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Abstract. We investigate the rudiments of Riemannian geometry on orbit
spaces M/G for isometric proper actions of Lie groups on Riemannian manifolds.
Minimal geodesic arcs are length minimising curves in the metric space M/G
and they can hit strata which are more singular only at the end points. This is
phrased as convexity result. The geodesic spray, viewed as a (strata-preserving)
vector field on TM/G, leads to the notion of geodesics in M/G which are projec-
tions under M → M/G of geodesics which are normal to the orbits. It also leads
to ‘ballistic curves’ which are projections of the other geodesics. In examples
(Hermitian and symmetric matrices, and more generally polar representations)
we compute their equations by singular symplectic reductions and obtain gener-
alizations of Calogero–Moser systems with spin.
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1. Introduction

Differential geometry deals ordinarily with smooth objects on smooth
manifolds. However, in many cases this assumption is too restrictive. In
various contexts different types of non-smooth manifolds or ‘manifolds with
singularities’ appear naturally, like complex algebraic varieties, orbifolds,
V -manifolds [33], [10], limits of Riemannian manifolds with respect to
the Gromov–Hausdorff metric [12], etc. In the present paper we consider a
rather special but interesting and important class of non-smooth manifolds,
namely the orbit spaces M/G of Riemannian manifolds M with respect to
groups G of isometries. Our goal is to develop the Riemannian geometry of
orbit spaces. An orbit space has the structure of a stratified manifold with
smooth strata, namely the connected components of the sets (M/G)(H) of
orbits of some given orbit type (or isotropy type) (H).

Let us describe the structure of the paper. The basic facts about the
orbit stratification of an orbit space M/G is presented in Section 2.

An orbit space of a complete Riemannian G-manifold M has a natu-
ral structure of a metric space. Some elementary properties of this metric
structure are collected in Section 3. In particular, we establish some con-
vexity properties of the stratification with respect to distance minimizing
curves which we call minimal geodesic arcs. For example, the set (M/G)reg
of regular orbits is a convex open dense submanifold of M/G.

Some basic global differential geometric objects on M/G are defined in
Section 4. We define the algebra of smooth functions C∞(M/G) on M/G

as the algebra C∞(M)G of G-invariant smooth functions on M , and the
Lie algebra of vector fields X(M/G) as the Lie algebra of all derivations
of C∞(M/G) = C∞(M)G which preserve all ideals of functions vanishing
on some stratum. The deep result [35] of G. Schwarz states that the
natural homomorphism X(M)G → Der(C∞(M/G)) has X(M/G) as image.
Each element of X(M/G) induces a derivation on the algebra of smooth
functions on each stratum and thus defines an ordinary vector field along
each stratum. In order to define geodesics which connect different strata
we consider the geodesic spray as a vector field on TM/G, the projection of
the geodesic spray Γ ∈ X(TM)G. The integral curves of the geodesic spray
Γ on TM/G stay within the strata, but their projection to M/G connect
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different strata in M/G. We define geodesics in M/G as projections to
M/G of integral curves of Γ on TM/G which are orthogonal to orbits, i.e.,
in TM their initial vector should be in in Nor(M)x = Tx(G.x)⊥ for x ∈ M .
More generally, the projection on M/G of an arbitrary integral curve of
the geodesic spray Γ on TM/G is called a ‘ballistic curve’. Imitating the
classical Riemannian case, we establish some properties of the geodesic
spray on TM/G and define Jacobi fields along geodesics and along ballistic
curves.

Section 5 is devoted to a more systematic study of ballistic curves in
M/G for the simple model case when the unitary group G = SU(n) acts
on the space M = H(n) of Hermitian matrices by conjugation. Using the
singular Hamiltonian reduction by Sjamaar and Lerman [36], we derive
the Hamiltonian equation for a ballistic curve in H(n)/SU(n). It turns
out that it is a Calogero–Moser system with spin. In the special case
when the momentum Y ∈ su(n)∗ has maximal isotropy group, i.e. when
Y =

√−1(c.1n + w ⊗ w∗) where w is a vector with |w|2 = −c > 0 the
equation is the classical Calogero–Moser system, which reproduces results
of Kazhdan, Kostant, and Sternberg, [14].

The last Section 6 is devoted to the generalization of the results on
ballistic curves to the orbit space V/G where V is an Euclidean space and
G ⊂ SO(V ) is a connected subgroup of the orthogonal group whose action
on V is polar, i.e. admits a section. We are able to generalize the approach
of [14] to this general situation. Related results can be found in [30], and
[27], see also [13], and [4], and [5].

The special case of a Riemannian orbit space M/G where G is a dis-
crete proper group of isometries (so that the isotropy groups are all finite)
are special cases of Riemannian orbifolds. Work in this direction has been
done by [7], [8], and [3]. Also the case of polar representations and thus all
the explicit examples at the end of the paper fall into the case of orbifolds.

We thank Nikolai Reshetikhin for helpful discussions and pointing out
references [14], [5], and [15]. His paper [32] deals with related aspects.
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2. Stratification of orbit spaces

2.1. The setup. Let M be a connected G-manifold, where G is a Lie
group. The G-action is called proper if G×M → M×M , given by (g, x) 7→
(g.x, x), is a proper mapping. It is well known that proper G-actions admit
slices ([28], [29], [23]): For each x ∈ M there exists a submanifold Sx ⊂ M

containing x, an open G-invariant neighborhood W of G.x, and a smooth
equivariant retraction r : W → G.x such that Sx = r−1(x). Moreover, for
the isotropy group Gx of x we have Gx.Sx⊆Sx, and g ∈G with g.Sx∩Sx 6= ∅
must lie in Gx. Moreover, the slice Sx is a manifold and Gs ⊆ Gx for
each s ∈ Sx. Finally, the action G × Sx → W induces an G-equivariant
diffeomorphism G×Gx Sx → W . This implies that C∞(W )G = C∞(Sx)Gx

via restriction.
We consider the orbit space M/G and the canonical projection π :

M → M/G, and we endow the quotient space M/G with the following
smooth structure: The quotient topology and the sheaf of smooth real
valued functions U 7→ C∞(U) := C∞(π−1(U))G. A mapping ϕ : M/G →
M ′/G′ is called smooth if it respects these sheafs. For a slice Sx as above
on the orbit spaces we have C∞(W/G) = C∞(Sx/Gx). Therefore the local
smooth structure of M/G coincides with the smooth structure of Sx/Gx.
A mapping ϕ : M/G → M ′/G′ is smooth if and only if ϕ∗C∞(M ′/G′) ⊆
C∞(M/G).

2.2. Let H be a closed subgroup of G and let (H) denote the conjugacy
class of H. For two closed subgroups H1 and H2 we write (H1) ≤ (H2) if
H1 is conjugated to a subgroup of H2.

Let M(H) denote the set of points of M whose isotropy groups belong
to (H). It is known that M(H) is a smooth submanifold of M for proper
actions (see [23, 7.4]). Put (M/G)(H) := π(M(H)) = (M(H))/G, call this
the isotropy stratum of type (H), and call any connected component of
this an orbit stratum of M/G.

Proposition ([35], [23], [29]).

(1) The isotropy stratum (M/G)(H) = M(H)/G is a smooth manifold, the

inclusion (M/G)(H) → M/G is smooth, and π : M(H) → (M/G)(H) is

a smooth fiber bundle with fiber type G/H.
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(2) We have a smooth fiber bundle M(H) → G/NG(H) where NG(H) is

the normalizer of H in G, and where the fiber over g.NG(H) is the

fixed point set MgHg−1 ∩M(H). See [23, 7.3].

