic for each t ∈ R uniformly

for all x ∈ B, where B is any bounded subset of X. The collection of all such

functions will be denoted by AA(R× X,X).
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The notation PAA0(X) stands for the space of functions

PAA0(R,X) =
{
ϕ ∈ BC(R,X) : lim

m→∞

1

2m

∫ m

−m

∥ϕ(t)∥dt = 0

}
.

To study issues related to delay we need to introduce the new space of func-

tions defined for each p > 0 by

PAA0(R,X, p) :=
{
ϕ ∈ BC(R,X) : lim

m→∞

1

2m

∫ m

−m

(
sup

θ∈[t−p,t]

∥ϕ(θ)∥
)
dt = 0

}
.

In addition to the above-mentioned spaces, the present setting requires the

introduction of the following function spaces

PAA0(R× X,X) =
{
ϕ ∈ BC(R× X,X) : lim

m→∞

1

2m

∫ m

−m

∥ϕ(t, x)∥dt = 0

}
and

PAA0(R× X,X, p) :=
{
ϕ ∈ BC(R× X,X) : lim

m→∞

1

2m

×
∫ m

−m

(
sup

θ∈[t−p,t]

∥ϕ(θ, x)∥
)
dt = 0

}
.

Definition 2.3 ([21], [28]). A continuous function f : R → X (respectively R×
X → X) is called pseudo-almost automorphic if it can be decomposed as f = g+ϕ,

where g ∈ AA(R,X)(respectivelyAA(R×X,X)) and ϕ ∈ PAA0(R,X)(respectively
PAA0(R × X,X)). Denote by PAA(R,X) (respectively PAA(R × X,X)) the set

of all such functions.

Definition 2.4 ([5]). Let µ ∈ M. A bounded continuous function f : R → X
is said to be µ-ergodic if

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

∥f(t)∥dµ(t) = 0.

We denote the space of all such functions by ε(R,X, µ).

Similarly, we denote ergodic functions related to delay by

ε(R,X, µ, p) :=
{
f ∈ BC(R,X) : lim

r→+∞

1

µ([−r, r])

×
∫
[−r,r]

(
sup

θ∈[t−p,t]

∥f(θ)∥
)
dµ(t) = 0

}
;
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ε(R× X,X, µ, p) :=
{
f ∈ BC(R× X,X) : lim

r→+∞

1

µ([−r, r])

×
∫
[−r,r]

(
sup

θ∈[t−p,t]

∥f(θ, z)∥
)
dµ(t) = 0

}
.

In view of the previous definitions, it is clear that ε(R,X, µ, p) and ε(R ×
X,X, µ, p) are continuously embedded into ε(R,X, µ) and ε(R× X,X, µ), respec-
tively. Furthermore, it is not hard to see that ε(R,X, µ, p) and ε(R×X,X, µ, p) are
closed in ε(R,X, µ) and ε(R × X,X, µ). Consequently, by PAA(R,X, µ) respec-

tively, PAA(R×X,X, µ)) ⊂ BC(R,X) (respectively, BC(R×X,X)), one obtains

the following result from [5, Proposition 2.13.]:

Lemma 2.1. Let µ ∈ M, then the spaces ε(R,X, µ, p) and ε(R×X,X, µ, p)
endowed with the uniform convergence topology are Banach spaces.

Definition 2.5 ([5]). Let µ ∈ M. A continuous function f : R → X is said

to be µ-pseudo almost automorphic if f is written in the form: f = g + ϕ, where

g ∈ AA(R,X) and ϕ ∈ ε(R,X, µ). We denote the space of all such functions by

PAA(R,X, µ).

Obviously, we have AA(R,X) ⊆ PAA(R,X, µ) ⊆ BC(R,X).
We now introduce the following new classes of µ-pseudo almost automorphic

functions.

Definition 2.6. Let µ ∈ M. A continuous function f : R → X is said to be µ-

pseudo almost automorphic of class p if f is written in the form: f = g+ϕ, where

g ∈ AA(R,X) and ϕ ∈ ε(R,X, µ, p). We denote the space of all such functions by

PAA(R,X, µ, p).

Definition 2.7. Let µ ∈ M. A continuous function f : R× X → X is said to

be µ-pseudo almost automorphic of class p if f is written in the form: f = g+ ϕ,

where g ∈ AA(R × X,X) and ϕ ∈ ε(R × X,X, µ, p). We denote the space of all

such functions by PAA(R× X,X, µ, p).