(3) The orbit strata of M/G form a locally finite partition of M/G.

2.3. Theorem ([23, 6.15ff.]). There exists a unique minimal isotropy

type (K) such that

(1) (M/G)(K) is connected, locally connected, open, and dense in M/G.

(2) The slice representations at all points of M(K) are trivial, i.e. Gx acts

trivially on Sx for all x ∈ M(K).

(3) dim(M/G)(K) = dimM − dimG + dim K.

The stratum (M/G)(K) is called the principal isotropy stratum and is
denoted by (M/G)reg. Likewise we write Mreg := M(K).

2.4. Let G be a compact group and let ρ : G → GL(V ) be an orthogonal
representation of G on a real finite dimensional Euclidean vector space V .
Let σ = (σ1, . . . , σn) : V → Rn, where σ1, . . . , σn is a system of generators
for the algebra R[V ]G of invariant polynomials on V . The mapping σ

is proper and induces a homeomorphism between V/G and the closed
subset σ(V ) ⊂ Rn, see [34]. Since σ is a polynomial map, σ(V ) is a
semi-algebraic subset, see [31] for an explicit description by polynomial
equations and inequalities. By [37] and [18] the semi-algebraic set σ(V ) has
a canonical stratification into smooth algebraic submanifolds, called the
Whitney stratification. The strata for this stratification are the connected
components of the images under σ of the set of points in V where the rank
of the system of polynomials σ1, . . . , σn is constant.

Theorem.

(1) [6] The mapping σ : V → σ(V ) induces a bijection σ̄ : V/G → σ(V )
which maps the components of the isotropy strata of V/G diffeomor-

phically onto the strata of σ(V ) as a semi-algebraic set.

(2) [34] σ∗ : C∞(Rn) → C∞(V )G is a surjective homomorphism of alge-

bras. There exists a continuous linear map ϕ : C∞(V )G → C∞(Rn)
with σ∗ ◦ ϕ = IdC∞(Rn), [22].
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2.5. Remark. Let M be a smooth proper G-manifold. Then the orbit
stratification of M/G is locally given as the Whitney stratification of a
semi-algebraic subset in a vector space; by [21] this is in turn determined
by the algebra of smooth functions on it. Thus the orbit stratification of
M/G is determined by C∞(M)G = C∞(M/G).

3. The orbit space M/G as a metric space

Let (M, g) be a connected complete Riemannian manifold and let G

be a Lie group of isometries which acts properly on M (or equivalently,
is closed in the full group of isometries). Then we say that (M, g) is a
complete Riemannian G-manifold. Denote by π : M → M̄ = M/G the
natural projection of M onto the orbit space M/G.

Denote by d the natural metric structure on M/G induced by the Rie-
mannian metric g of M . By definition the distance d(p̄, q̄) is the minimum
of the lengths of all curves in M which connect the orbits p̄, q̄.

Recall that a metric space (X, d) is said to be of inner type [2] or a
path metric space [12] if the distance between any two points p, q is equal
to the length of a curve pq connecting these points. Such a curve is called
a minimal geodesic segment.

3.1. Proposition. Let (M, g) be a complete Riemannian G-manifold.

Then the following holds:

(1) The orbit space (M/G, d) with the natural metric is a complete metric

space and a path metric space.

(2) Any minimal geodesic segment of M/G is the projection of a normal

(i.e. orthogonal to orbits) geodesic segment of M which is called a

‘horizontal lift’.

(3) For every p̄ ∈ M/G there exists r > 0 such that each q̄ with d(p̄, q̄) < r

can be connected to p̄ by a unique minimal geodesic segment.

(4) Any two horizontal lifts in M of a minimal geodesic segment in M/G

differ by the action of an isometry in G. For any normal geodesic c

in M the projection π ◦ c into M/G has the following property: For
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each t there exists r > 0 such that π(c(s)) for s between t and t ± r

both are minimal geodesic segments.

Note that even if M is compact, in (3) one cannot choose the same
r > 0 for all points p̄ ∈ M/G in general, see Example 3.3.

Proof. (1) and (2). For p, q ∈ M there is a point g.q ∈ G.q such
that d(p, g.q) is the distance from p to the (closed) orbit G.q. Since M is
a complete Riemannian manifold, there is a geodesic c of minimal length
from p to g.q. This geodesic is orthogonal to the orbit G.p: otherwise, by
Gauss’ lemma, we could find a shorter broken geodesic from p to g.q. By
a well known lemma ([23, 8.1], or [29]), c′(t) is orthogonal to each orbit
which it meets. But then the length of π ◦ c in M/G equals the length
of c in M , which is the distance between the orbits G.p and G.q and thus
equals d(p̄, q̄).

The metric space (M/G, d) is complete since each bounded closed set
is compact: Use that the image of a closed geodesic ball Br(x) ⊂ M of
radius r with center x ∈ M is the closed ball Br(π(x)) of the same radius
in M/G.

(3) and (4). Let p̄, q̄ be two points of M/G with sufficiently short
distance d = d(p̄, q̄) and let γ, δ be two geodesic segments in M of length d

connecting the orbits p̄, q̄. Transforming one of the geodesics by an ap-
propriate isometry, we may assume that the geodesics start from the same
point p ∈ p̄. Since the geodesics are normal to the orbit p̄, they belong to
the slice S = expp N , where N is a neighborhood of the origin in the nor-
mal space of the orbit p̄ at p. The end points γ(d), δ(d) of these geodesics
belong to the orbit q̄. Hence, by the main property of a slice, there exist an
isometry h in the stabilizer Gp such that hγ(d) = δ(d). Since the geodesics
are small, this implies hγ = δ and π(γ) = π(δ). ¤

We define the angle between two minimal geodesic ray segments in
M/G from a point p̄ as the minimum of the angles between all their hori-
zontal lifts through p ∈ p̄. The angle is independent of the choice of p.

3.2. Proposition. Let G be a compact connected Lie group and

ρ : G → SO(V ) a polar orthogonal representation into a Euclidean vector

space (V , g = 〈 , 〉). Then any two points of the orbit space V/G are

connected by a unique minimal geodesic segment.
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Proof. By definition of a polar representation there exists a linear
section S, i.e., a vector subspace of V which intersects all orbits orthog-
onally, see [11]. Denote by W the Weyl group of a section S, that is the
quotient W = NG(S)/ZG(S), where NG(S) is the subgroup of G which
preserves S and ZG(S) is its normal subgroup which acts trivially on S.
It is known that W is a finite group generated by reflections in hyper-
planes of S and that the orbit spaces V/G and S/W are isometric, [11].
This reduces the statement to the case when G is a finite group generated
by reflections, i.e., the Weyl group of a root system. The orbit space of
such group is the closure of a Weyl chamber which is a convex polyhedral
cone of Euclidean space with the induced metric. Now the statement is
obvious. ¤

Note that up to now we know only minimal geodesic segments; geodes-
ics as we will treat them in 4.4 below will turn out to be reflected at faces,
so there will be many different geodesics connecting two points.

3.3. Example. Statement 3.2 is not true if the representation ρ is not
polar. Moreover, there may exist points x, y with arbitrary small distance
ε which are connected by several minimal geodesic segments.

Let G ⊂ SO(V ) be a compact connected linear group such that V

is the direct sum of two G-invariant subspaces V1, V2 of dimension > 1.
Choose x ∈ V1, y ∈ V2 such that the stabilizer H = Gx does not act
transitively on the orbit G.y. For example, we may assume that H =
Gx = {Id}. Note that here y ∈ Tx(G.x)⊥, but y is not contained in a slice
at x. The maximal radius of a slice at x is just |x|.

Then for any z ∈ G.y the geodesic γ(t) = (1 − t)x + tz is normal,
since γ′(t) = −x + z is normal to X.γ(t) = (1 − t)X.x + tX.z for each
X ∈ g ⊂ so(V ). It is a minimal geodesic which connects the orbits G.x and
G.y. Hence it defines a minimal geodesic segment γ̄ in the orbit space V/G.
If z, z′ ∈ Gy do not belong to one H orbit, then the corresponding geodesics
are not G-equivalent and define different minimal geodesic segments of the
orbit space connecting π(x) and π(y).

3.4. Recall that a subset N of a path metric space (M,d) is called weakly
convex if the induced metric on N is also of path metric type. So any two
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points in N are connected in M by some minimal geodesic segment which
lies in N .

A subset N of a path metric space (M, d) is called convex if any
minimal geodesic segment in M between two points in N lies in N .

Denote by (M/G)≤(H) the set of orbits with orbit type smaller then
(H). In particular, (M/G)≤(K) = (M/G)reg if (K) denotes the minimal
orbit type.

Proposition. M≤(H) is a convex subset of M/G. In particular,

(M/G)reg is a convex open dense submanifold.

The proof follows from the following lemma.

3.5. Lemma. Let p̄ q̄ be a minimal geodesic in M/G of length d and

let pq be a horizontal lift. Then the stabilizer Gx of any interior point of

pq is contained in the stabilizers Gp, Gq of the end points.

In particular, if Gp∩Gq = {K}, the minimal stabilizer group, then all
interior points of p̄q̄ are regular.

Proof. Assume for contradiction that there exist an isometry h ∈
Gx\Gp. Applying h to a minimal geodesic px we obtain a minimal geodesic
(hp)x of the same length which connects Gp = p̄ and x. Then the broken
geodesic (hp)xq has length d and connects p̄ and q̄. This is impossible. ¤

4. Vector fields, geodesics,
and Jacobi fields on orbit spaces

4.1. Smooth vector fields on orbit spaces. Let M be a proper G-
manifold and let Der(C∞(M/G)) denote the space of all derivations of the
real algebra C∞(M/G); these are called smooth vector fields on M/G. A
vector field X ∈ Der(C∞(M/G)) is called strata-preserving if it preserves
each ideal in C∞(M/G) consisting of functions which vanish on an orbit
stratum. We denote by X(M/G) the Lie subalgebra of all strata-preserving
vector fields.
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Theorem ([35]). The canonical mapping

X 7→ X̄, X(M)G → Der(C∞(M/G))

has image X(M/G).

In [35] this is stated for compact G, but the proof works without
change also for proper G-actions.

Thus we have the following exact sequence:

0 → X(M)G
ver → X(M)G → X(M/G) → 0

where X(M)G
ver is the space of all G-invariant vector fields on M which are

tangent to the orbits (vertical).
Thus a strata preserving smooth vector field X̄ ∈ X(M/G) induces a

derivation on the algebra of smooth functions on each stratum and thus
a smooth vector field on each stratum which is tangent to this stratum.
Moreover, X̄ induces a local flow FlX̄ on each stratum. By using also a
lift in X(M)G, we get a strata preserving smooth mapping

R×M/G ⊇ U
FlX̄−→ M/G

which is defined on an open neighborhood U of 0 × M/G in R × M/G.
Clearly for X ∈ X(M)G the flows FlX of X and FlX̄ of X̄ ∈ X(M/G)
are related, i.e., πM/G ◦ FlXt = FlX̄t ◦πM/G, since this is true on each orbit
stratum.

4.2. If M is a complete Riemannian G-manifold we may also consider the
vector space X(M)G

hor of all smooth horizontal G-invariant vector fields,
which are normal to each orbit which they meet. The space X(M)G

hor is a
Lie algebra if and only if the vector subbundle Nor(M)|Mreg is integrable
which is almost equivalent to the fact that M admits a section, since then
the horizontal bundle over Mreg is integrable; there might be topological
difficulties, namely, the leaves of the horizontal bundle might be not closed.

4.3. Differential equations of second order on M/G. Let κM :
TTM → TTM be the canonical involution. Recall that a vector field Γ
on TM is called a differential equation of second order on M if κM ◦Γ = Γ
or, equivalently, if T (πM ) ◦Γ = IdTM . It is called a spray if it is quadratic
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in the sense that Γ(mM
t .X) = mTM

t .T (mM
t ).Γ(X), where mM

t is the scalar
multiplication by t on TM .

Let M be a proper G-manifold. Then the extension of the G-action
to TM is also proper. The projection Γ̄ of a G-invariant second order
differential equation or spray Γ ∈ X(TM)G to X(TM/G) is called a second
order differential equation or spray on M/G. By 4.1 we know that Γ̄ is
tangent to all strata of TM/G, thus integral curves of Γ̄ make sense and
are unique as integral curves of vector fields on manifolds. Clearly, the
projection of an integral curve of Γ is an integral curve of Γ̄ on TM/G.

4.4. The geodesic spray on M/G. Fix a complete G-invariant Rie-
mannian metric on M and denote by Γ its geodesic spray. The flow lines
of Γ are the velocity fields of geodesics on M . The corresponding spray
Γ̄ ∈ X(TM/G) is called the geodesic spray on M/G. Its flow lines are
complete and each is contained in one stratum of TM/G.

For x ∈ M let Nor(M)x = (Tx(G.x))⊥, the normal space to the orbit,
which we may split as orthogonal direct sum of the subspace Norinv(M)x =
Nor(M)Gx

x which is invariant under the isotropy group Gx, and its orthog-
onal complement in Nor(M)x. We consider Nor(M) :=

⋃
x∈M Nor(M)x ⊂

TM , and similarly for Norinv(M). These are G-invariant subsets of TM

which can be considered as families of sub vector spaces with jumping di-
mensions: Over singular strata the dimension may become larger. Note
that Nor(M)x = Norinv(M)x if and only if x is a regular point.

Nor(M) is invariant under the flow of the spray Γ since a geodesic
which is orthogonal to one orbit is orthogonal to any orbit it meets. How-
ever, Norinv(M) is not invariant under the flow of the spray Γ, since a
geodesic starting at a regular point orthogonally to the orbit may hit later
a singular point where its tangent vector is still orthogonal to the orbit
but no longer invariant under the (larger) isotropy group. Consequently,
Nor(M)/G ⊆ TM/G is invariant under the flow of the spray Γ̄. We may
consider Nor(M)/G as a substitute of the tangent bundle of the the orbit
space M/G since the normal slices suffice to describe any tangent vector
which moves an orbit infinitesimally.

Definition. A geodesic on M/G is a curve of the form

t 7→
(
πM/G ◦ FlΓ̄t

)
(ξ̄), ξ̄ ∈ Nor(M)/G.
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This definition fits well with concept of minimal geodesic arcs as treated
in Section 3; geodesics are prolongations of minimal geodesic arcs. Clearly
geodesics in M/G are exactly the projections onto M/G of normal geodes-
ics in M .

4.5. Example. Let G → O(V ) be a polar representation of a compact
group, with section Σ ⊂ V , a linear subspace which meets every orbit
orthogonally. Then V/G = Σ/W (Σ) is represented by a chamber C in Σ.
The normal geodesics in V can be chosen to lie in Σ, thus the geodesics
in V/G = Σ/W (Σ) ∼= C are straight lines in the interior of C which are
reflected by the walls: the incoming angle equals the outgoing angle.