To deal with infinite delays, we need to introduce the following new spaces

of functions:

ε(R,X, µ,∞) :=
∩
p≥0

ε(R,X, µ, p),

ε(R× X,X, µ,∞) :=
∩
p≥0

ε(R× X,X, µ, p).

Obviously, ε(R,X, µ,∞) and ε(R × X,X, µ,∞) are respectively closed subspaces

of ε(R,X, µ, p) and ε(R× X,X, µ, p), and hence both are Banach spaces.
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Definition 2.8. Let µ ∈ M. A continuous function f : R → X is said to be µ-

pseudo almost automorphic of class infinity if f is written in the form: f = g+ϕ,

where g ∈ AA(R,X) and ϕ ∈ ε(R,X, µ,∞). We denote the space of all such

functions by PAA(R,X, µ,∞).

Definition 2.9. Let µ ∈ M. A continuous function f : R × X → X is said

to be µ-pseudo almost automorphic of class infinity if f is written in the form:

f = g + ϕ, where g ∈ AA(R × X,X) and ϕ ∈ ε(R × X,X, µ,∞). We denote the

space of all such functions by PAA(R× X,X, µ,∞).

In this work we will defined the phase space B axiomatically, using ideas and

notation developed in [19](see also [18]). More precisely, B will denote the vector

space of functions defined from (−∞, 0] into X endowed with a seminorm denoted

∥ · ∥B and such that the following axioms hold:

A. If x : (−∞, σ + b) → X with b > 0, is continuous on [σ, σ + b) and xσ ∈ B,
then for each t ∈ [σ, σ + b) the following conditions hold:

(i) xt is in B,
(ii) ∥x(t)∥ ≤ H∥xt∥B,
(iii) ∥xt∥B ≤ K(t− σ) sup{∥x(s)∥ : σ ≤ s ≤ t}+M(t− s)∥xσ∥B,
where H > 0 is a constant, and K, M : [0,∞) → [1,∞) are functions such that

K(·) and M(·) are respectively continuous and locally bounded, and K, H, M

are independent of x(·).
A1. If x(·) is a function as in (A), then xt is a B-valued continuous on [σ, σ + b).

B. The space B is complete.

C2. If (φn)n∈N is a sequence of continuous functions with compact support defined

from (−∞, 0] into X, which converges to φ uniformly on compact subsets of

(−∞, 0], then φ ∈ B and ∥φn − φ∥B → 0 as n → ∞.

Remark 2.1 ([18]). Throughout the rest of the paper, L denotes a constant

such that ∥φ∥B ≤ L ·supθ≤0 ∥φ(θ)∥ for every φ ∈ BC((−∞, 0];X), see [19, Propo-
sition 7.1.1].

Definition 2.10 ([13]). Let S(t) : B 7→ B be the C0-semigroup defined by

S(t)φ(θ) = φ(0) on [−t, 0) and S(t)φ(θ) = φ(t + θ) on (−∞,−t]. The phase

space B is called a fading memory if ∥S(t)φ∥B → 0 as t → ∞ for each φ ∈ B with

φ(0) = 0.

Remark 2.2 ([18]). In this paper we suppose that there exists a constant

K > 0 such that max{K(t),M(t)} ≤ K for each t ≥ 0. Observe that this condition

is verified, for example, if B is a fading memory, see, e.g., [19, Proposition 7.1.5].
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We give the following basic assumptions:

(H1) The function s 7→ T (s)x belongs to C([0,∞),X) for each x ∈ X. Moreover,

the function s → AT (s) defined from (0,∞) into L(R,X) is strongly measurable,

and there exists a non-decreasing function H : [0,∞) 7→ [0,∞) and δ > 0 such

that e−δsH(s) ∈ L1([0,∞)) with ∥AT (s)∥L(R,X) ≤ e−δsH(s) for each s > 0.

(H2) B is a uniform fading memory space, f, g ∈ PAA(R×B,X, µ,∞) and there

are continuous and bounded functions Lf , Lg : R 7→ [0,∞) such that

∥f(t, u)− f(t, v)∥ ≤ Lf (t)∥u− v∥B,
and

∥g(t, u)− g(t, v)∥ ≤ Lg(t)∥u− v∥B,

for all u, v ∈ B and t ∈ R.