4.6. Questions. (1) Are the geodesics on M/G uniquely determined
by the metric space (M/G, d)? More precisely: Let M/G and N/H be
two orbit spaces of connected complete Riemannian manifolds by proper
groups of isometries, and let ϕ : M/G → N/H be an isometric bijection.
Is it true that ϕ maps geodesics to geodesics? Clearly minimal geodesic
arcs are mapped to minimal geodesic arcs.

(2) Is the orbit stratification of M/G determined by the metric space
M/G?

(3) Can one lift isometries between orbit spaces to the Riemannian
manifolds? Results in this direction can be found in [35] under stronger
conditions, and in [19] more generally. See also [16] and [20] for finite
groups.

4.7. Ballistic curves. The projection t 7→ (πM/G ◦ FlΓ̄t )(ξ̄) onto M/G

of a flow line of the geodesic spray on TM/G with general initial vector
ξ̄ ∈ TM/G (which need not be in Nor(M)/G), is called a ballistic curve.
It depends on external data: π̄M/G : TM/G → M/G is bigger than the
tangent bundle.

4.8. The Jacobian flow. We recall the following result. Here ∇ is a
torsion-free covariant derivative on TM which is uniquely determined by
its spray Γ. R is the curvature of∇, and K : TTM → TM is the connector,
i.e., the projection from TTM onto the vertical bundle along the horizontal
bundle described by ∇, followed by the the natural projection from the
vertical bundle to TM .
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Theorem ([24]). Let Γ : TM → TTM be a spray on a manifold M .

Then κTM ◦ TΓ : TTM → TTTM is a vector field. Consider a flow line

Y (t) = FlκTM◦TΓ
t (Y (0))

of this field. Then we have:

c := πM ◦ πTM ◦ Y is a geodesic on M .

ċ = πTM ◦ Y is the velocity field of c.

J := T (πM ) ◦ Y is a Jacobi field along c.

J̇ = κM ◦ Y is the velocity field of J .

∇∂tJ = K ◦ κM ◦ Y is the covariant derivative of J .

The Jacobi equation is given by:

0 = ∇∂t∇∂tJ + R(J, ċ)ċ = K ◦ TK ◦ TΓ ◦ Y.

This implies that in a canonical chart induced from a chart on M the curve

Y (t) is given by

(c(t), c′(t); J(t), J ′(t)).

On a complete Riemannian G-manifold M with geodesic spray Γ we
may thus consider the G-invariant vector field κTM ◦TΓ : TTM → TTTM

and the induced smooth derivation

κTM ◦ TΓ ∈ X(TTM/G).

We have

T (πTM/G) ◦ κTM ◦ TΓ = TπTM ◦ κTM ◦ TΓ = πTTM ◦ TΓ

= Γ ◦ πTM = Γ̄ ◦ πTM/G.

We consider a flow line

Ȳ (t) = FlκTM◦TΓ
t (Ȳ (0))

of this field which respects the orbit stratification. Then we have

(1) t 7→ c̄(t) := πM/G ◦ πTM/G ◦ Ȳ (t) ∈ M/G is a geodesic on M/G if
the initial velocity vector πTM/G(Ȳ (0)) ∈ Nor(M)/G is normal. If not
then c̄(t) is a ballistic curve on M/G.
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(2) t 7→ ˙̄c(t) = πTM/G ◦ Ȳ (t) ∈ TM/G is the velocity field of c̄. It respects
the orbit stratification of TM/G since it is a flow line of Γ̄.

(3) t 7→ J̄(t) := T (πM )/G ◦ Ȳ (t) ∈ TM/G can be called a Jacobi field
along c̄. It does not respect the orbit stratification in general.

(4) ˙̄J = κM/G ◦ Ȳ is the velocity field of J̄ . It respects the orbit stratifi-
cation.

(5) ∇∂t J̄ = K̄ ◦ κM/G ◦ Ȳ is the covariant derivative of J̄ .

5. Example:
Hermitian and symmetric matrices

5.1. Simplest example. Let S1 act on R2 by rotations. Then R2/S1 =
[0,∞), and πR2 : TR2/S1 → R2/S1 looks as follows: The fiber over 0 is
[0,∞) again, and the fiber over t > 0 is R2. Normal geodesics on R2 are
lines through 0, so geodesics on R2/S1 are constant speed curves coming
in from infinity on [0,∞) which are reflected at 0 and go out again at
constant speed: t 7→ |tv|. However, ballistic curves seem to carry a charge
and behave as being repelled by a field carried by the singular orbit 0,
namely

t 7→
√

(x1 + tv1)2 + (x2 + tv2)2,

where x, v are linearly independent in R2.

5.2. Simple example. Let SO(2) act on the space S(2) of symmetric
(2×2)-matrices by conjugation, a polar representation, where the diagonal
matrices form a section. A chamber is here given by the halfspace

S(2)/SO(2) = C :=
{(

λ1 0
0 λ2

)
: λ1 ≥ λ2

}
.

Let us describe TS(2)/SO(2) → S(2)/SO(2) = C. Over a point A =
diag(λ, λ) in the wall of C we can use the isotropy group SO(2)A = SO(2)
to put the tangent vector in normal form, so the fiber there is the half
space C. The fiber over an interior point is the whole vector space S(2).
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As in 4.5 geodesics in S(2)/SO(2) ∼= C are straight lines which are
reflected by the wall {λ1 = λ2}. One can compute the ballistic curves. For

t 7→ A + tV =
(

a1 0
0 a2

)
+ t

(
v1 v3

v3 v2

)
∈ S(2)

the curve of eigenvalues in C is

t 7→
(

λ1(t)
λ2(t)

)

=
1
2

(
a1 + a2 + t(v1 + v2) +

√
(a1 − a2 + t(v1 − v2))2 + 4t2v2

3

a1 + a2 + t(v1 + v2)−
√

(a1 − a2 + t(v1 − v2))2 + 4t2v2
3

)
.

Here t 7→ a1+a2+t(v1+v2) is the component on the wall λ1 = λ2 of C which
travels with constant speed, whereas

√
(a1 − a2 + t(v1 − v2)2 + 4t2v2

3 is
the distance from the wall. So again the ballistic curve is being repelled
by a field carried by the wall. If it contains one regular orbit and is not a
geodesic, then it never hits the wall.

5.3. The space of Hermitian matrices. Let G = SU(n) act on the
space H(n) of complex Hermitian (n× n)-matrices by conjugation, where
the inner product is given by the (always real) trace Tr(AB). This is a
polar representation, where the diagonal matrices with real entries form a
section Σ. A chamber is here given by the quadrant C ⊂ Σ consisting of
all real diagonal matrices with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Geodesics
in H(n)/SU(n) ∼= C are straight lines which are reflected by all walls
{λi = λi1 = · · · = λi+k}.

A ballistic curve looks as follows: Let A be a diagonal matrix with
eigenvalues a1 ≥ · · · ≥ an, and let V = (vi,j) be a Hermitian matrix. The
ballistic curve is then λ(t) = (λ1(t) ≥ · · · ≥ λn(t)), the curve of eigenvalues
of the Hermitian matrix A + tV .