3. Main results

In this section, we first prove some composition theorems for µ-pseudo almost

automorphic functions of class p, and then apply these theorems to investigate

some existence results for the problem (1.1).

3.1. Composition theorems for µ-pseudo almost automorphic functions

of class p.

Theorem 3.1 (). Let µ ∈ M and f = g + h ∈ PAA(R × X,X, µ, p) with

g ∈ AA(R×X,X), h ∈ ε(R×X,X, µ, p). Assume that the following condition (i)

and (ii) are satisfied:

(i) f(t, x) satisfies a Lipschitz condition in x ∈ X uniformly in t ∈ R, that is,

there exists a constant L > 0 such that

∥f(t, x)− f(t, y)∥ ≤ L∥x− y∥

for all x, y ∈ X and t ∈ R.
(ii) g(t, x) is uniformly continuous in any bounded subset K ′ ⊂ X uniformly for

t ∈ R.
If u = u1 + u2 ∈ PAA(R,X, µ, p) with u1 ∈ AA(R,X), u2 ∈ ε(R,X, µ, p). Then

the function f(·, u(·)) belongs to PAA(R,X, µ, p).

Proof. Since f ∈ PAA(R × X,X, µ, p) and u ∈ PAA(R,X, µ, p), we have

by definition that f = g + h and u = u1 + u2, where g ∈ AA(R × X,X), h ∈
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ε(R × X,X, µ, p), u1 ∈ AA(R,X) and u2 ∈ ε(R,X, µ, p). The function f can be

decomposed as

f(t, u(t)) = g(t, u1(t)) + f(t, u(t))− g(t, u1(t))

= g(t, u1(t)) + f(t, u(t))− f(t, u1(t)) + h(t, u1(t)).
Define

G(t) = g(t, u1(t)), F (t) = f(t, u(t))− f(t, u1(t)), H(t) = h(t, u1(t)).

Then f(t, u(t)) = G(t) +F (t) +H(t). Since the function g satisfies the condition

(ii), it follows [20, Lemma 2.2] that the function g(·, u1(·)) ∈ AA(R,X). To show

that f(·, u(·)) ∈ PAA(R,X, µ, p), it is sufficient to show that F+H ∈ ε(R,X, µ, p).
Initially, we prove that F ∈ ε(R,X, µ, p). Clearly, f(t, u(t)) − f(t, u1(t)) is

bounded and continuous. Now, by (i), we have

∥f(t, u(t))− f(t, u1(t))∥ ≤ L∥u(t)− u1(t)∥ ≤ L∥u2(t)∥.

Hence, by the fact that u2 ∈ ε(R,X, µ, p), we obtain

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−p,t]

∥F (θ)∥
)
dµ(t)

≤ lim
r→+∞

L

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−p,t]

∥u2(θ)∥
)
dµ(t) = 0,

which shows that F (·) ∈ ε(R,X, µ, p).
Next, we show that H ∈ ε(R,X, µ, p). Since u(t), u1(t) are bounded, we can

choose a bounded subset B ∈ X such that u(R), u1(R) ⊆ B. Since g satisfies the

condition (ii), then for any ϵ > 0, there exits a δ > 0 such that x, y ∈ B and

∥x− y∥ ≤ δ imply that ∥g(t, x)− g(t, y)∥ ≤ ϵ for all t ∈ R.
Put δ0 = min{ϵ, δ}, then

∥h(t, x)− h(t, y)∥ ≤ ∥f(t, x)− f(t, y)∥+ ∥g(t, x)− g(t, y)∥ ≤ (L+ 1)ϵ.

for all x, y ∈ B with ∥x− y∥ ≤ δ0.

Set I = u1([−r, r]). Then I is compact in R since the image of a compact

set under a continuous mapping is compact, and so one can find finite open balls

Ok, (k = 1, 2, . . . ,m) with center xk ∈ I and radius δ small enough such that

I ⊆
∪m

k=1 Ok and

∥h(t, u1(t))− h(t, xk)∥ ≤ (L+ 1)ϵ, u1(t) ∈ Ok, t ∈ [−r, r].
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Suppose ∥h(t, xq)∥ ≤ max1≤k≤m ∥h(t, xk)∥, where q is an index number among

{1, 2, . . . ,m}. The set Bk = {t ∈ [−r, r] : u1(t) ∈ Ok} is open in [−r, r] and

[−r, r] =
∪m

k=1 Bk. Let

E1 = B1, Ek = Bk \
k−1∪
j=1

Bj (2 ≤ k ≤ m).