5.4. Hamiltonian description. Let us describe ballistic curves as tra-
jectories of a Hamiltonian system on a reduced phase space. Let T ∗H(n) =
H(n) ×H(n) be the cotangent bundle where we identified H(n) with its
dual by the inner product, so the duality is given by 〈α, A〉 = Tr(Aα).
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Then the canonical 1-form is given by θ(A,α,A′, α′) = Tr(αA′), the sym-
plectic form is ω(A,α)((A′, α′), (A′′, α′′)) = Tr(A′α′′−A′′α′), and the Hamil-
tonian function for the straight lines (A + tα, α) on H(n) is h(A,α) =
1
2 Tr(α2). The action SU(n) 3 g 7→ (A 7→ gAg−1) lifts to the action
SU(n) 3 g 7→ ((A,α) 7→ (gAg−1, gαg−1)) on T ∗H(n) with fundamental
vector fields ζX(A,α) = (A,α, [X,A], [X,α]) for X ∈ su(n), and with gen-
erating functions fX(A,α) = θ(ζX(A,α)) = Tr(α[X, A]) = Tr([A, α]X).
Thus the momentum mapping J : T ∗H(n) → su(n)∗ is given by
〈X,J(A,α)〉 = fX(A,α) = Tr([A,α]X). If we identify su(n) with its
dual via the inner product Tr(XY ), the momentum mapping is J(A,α) =
[A,α]. Along the line t 7→ A + tα the momentum mapping is constant:
J(A+tα, α) = [A,α] = Y ∈ su(n). Note that for X ∈ su(n) the evaluation
on X of J(A + tα, α) ∈ su(n)∗ equals the inner product:

〈X,J(A + tα, α)〉 = Tr
(

d
dt(A + tα), ζX(A + tα)

)
,

which is obviously constant in t; compare with the general result of Rie-
mannian transformation groups, e.g. [23, 8.1].

According to principles of symplectic reduction [1, 4.3.5], [36], [17],
[30], we have to consider for a regular value Y (and later for an arbitrary
value) of the momentum mapping J the submanifold J−1(Y ) ⊂ T ∗H(n).
The null distribution of ω|J−1(Y ) is integrable (with jumping dimen-
sions) and its leaves (according to the Stefan–Sussmann theory of in-
tegrable distributions) are exactly the orbits in J−1(Y ) of the isotropy
group SU(n)Y for the coadjoint action. So we have to consider the orbit
space J−1(Y )/SU(n)Y . If Y is not a regular value of J , the inverse image
J−1(Y ) is a subset which is described by polynomial equations since J is
polynomial (in fact quadratic), so J−1(Y ) is stratified into submanifolds;
symplectic reduction works also for this case, see [36].

5.5. The case of momentum Y = 0 gives again geodesics. If Y = 0
then SU(n)Y = SU(n) and J−1(0) = {(A,α) : [A,α] = 0}, so A and
α commute. If A is regular (i.e. all eigenvalues are distinct), using a
uniquely determined transformation g ∈ SU(n) we move the point A into
the open chamber Co ⊂ H(n), so A = diag(a1 > a2 > · · · > an) and
since α commutes with A it is also in diagonal form. The symplectic
form ω restricts to the canonical symplectic form on Co ×Σ = Co ×Σ∗ =
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T ∗(Co). Thus symplectic reduction gives (J−1(0)∩(T ∗H(n))reg)/SU(n) =
T ∗(Co) ⊂ T ∗H(n). By [36] we also use symplectic reduction for non-
regular A and we get (see in particular [17, 3.4]) J−1(0)/SU(n) = T ∗C, the
stratified cotangent cone bundle of the chamber C considered as stratified
space. Namely, if one root εi(A) = ai − ai+1 vanishes on the diagonal
matrix A then the isotropy group SU(n)A contains a subgroup SU(2)
corresponding to these coordinates. Any matrix α with [A,α] = 0 contains
an arbitrary hermitian submatrix corresponding to the coordinates i and
i + 1, which may be brought into diagonal form with the help of this
SU(2) so that εi(α) = αi−αi+1 ≥ 0. Thus the tangent vector α with foot
point in a wall is either tangent to the wall (if αi = αi+1) or points into
the interior of the chamber C. The Hamiltonian h restricts to Co × Σ 3
(A,α) 7→ 1

2

∑
i α

2
i , so the trajectories of the Hamiltonian system here are

again straight lines which are reflected at the walls.

5.6. The case of general momentum Y . If Y 6= 0 ∈ su(n) and if
SU(n)Y is the isotropy group of Y for the adjoint representation, then
it is well known (see references in 5.4) that we may pass from Y to the
coadjoint orbit O(Y ) = Ad∗(SU(n))(Y ) and get

J−1(Y )/SU(n)Y = J−1(O(Y ))/SU(n)

= (J−1(Y )×O(−Y ))/SU(n),
(1)

where all (stratified) diffeomorphisms are symplectic ones.

5.7. The Calogero Moser system. As the simplest case we assume
that Y ′ ∈ su(n) is not zero but has maximal isotropy group, see [14]: So
we assume that Y ′ has complex rank 1 plus a suitable imaginary multiple
of the identity to ensure that Y ′ ∈ su(n), in more detail: Y ′ =

√−1(cIn +
v ⊗ v∗) for 0 6= v = (vi) a column vector in Cn. The coadjoint orbit
is then O(Y ′) = {√−1(cIn + w ⊗ w∗) : w ∈ Cn, |w| = |v|}, isomorphic
to S2n−1/S1 = CPn, of real dimension 2n − 2. Consider (A′, α′) with
J(A′, α′) = Y ′, choose g ∈ SU(n) such that A = gA′g−1 = diag(a1 ≥
a2 ≥ · · · ≥ an), and let α = gα′g−1. Then the entry of the commutator
is [A,α]ij = αij(ai − aj). So [A,α] = gY ′g−1 =: Y =

√−1(cIn + gv ⊗
(gv)∗) =

√−1(cIn +w⊗w∗) has zero diagonal entries, thus 0 < wiw̄i = −c

and wi = exp(
√−1θi)

√−c for some θi. But then all off-diagonal entries
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Yij =
√−1wiw̄j = −√−1 c exp(

√−1(θi − θj)) 6= 0, and A has to be
regular. We may use the remaining gauge freedom in the isotropy group
SU(n)A = S(U(1)n) to put wi = exp(

√−1θ)
√−c where θ =

∑
θi. Then

Yij = −c
√−1 for i 6= j.

So the reduced space (T ∗H(n))Y is diffeomorphic to the submanifold
of T ∗H(n) consisting of all (A,α) ∈ H(n) × H(n) where A = diag(a1 >

a2 > · · · > an), and where α has arbitrary diagonal entries αi := αii and
off-diagonal entries αij = Yij/(ai−aj) = −c

√−1/(ai−aj). We can thus use
a1, . . . , an, α1, . . . , αn as coordinates. The invariant symplectic form pulls
back to ω(A,α)((A′α′), (A′′, α′′)) = Tr(A′α′′−A′′α′) =

∑
(a′iα

′′
i −a′′i α

′
i). The

invariant Hamiltonian h restricts to the Hamiltonian

h(A,α) = 1
2 Tr(α2) =

1
2

∑

i

α2
i +

1
2

∑

i6=j

c2

(ai − aj)2
.

This is the famous Hamiltonian function of the Calogero–Moser completely
integrable system, see [25], [26], [14], and [30, 3.1 and 3.3]. The correspond-
ing Hamiltonian vector field and the differential equation for the ballistic
curve are then

Hh =
∑

i

αi
∂

∂ai
+ 2

∑

i

∑

j 6=i

c2

(ai − aj)3
∂

∂αi
,

äi = 2
∑

j 6=i

c2

(ai − aj)3
,

Note that the ballistic curve avoids the walls of the Weyl chamber C.

5.8. Degenerate cases of non-zero momenta of minimal rank. Let
us discuss now the case of non-regular diagonal A. Namely, if one root, say
ε12(A) = a1−a2 vanishes on the diagonal matrix A then the isotropy group
SU(n)A contains a subgroup SU(2) corresponding to these coordinates.
Consider α with [A,α] = Y ; then 0 = α12(a1 − a2) = Y12. Thus α

contains an arbitrary hermitian submatrix corresponding to the first two
coordinates, which may be brought into diagonal form with the help of this
SU(2) ⊂ SU(n)A so that ε12(α) = α1 − α2 ≥ 0. Thus the tangent vector
α with foot point A in a wall is either tangent to the wall (if α1 = α2)
or points into the interior of the chamber C (if α1 > α2). Note that then
Y11 = Y22 = Y12 = 0.
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Let us now assume that the momentum Y is of the form Y =
√−1×

(cIn−2 + v⊗ v∗) for some vector 0 6= v ∈ Cn−2. We can repeat the analysis
of 5.7 in the subspace Cn−2, and get for the Hamiltonian

h(A,α) = 1
2 Tr(α2) =

1
2

n∑

i=1

α2
i +

1
2

∑

3≤i6=j

c2

(ai − aj)2
,

Hh =
n∑

i=1

αi
∂

∂ai
+ 2

∑

3≤i 6=j

c2

(ai − aj)3
∂

∂αi
,

ä1 = ä2 = 0, äi = 2
∑

3≤j 6=i

c2

(ai − aj)3
for i > 2.

So the ballistic curves are just the trajectories of the Calogero–Moser in-
tegrable system inside the wall {a1− a2 = 0} complemented by a geodesic
in the coordinates orthogonal to this wall. Of course we may add other
vanishing roots.

5.9. The case of general momentum Y and regular A. Starting
again with some regular A′ consider (A′, α′) with J(A′, α′) = Y ′, choose
g ∈ SU(n) such that A = gA′g−1 = diag(a1 > a2 > · · · > an), and let
α = gα′g−1 and Y = gY ′g−1 = [A,α]. Then the entry of the commutator
is Yij = [A,α]ij = αij(ai−aj) thus Yii = 0. We may pass to the coordinates
ai and αi := αii for 1 ≤ i ≤ n on the one hand, corresponding to J−1(Y )
in 5.6.1, and Yij for i 6= j on the other hand, corresponding to O(−Y )
in 5.6.1, with the linear relation Yji = −Yij and with n − 1 non-zero en-
tries Yij > 0 with i > j (chosen in lexicographic order) by applying the re-
maining isotropy group SU(n)A = S(U(1)n) = {diag(e

√−1θ1 , . . . , e
√−1θn) :∑

θi ∈ 2πZ}. We may use this canonical form as section

(J−1(Y )×O(−Y ))/SU(n) → J−1(Y )×O(−Y ) ⊂ TH(n)× su(n)

to pull back the symplectic or Poisson structures and the Hamiltonian
function

h(A,α) = 1
2 Tr(α2) =

1
2

∑

i

α2
i −

1
2

∑

i 6=j

YijYji

(ai − aj)2
,
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dh =
∑

i

αi dαi +
∑

i6=j

YijYji

(ai − aj)3
(dai − daj)

− 1
2

∑

i6=j

dYij .Yji + Yij .dYji

(ai − aj)2

=
∑

i

αi dαi + 2
∑

i6=j

YijYji

(ai − aj)3
dai −

∑

i6=j

Yji

(ai − aj)2
dYij . (1)

The invariant symplectic form on TH(n) pulls back to

ω(A,α)((A
′α′), (A′′, α′′)) = Tr(A′α′′ −A′′α′) =

∑
(a′iα

′′
i − a′′i α

′
i)

thus to
∑

i dai ∧ dαi. The Poisson structure on su(n) is given by

ΛY (U, V ) = Tr(Y [U, V ]) =
∑

m,n,p

(YmnUnpVpm − YmnVnpUpm)

ΛY =
∑

i 6=j,k 6=l

ΛY (dYij , dYkl)∂Yij ⊗ ∂Ykl

=
∑

i 6=j,k 6=l

∑
m,n

(Ymnδniδjkδlm − Ymnδnkδliδjm)∂Yij ⊗ ∂Ykl

=
∑

i 6=j,k 6=l

(Yliδjk − Yjkδli)∂Yij ⊗ ∂Ykl
.

Since this Poisson 2-vector field is tangent to the orbit O(−Y ) and is
SU(n)-invariant, we can push it down to the orbit space. There it maps
dYij to (remember that Yii = 0)

Λ−Y (dYij) = −
∑

k 6=l

(Yliδjk − Yjkδli)∂Ykl
= −

∑

k

(Yki∂Yjk
− Yjk∂Yki

).

So by (1) the Hamiltonian vector field is

Hh =
∑

i

αi ∂ai − 2
∑

i 6=j

YijYji

(ai − aj)3
∂αi

+
∑

i6=j

Yji

(ai − aj)2
∑

k

(Yki ∂Yjk
− Yjk ∂Yki

)

=
∑

i

αi ∂ai − 2
∑

i 6=j

YijYji

(ai − aj)3
∂αi
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−
∑

i,j,k

(
YjiYjk

(ai − aj)2
− YijYkj

(aj − ak)2

)
∂Yki

.

The differential equation thus becomes (remember that Yjj = 0):

ȧi = αi

α̇i = −2
∑

j

YijYji

(ai − aj)3
= 2

∑

j

|Yij |2
(ai − aj)3

Ẏki = −
∑

j

(
YjiYjk

(ai − aj)2
− YijYkj

(aj − ak)2

)
.

Consider the Matrix Z with Zii = 0 and Zij = Yij/(ai − aj)2. Then the
differential equations become:

äi = 2
∑

j

|Yij |2
(ai − aj)3

, Ẏ = [Y ∗, Z].

This is the Calogero–Moser integrable system with spin, see [5] and [32].

5.10. The case of general momentum Y and singular A. Let us
consider the situation of 5.9, when A is not regular. Let us assume again
that one root, say ε12(A) = a1 − a2 vanishes on the diagonal matrix A.
Consider α with [A, α] = Y . From Yij = [A, α]ij = αij(ai−aj) we conclude
that Yii = 0 for all i and also Y12 = 0. The isotropy group SU(n)A contains
a subgroup SU(2) corresponding to the first two coordinates and we may
use this to move α into the form that α12 = 0 and ε12(α) ≥ 0. Thus the
tangent vector α with foot point A in the wall {ε12 = 0} is either tangent
to the wall when α1 = α2 or points into the interior of the chamber C

when α1 > α2. We can then use the same analysis as in 5.9 where we use
now that Y12 = 0.

In the general case, when some roots vanish, we get for the Hamilton-
ian function, vector field, and differential equation:

h(A,α) = 1
2 Tr(α2) =

1
2

∑

i

α2
i +

1
2

∑

{(i,j):ai 6=aj}

|Yij |2
(ai − aj)2

,
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Hh =
∑

i

αi∂ai + 2
∑

aj 6=ai

|Yij |2
(ai − aj)3

∂αi

−
∑

ai 6=aj ,k

YjiYjk

(ai − aj)2
∂Yki

+
∑

i,aj 6=ak

YijYkj

(aj − ak)2
∂Yki

äi = 2
∑

aj 6=ai

|Yij |2
(ai − aj)3

, Ẏ = [Y ∗, Z]

where we use the same notation as above. It would be very interesting to
investigate the reflection behavior of this ballistic curve at the walls.