Then Ei ∩ Ej = ∅ when i ̸= j, 1 ≤ i, j ≤ m. Observe that

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−p,t]

∥h(θ, u1(θ))∥
)
dµ(t)

=
1

µ([−r, r])

∫
∪m

k=1 Ek

(
sup

θ∈[t−p,t]

∥h(θ, u1(θ))∥
)
dµ(t)

≤ 1

µ([−r, r])

m∑
k=1

∫
Ek

(
sup

θ∈[t−p,t]

(∥h(θ, u1(θ))− h(θ, xk)∥+ ∥h(θ, xk)∥)
)
dµ(t)

≤ 1

µ([−r, r])

m∑
k=1

∫
Ek

(L+ 1)ϵdµ(t) +
1

µ([−r, r])

m∑
k=1

∫
Ek

(
sup

θ∈[t−p,t]

∥h(θ, xk)∥
)
dµ(t)

≤ (L+ 1)ϵ+
1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−p,t]

∥h(θ, xq)∥
)
dµ(t).

Using the same arguments as above, we obtain

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−p,t]

∥h(θ, u1(θ))∥
)
dµ(t) = 0.

That is, h(t, u1(t)) ∈ ε(R,X, µ, p). Hence f(t, u(t)) ∈ PAA(R,X, µ, p), which ends

the proof. �

Theorem 3.2. Let µ ∈ M, let F ∈ PAA(R× X,X, µ, p) and
h ∈ PAA(R,X, µ, p). Assume that there exists a function LF : R 7→ [0,∞) satis-

fying

∥F (t, x1)− F (t, x2)∥X ≤ LF (t)∥x1 − x2∥X, ∀ t ∈ R, ∀ x1, x2 ∈ X. (3.1)

If

lim sup
r→+∞

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−p,t]

LF (θ)

)
dµ(t) < ∞ (3.2)

and

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−p,t]

LF (θ)

)
ξ(t)dµ(t) = 0 (3.3)

for each ξ ∈ ε(R,X, µ), then the function t 7→ F (t, h(t)) ∈ PAA(R,X, µ, p).
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Proof. Assume that F =F1+φ, h=h1+h2, where F1 ∈ AA(R × X,X),
φ ∈ ε(R×X,X, µ, p), h1 ∈ AA(R,X) and h2 ∈ ε(R,X, µ, p). Consider the decom-

position

F (t, h(t)) = F1(t, h1(t)) + [F (t, h(t))− F (t, h1(t))] + φ(t, h1(t)),

In view of [20, Lemma 2.2], F1(t, h1(t)) ∈ AA(R,X), it remains to prove that both

[F (t, h(t))−F (t, h1(t))] and φ(t, h1(t)) belong to ε(R,X, µ, p). Indeed, by (3.1) it

follows that

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−p,t]

∥F (θ, h(θ))− F (θ, h1(θ))∥
)
dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−p,t]

LF (θ)∥h2(θ)∥
)
dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−p,t]

LF (θ)

)
·
(

sup
θ∈[t−p,t]

∥h2(θ)∥
)
dµ(t),

which implies that [F (t, h(t))− F (t, h1(t))] ∈ ε(R,X, µ, p) from (3.3).

Since h1(R) is relatively compact in X and F1 is uniformly continuous on

sets of the form R × K where K ⊆ X is compact subset, for ϵ > 0, there exists

δ ∈ (0, ϵ) such that

∥F1(t, x)− F1(t, x)∥ ≤ ϵ, x, x ∈ h1(R),

with ∥x− x∥ < δ.

Now, fix x1, . . . , xn ∈ h1(R) such that h1(R) ⊆
∪n

i=1 Bδ(xi,X). Obviously,

the sets Ei = h−1
1 (Bδ(xi)) form an open covering of R, and therefore using the

sets B1 = E1, B2 = E2 \ E1 and Bi = Ei \
∪i−1

j=1 Ej , one obtains a coverage of R
by disjoint open sets.