5.11. Example: symetric matrices. We finally treat the action of

SO(n) = SO(n,R) on the space S(n) of symmetric matrices by conjuga-

tion. Following the method of 5.9 and 5.10 we get the following result. Let

t 7→ A′+ tα′ be a straight line in S(n). Then the ordered set of eigenvalues

a1(t), . . . , an(t) of A′ + tα′ is part of the integral curve of the following

vector field:

Hh =
∑

i

αi∂ai + 2
∑

aj 6=ai

Y 2
ij

(ai − aj)3
∂αi

+
∑

ai 6=aj ,k

YijYjk

(ai − aj)2
∂Yki

−
∑

i,aj 6=ak

YijYjk

(aj − ak)2
∂Yki

äi = 2
∑

aj 6=ai

Y 2
ij

(ai − aj)3
, Ẏ = [Y, Z], where Zij = − Yij

(ai − aj)2
,

where we also note that Yij = Zij = 0 whenever ai = aj .

5.12. Remark. Along the same line one can investigate the action
of the quaternionic unitary group Sp(n) on the space of all quaternionic
hermitian matrices. Since the results are more complicated to write down
and since they are a special case of section 6 we do not dwell on them here.
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6. Ballistic curves on polar representations

6.1. The setting. Let ρ : G → O(V, 〈 , 〉) be a polar representation of a
compact connected semisimple group, see 4.5, with section Σ ⊂ V , a linear
subspace which meets every orbit orthogonally. Then V/G = Σ/W (Σ) is
represented by a chamber C in Σ. The normal geodesics in V can be
chosen to lie in Σ, thus the geodesics in V/G = Σ/W (Σ) ∼= C are straight
lines in the interior of C which are reflected by the walls.

By Dadok, [11], Proposition 6, which follows from his classification,
for any polar representation there exists an isotropy representation of a
symmetric space with the same orbits, and it suffices to investigate those
latter ones. Thus we can assume that l = g⊕V is a reductive decomposition
of a compact semisimple Lie algebra l, where g is the compact Lie algebra
of G, and where 〈 , 〉 is an invariant positive definite inner product on l,
the negative of the Killing form, and where l = g ⊕ V is an orthogonal
decomposition. Moreover the infinitesimal action ρ′ of g on V is by the
adjoint action, ρ′(X)A = [X, A], so [g, V ] ⊆ V , and [V, V ] ⊆ g. As section
Σ we may use any maximal abelian subspace in V . Moreover we shall use
the following lemma.

6.2. Lemma. In the situation above we have:

(1) For A ∈ V let g′ be the orthogonal complement of the centralizer

Zg(A) in g and let V ′ be the orthogonal complement to the centralizer

ZV (A) in V such that l = Zg(A)⊕ g′ ⊕ ZV (A)⊕ V ′.
Then adA induces linear isomorphisms adA : V ′ → [A, V ′] = g′

and adA : g′ → [A, g′] = V ′.

(2) An element A ∈ V is regular for the G-action on V if and only if the

centralizer ZV (A) in V is a maximal commutative subalgebra of V . In

this case ZV (A) is the unique section in V containing A.

(3) An element A ∈ V is regular for the G-action if and only if there exists

an element X ∈ g such that X + A is regular in l, so that Zl(X + A)
is a Cartan subalgebra of l.

(4) A linear subspace Σ ⊂ V is a section if and only if there exists a

Cartan subalgebra h of g such that h⊕Σ is a Cartan subalgebra of l.

In this case, let R ⊂ L(Σ,R) be the system of restricted roots so that
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we have the orthogonal root space decomposition

l = h⊕ Σ⊕
⊕

λ∈R

lλ

where each lλ has an orthogonal basis Ei
λ, Bi

λ, where i = 1, . . . , kλ,

and where Ei
λ ∈ g and Bi

λ ∈ V are unit vectors, such that [A,Ei
λ] =

λ(A)Bi
λ and [A,Bi

λ] = λ(A)Ei
λ for all A ∈ Σ.

(5) Let Σ ⊂ V be a section for the G-action on V and let A ∈ Σ. Then

for any α ∈ V with [A,α] = 0 there exists some g ∈ GA = ZG(A) with

g.α ∈ Σ.

Proof. (1) The result follows from the Fitting decomposition l =
Zl(A)+adA(l) of the skew-symmetric endomorphism adA : l → l which we
may write as

l = (Zg(A)⊕ adA(V ′))⊕ (ZV (A)⊕ adA(g′))

since adA interchanges g and V .

(2) It is known (see e.g. [11]) that the G-regular elements in a polar
G-module V are exactly those A ∈ V such that Zg(A) is of minimal di-
mension. Moreover, any A ∈ V is contained in some section Σ, and any
section Σ is a maximal commutative subspace of V ⊂ l = g ⊕ V . Since
a section Σ generates a compact torus in the Lie group L, there exists an
element A ∈ Σ such that ZV (A) = Σ. These elements are characterized
as those such that ZV (A) is of minimal dimension, since for any A ∈ V

the centralizer ZA(V ) contains a section Σ. By (1) the element A ∈ V

is G-regular if and only if dim(ZV (A)) is minimal, i.e. ZV (A) = Σ is a
section.

(3) follows from (2).

(4) The first assertion follows from (3), and the rest is well known in
the theory of symmetric spaces.

(5) Denote by Σ′ a maximal commutative subspace of V containing A

and α. Then Σ′ is a section. Now the isotropy group GA = ZG(A) acts
transitively on the set of all sections of V which contain A. So in particular
there exists g ∈ GA such that g.Σ′ = Σ, and hence g.α ∈ Σ. ¤
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6.3. Hamiltonian description and symplectic reduction. General-
izing 5.4, under the assumption of 6.1, we consider TV = V ×V ∼= V ×V ∗ =
T ∗V where we identify V with V ∗ via the inner product. The canonical
1-form is then given by θ(A,α, A′, α′) = 〈α,A′〉, the symplectic form is
ω(A,α)((A′, α′), (A′′, α′′)) = 〈A′, α′′〉 − 〈A′′, α′〉, the Hamiltonian function
for the straight lines (A + tα, α) is h(A,α) = 1

2〈α, α〉. The action of G

on V lifts to the diagonal action on TV = V × V with fundamental
vector field ζX(A,α) = (A,α, [X, A], [X, α]) for X ∈ g and with gener-
ating function fX(A,α) = θ(ζX(A,α)) = 〈α, [X,A]〉 = 〈X, [A,α]〉, where
we used the invariance of the inner product on l. Thus the momentum
mapping J : TV → g∗ ∼= g for this action is given by 〈X,J(A, α)〉 =
fX(A,α), so J(A,α) = [A,α]. Along each line the momentum is constant,
J(A + tα, α) = [A,α].

According to principles of symplectic reduction [1, 4.3.5], [36], [17],
[30], we have to consider a regular value Y ∈ g (and later for an arbitrary
value) of the momentum mapping J and the submanifold J−1(Y ) ⊂ TV .
The null distribution of ω|J−1(Y ) is integrable (with jumping dimensions)
and its leaves (according to the Stefan-Sussmann theory of integrable dis-
tributions) are exactly the orbits in J−1(Y ) of the isotropy group GY for
the coadjoint action. So we have to consider the orbit space J−1(Y )/GY .
If Y is not a regular value of J , the inverse image J−1(Y ) is a subset
which is described by polynomial equations since J is polynomial (in fact
quadratic), so J−1(Y ) is stratified into submanifolds; symplectic reduction
works also for this case, see [36].