For t ∈ Bi, h1(t) ∈ Bδ(xi),

∥φ(t, h1(t))∥ ≤ ∥F (t, h1(t))− F (t, xi)∥+ ∥ − F (t, h1(t)) + F1(t, xi)∥+ ∥φ(t, xi)∥
≤ LF (t)∥h1(t)− xi∥+ ϵ+ ∥φ(t, xi)∥ ≤ LF (t)ϵ+ ϵ+ ∥φ(t, xi)∥.

Now using the previous inequality it follows that

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−p,t]

∥φ(t, h1(t))∥
)
dµ(t)
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≤ 1

µ([−r, r])

n∑
i=1

∫
Bi∩[−r,r]

(
sup

θ∈[t−p,t]

∥φ(θ, h1(θ))∥
)
dµ(t)

≤ 1

µ([−r, r])

n∑
i=1

∫
Bi∩[−r,r]

(
sup

j=1,...,n

[
sup

θ∈[t−p,t]∩Bj

∥φ(θ, h1(θ))∥
])

dµ(t)

≤ 1

µ([−r, r])

n∑
i=1

∫
Bi∩[−r,r]

(
sup

j=1,...,n

[
sup

θ∈[t−p,t]∩Bj

∥F (θ, h1(θ))− F (θ, xj)∥
])

dµ(t)

+
1

µ([−r, r])

n∑
i=1

∫
Bi∩[−r,r]

(
sup

j=1,...,n

[
sup

θ∈[t−p,t]∩Bj

∥F1(θ, h1(θ))−F1(θ, xj)∥
])

dµ(t)

+
1

µ([−r, r])

n∑
i=1

∫
Bi∩[−r,r]

(
sup

j=1,...,n

[
sup

θ∈[t−p,t]∩Bj

∥φ(θ, xj)∥
])

dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−p,t]

LF (θ)ϵ+ ϵ

)
dµ(t)

+

n∑
i=1

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−p,t]

∥φ(θ, xj)∥
)
dµ(t).

In view of the above it is clear that φ(t, h1(t)) belongs to ε(R,X, µ, p). Hence,

F (t, h(t)) ∈ PAA(R,X, µ, p). This completes the proof. �
Lemma 3.1. Let µ ∈ M, let u ∈ PAA(R,X, µ,∞). Assume that B is a uni-

form fading memory space. Then the function s 7→us belongs to PAA(R,B, µ,∞).

Proof. Assume that u = ϕ+φ where ϕ ∈ AA(R,X) and φ ∈ ε(R,X, µ,∞).

Clearly, us = ϕs + φs.

First, we need to prove that ϕs ∈ AA(B). For a given sequence (s′n)n∈N of

real numbers, fix a subsequence (sn)n∈N of (s′n)n∈N and a function v ∈ BC(R,X)
such that u(s+ sn) → v(s) for each s ∈ R. Since B satisfies axiom C2, from [19,

Proposition 7.1.1], we infer that us+sn → vs in B for each s ∈ R. Let L > 0, for

ϵ > 0, fix Nϵ,L ∈ N such that

∥u(s+ sn)− v(s)∥ ≤ ϵ, ∥u−L+sn − v−L∥ ≤ ϵ,

whenever n ≥ Nϵ,L. In view of the above, for t ∈ R and n ≥ Nϵ,L we get

∥ut+sn − vt∥B ≤ M(L+ t)∥u−L+sn − v−L∥B
+K(L+ t) · sup

θ∈[−L,L]

∥u(θ + sn)− v(θ)∥ ≤ 2Kϵ,
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where K is the constant appearing in Remark 2.2.

In view of the above, ut+sn converges to vt for each t ∈ R. Similarly, one can

prove that vt−sn converges to ut for each t ∈ R. Thus, ϕs ∈ AA(B).
Now, we shall prove that φs ∈ ε(R,B, µ,∞). Let p > 0 and ϵ > 0, since B is

a uniform fading memory space, from [10, Remark 2.14], we know that there is

σϵ > p such that M(σ) < ϵ for every σ < σϵ. Under these conditions, for r > 0

and σ < σϵ we find that

1

µ([−r, r])

∫
[−r,r]

sup
θ∈[t−p,t]

∥φθ∥Bdµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−p,t]

M(σ)∥φθ−σ∥B +K(σ) sup
s∈[θ−σ,θ]

∥φ(s)∥
)
dµ(t)

≤ L · ∥φ∥∞ · ϵ+ K
µ([−r, r])

∫
[−r,r]

sup
s∈[θ−σ,θ]

∥φ(s)∥dµ(t),

which enables to complete the proof as ϵ is arbitrary and φ ∈ ε(R,B, µ, σ). �

Corollary 3.1. Let µ ∈ M, f ∈ PAA(R× X,X, µ,∞) and

u ∈ PAA(R,X, µ,∞). Assume that the conditions of Theorem 3.1 are satisfied

for every p > 0, then the function t 7→ f(t, u(t)) belongs to PAA(R,X, µ,∞).

3.2. Existence of µ-pseudo almost automorphic solutions to (1.1).

Definition 3.1. A continuous function u : [σ, σ + a) → X, a > 0 is called a

mild solution for the neutral system (1.1) on [σ, σ+ a), if us ∈ B for every s ∈ R,
the function s → AT (t− s)f(s, us) is integrable on [σ, t) for every σ < t < σ + a,

and

u(t) = T (t− σ)(φ(0) + f(σ, φ))− f(t, ut)−
∫ t

σ

AT (t− s)f(s, us)ds

+

∫ t

σ

T (t− s)g(s, us)ds

Lemma 3.2. Let µ ∈ M, let u ∈ PAA(R,X, µ,∞). Under assumptions

(H1), if w is the function defined by w(t) :=
∫ t

−∞ AT (t − s)u(s)ds, ∀t ∈ R, then
w ∈ PAA(R,X, µ,∞).

Proof. Since u ∈ PAA(R,X, µ,∞), we have u = u1 + u2 with u1 ∈
AA(R,X), u2 ∈ ε(R,X, µ,∞) such that

w(t) =

∫ t

−∞
AT (t− s)u1(s)ds+

∫ t

−∞
AT (t− s)u2(s)ds.
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Denote Φ(t) =
∫ t

−∞ AT (t−s)u1(s)ds, Ψ(t) =
∫ t

−∞ AT (t−s)u2(s)ds for each t ∈ R.
In order to prove w ∈ PAA(R,X, µ,∞), we only need to verify Φ(t) ∈ AA(R,X)
and Ψ(t) ∈ ε(R,X, µ,∞).

First, let us prove that Φ(t) ∈ AA(R,X). Since u1(s) ∈ AA(R,X), for a given

sequence (σn)n∈N of real numbers, fix a subsequence (sn)n∈N and a continuous

function v ∈ BC(R,X) such that u1(t+ sn) converges to v(t) in X, and v(t− sn)

converges to u1(t) in X for each t ∈ R. From the Bochner’s criterion related to

integrable functions and the estimation

∥AT (t− s)u1(s)∥L(R,X) = ∥AT (t− s)∥L(R,X)∥u1(s)∥X ≤ e−δ(t−s)H(t− s)∥u1(s)∥X

it follows that the function s 7→ AT (t−s)u1(s) is integrable over (−∞, t) for each

t ∈ R. Furthermore, since

w(t+ sn) =

∫ t+sn

−∞
AT (t+ sn − s)u1(s)ds

=

∫ t

−∞
AT (t− s)u1(t+ sn)ds, t ∈ R, n ∈ N.

Using the above estimation and the Lebesgue dominated convergence theorem, it

follows that w(t + sn) converges to z(t) =
∫ t

−∞ AT (t − s)v(s)ds for each t ∈ R.
Proceeding as previously, one can similarly prove that z(t− sn) converges to w(t)

for each t ∈ R.
Next, we shall prove that Ψ(t) ∈ ε(R,X, µ,∞). By using the notation Hp =

sups≥p H(s), for positive numbers p, r we find that

1

µ([−r, r])

∫
[−r,r]

sup
θ∈[t−p,t]

∥Ψ(θ)∥dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

sup
θ∈[t−p,t]

∫ θ

−∞
∥AT (θ − s)u2(s)∥dsdµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

sup
θ∈[t−p,t]

∫ θ

−∞
e−δ(θ−s)H(θ − s)∥u2(s)∥dsdµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

sup
θ∈[t−p,t]

∫ θ−p

−∞
e−δ(θ−s)H(θ − s)∥u2(s)∥dsdµ(t)

+
1

µ([−r, r])

∫
[−r,r]

sup
θ∈[t−p,t]