6.4. The case of momentum Y = 0 gives again geodesics. If Y = 0
then GY = G and J−1(0) = {(A,α) : [A,α] = 0}, so A and α commute.
We may use g ∈ G to move (A,α) such that A ∈ C ⊂ Σ ⊂ V . If A ∈ Σ
is regular for the G-action then by Lemma 6.2.2 it is also regular in the
sense that Σ = ZV (A), thus α ∈ Σ also, and the reduced phase space is
TCo = Co×Σ. The Hamiltonian is still h(A,α) = 1

2〈α, α〉, the line A+ tα

is in Σ, and thus projects to a geodesic in C which is reflected at walls.
If A is not regular and [A,α′] = 0 then there exists g in the isotropy

group GA such that α = g.α′ ∈ C, by 6.2.5. If A is in a wall {λ = 0}, and
if λ(α) = 0, then the geodesic is in the same wall. If λ(α) > 0 then the
geodesic is reflected at this wall.
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6.5. Symplectic reduction at regular points. If Y 6= 0 ∈ g and if GY

is the isotropy group of Y for the adjoint representation, then it is well
known that we may pass from Y to the adjoint orbit O(Y ) = Ad∗(G)(Y )
and get

J−1(Y )/GY = J−1(O(Y ))/G = (J−1(Y )×O(−Y ))/G, (1)

where all (stratified) diffeomorphisms are symplectic ones.
We start again with some regular A ∈ V which we may move into

Co ⊂ Σ ⊂ V by using some suitable g ∈ G. Given α ∈ V we consider
[A,α] = Y ∈ g. According to the restricted root space decomposition 6.2
we can decompose α = αΣ +

∑
λ∈R,i α

i
λBi

λ where αΣ ∈ Σ. Similarly we
decompose Y = Yh +

∑
λ∈R,i Y

i
λ.Ei

λ. Then Y = [A,α] implies Yh = 0 ∈ h

and Y i
λ = λ(A)αi

λ. Since A is regular, A ∈ Co and thus λ(A) 6= 0 for
all λ ∈ R. Let us use also an orthonormal basis Bi

0 of Σ to expand
αΣ =

∑
i α

i
0B

i
0 and A =

∑
i A

i
0B

i
0.

We can thus use as coordinates

(Ai
0, α

i
0) ∈ Co × Σ = TCo

Y i
λ = λ(A)αi

λ ∈ Ad(G).Y.

The Hamiltonian function in this splitting is given by

h(A, α) =
1
2
〈α, α〉 =

1
2

∑

i

(αi
0)

2 +
1
2

∑

λ∈R,i

(Y i
λ)2

λ(A)2

dh =
∑

i

αi
0 dαi

0 −
∑

λ∈R,i

(Y i
λ)2

λ(A)3
∑

k

λ(Bk
0 ) dAk

0 +
∑

λ∈R,i

Y i
λ

λ(A)2
dY i

λ

The Poisson 2-field on g (which is tangent to each adjoint orbit) is given by

ΛY (dU, dV ) = 〈Y, [U, V ]〉, Y, U, V ∈ g

ΛY =
∑

λ,µ,i,j

ΛY (dY i
λ, dY j

µ )∂Y i
λ
⊗ ∂

Y j
µ

=
∑

λ,µ,i,j

〈Y, [Ei
λ, Ej

µ]〉∂Y i
λ
⊗ ∂

Y j
µ

=
∑

λ,µ,i,j

〈
Y,

∑

k

N ijk
λµ Ek

λ+µ

〉
∂Y i

λ
⊗ ∂

Y j
µ
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Λ−Y (dY i
λ) =

∑

µ,j

〈
− Y,

∑

k

N ijk
λµ Ek

λ+µ

〉
∂

Y j
µ

where we used the convention [Ei
λ, Ej

µ] =
∑

k N ijk
λµ Ek

λ+µ. We get the fol-
lowing Hamiltonian vector field

Hh =
∑

i

αi
0 ∂Ai

0
+

∑

λ∈R,i,k

(Y i
λ)2

λ(A)3
λ(Bk

0 ) ∂αk
0

−
∑

λ∈R,i

Y i
λ

λ(A)2
∑

µ,j

〈
Y,

∑

k

N ijk
λµ Ek

λ+µ

〉
∂

Y j
µ

and the differential equation

Äk
0 =

∑

λ∈R,i

(Y i
λ)2

λ(A)3
λ(Bk

0 ),

Ẏ j
µ = −

∑

λ∈R,i

Y i
λ

λ(A)2
〈
Y,

∑

k

N ijk
λµ Ek

λ+µ

〉
= −

∑

λ∈R,i

Y i
λ

λ(A)2
〈Y, [Ei

λ, Ej
µ]〉.

Let us now write Y =
∑

λ∈R,i Y
i
λ.Ei

λ =:
∑

λ∈R Yλ where Yλ ∈ lλ ∩ g, and
Z =

∑
λ∈R

1
λ(A)2

Yλ ∈ g. Then the differential equation becomes:

Äk
0 = 〈Ä, Bk

0 〉 =
∑

λ∈R

‖Yλ‖2

λ(A)3
λ(Bk

0 ) or 〈Ä, 〉 =
∑

λ∈R

‖Yλ‖2

λ(A)3
λ ∈ Σ∗

Ẏ j
µ = −

〈
Y,

∑

λ∈R,i

Y i
λ

λ(A)2
[Ei

λ, Ej
µ]

〉
= −〈Y, [Z, Ej

µ]〉 = −〈[Y, Z], Ej
µ〉,

so that finally we have

〈Ä, 〉 =
∑

λ∈R

‖Yλ‖2

λ(A)3
λ ∈ Σ∗, Ẏ = −[Y, Z]. (2)

So the ballistic curve in C avoids the walls whenever Yλ(t) 6= 0 for all
restricted roots λ ∈ R, and just one time t.

6.6. Symplectic reduction at singular points. Let us now consider
a singular A ∈ V which we may move into C ⊂ Σ ⊂ V by using some
suitable g ∈ G. Then A is contained in some intersection of walls of C so
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µ(A) = 0 for µ ∈ R0 ⊂ R. Given α ∈ V we consider [A,α] = Y ∈ g. Using
the decompositions α = αΣ +

∑
λ∈R,i α

i
λBi

λ and Y = Yh+
∑

λ∈R,i Y
i
λ.Ei

λ =:
Yh +

∑
λ∈R Yλ as in 6.5 we see that Y = [A,α] implies Yh = 0 ∈ h and

Y i
λ = λ(A)αi

λ for all λ ∈ R. Thus we get Yµ = 0 for all µ ∈ R0. So we can
follow the analysis in 6.5 without change if we agree Yµ = 0 means also
(Y i

µ)2/µ(A) = 0 and Zµ = Yµ/µ(A)2 = 0. So again the ballistic curve is
described by the equations (6.5.2). The second equation Ẏ = [Y, Z] shows
that Yµ = 0 along the whole ballistic curve for µ ∈ R0. So the ballistic
curve is composed of one just like in (6.5.2) inside the intersection of walls
{B ∈ C : µ(B) = 0 for all µ ∈ R0} together with a geodesic (reflected at
walls) transversal to this intersection of walls.

References

[1] R. Abraham and J. Marsden, Foundations of mechanics, 2nd edn, Addi-
son-Wesley, 1978.
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