∫ θ

θ−p

e−δ(θ−s)H(θ − s)∥u2(s)∥dsdµ(t)

≤ Hp

µ([−r, r])

∫
[−r,r]

sup
θ∈[t−p,t]

∫ θ−p

−∞
e−δ(θ−s)∥u2(s)∥dsdµ(t)
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+
1

µ([−r, r])

∫
[−r,r]

sup
θ∈[t−p,t]

∫ θ

θ−p

H(θ − s) sup
s∈[θ−p,θ]

∥u2(s)∥dsdµ(t)

≤ Hpe
δp

µ([−r, r])

∫
[−r,r]

sup
θ∈[t−p,t]

∫ θ−p

−∞
e−δ(t−s)∥u2(s)∥dsdµ(t)

+

∫ p

0

H(s)ds
1

µ([−r, r])

∫
[−r,r]

sup
θ∈[t−p,t]

∥u2(θ)∥dµ(t)

≤ Hpe
δp

µ([−r, r])

∫
[−r,r]

∫ t

−∞
e−δ(t−s)∥u2(s)∥dsdµ(t)

+

∫ p

0

H(s)ds
1

µ([−r, r])

∫
[−r,r]

sup
θ∈[t−p,t]

∥u2(θ)∥dµ(t)

≤ Hpe
δp∥u2∥∞
δ

+

∫ p

0

H(s)ds
1

µ([−r, r])

∫
[−r,r]

sup
θ∈[t−p,t]

∥u2(θ)∥dµ(t),

which enables to complete the proof as u2 ∈ ε(R,X, µ,∞). �

Using the similar steps as in the proof of Lemma 3.2, one obtains the following

result:

Lemma 3.3. Let µ ∈ M, and let u ∈ PAA(R,X, µ,∞), if w is the function

defined by w(t) :=
∫ t

−∞ T (t− s)u(s)ds, ∀t ∈ R, then w ∈ PAA(R,X, µ,∞).

Theorem 3.3. Let µ ∈ M. Under assumption (H1)-(H2), there exists a

unique µ-pseudo almost automorphic mild solution to (1.1) whenever

θ :=

(
Lf+sup

t∈R

∫ t

−∞
e−δ(t−s)H(t−s)Lf (s)ds+M sup

t∈R

∫ t

−∞
e−ω(t−s)Lg(s)ds

)
L < 1,

where Lf = supt∈R Lf (t) and L is the constant appearing in Remark 2.1.

Proof. Let Γ : PAA(R,X, µ,∞) → BC(R,X) be the nonlinear operator

defined by

Γu(t) := −f(t, ut)−
∫ t

−∞
AT (t− s)f(s, us)ds+

∫ t

−∞
T (t− s)g(s, us)ds, t ∈ R.

It is easy to see that Γu ia well defined and continuous. Moreover, from The-

orem 3.1, Lemma 3.1 and Corollary 3.1 we obtain f(t, ut) ∈ PAA(R,X, µ,∞).

Furthermore, from Lemma 3.2 and Lemma 3.3, we can infer that∫ t

−∞ AT (t − s)f(s, us)ds,
∫ t

−∞ T (t − s)g(s, us)ds ∈ PAA(R,X, µ,∞). That is Γ

maps PAA(R,X, µ,∞) into PAA(R,X, µ,∞).
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On the other hand, for u, v ∈ PAA(R,X, µ,∞) we get

∥Γu(t)− Γv(t)∥ ≤ Lf (t)∥ut − vt∥B +

∫ t

−∞
Lf (s)e

−δ(t−s)H(t− s)∥ut − vt∥Bds

+M

∫ t

−∞
e−ω(t−s)Lg(s)∥ut − vt∥Bds

≤
(
Lf + sup

t∈R

∫ t

−∞
e−δ(t−s)H(t− s)Lf (s)ds

)
· L · ∥ut − vt∥∞

+

(
M sup

t∈R

∫ t

−∞
e−ω(t−s)Lg(s)ds

)
· L · ∥ut − vt∥∞

≤ θ · ∥ut − vt∥∞.

The assertion is now a consequence of the classical Banach contraction mapping

principle. �
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[21] J. Liang, G. M. N’Guérékata, T. J. Xiao and J. Zhang, Some properties of pseudo

almost automrphic functions and applications to abstract differential equations, Nonlinear
Anal. 70 (2009), 2731–2735.
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