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A Turan—Kubilius type inequality on shifted products

By JOEL RIVAT (Marseille) ANDRAS SARKOZY (Budapest)

Abstract. In 1934 Turdn proved that if f(n) is an additive arithmetic function
satisfying certain conditions, then for almost all m < n the value of f(m) is “near”
the expectation Zp <n %. Later Kubilius sharpened this result by proving that the
conditions in Turdn’s theorem can be relaxed, and still the same conclusion holds. In
an earlier paper we studied whether this result has a sum set analogue, i.e., if f(n) is
an additive arithmetic function and A, B are “large” subsets of {1,2,...,n}, then for
almost all a € A, b € B, the value of f(a + b) is “near” the expectation? We proved
such a result under an assumption which is slightly milder than Turdn’s condition, but
is not needed in Kubilius estimate. In this paper we prove the multiplicative analogue
of this theorem by proving a similar result with ab+ 1 in place of a + b.

1. Introduction

N, R and C denote the set of positive integers, real numbers, resp. complex
numbers. The letters p, ¢ denote prime numbers and w(n) denotes the number
of distinct prime factors of n, while (n) denotes the number of prime factors of
n counted with multiplicity.

Generalizing a theorem of HARDY and RAMANUJAN [5], TURAN [10] proved
that if f(n) is a real valued additive arithmetic function with

o) =10 = =f0" =" (1)
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for every prime number p and it is bounded:

|f(p)| = O(1), (2)
then, writing
VORI )

we have
Y (f(m) = As(n))* = O(nAs(n)). (4)
m<n
In [6] KUBILIUS showed that Turdn’s conditions f(n) € R, (1) and (2) can be
dropped, and still there is an inequality of type (4): if f(n) is a complex valued
additive arithmetic function, A¢(n) is defined by (3), and we also write

1/2

; ()

then we have
> If(m) = As(n)]* = O(nD}(n)). (6)
m<n

This is called the Turan—Kubilius inequality.

In the last 25 years numerous papers have been written on the arithmetic
properties of sum sets {a+b, a € A, b € B} (a list of these papers is presented in
[8]). Typically, these results say that if A, B are “large” subsets of {1,2,...,n}
then a certain property of the sums simulates the behaviour of the consecutive
integers 1,2,...,n. In some cases multiplicative analogues of these results also
have been proved in which the sums a+b are replaced by shifted products ab+1. In
particular, ERDOS, MAIER and SARKOZY [3] showed that if A, B are large subsets
of {1,2,...,n}, then the sums a + b satisfy an Erdds—Kac type theorem (see also
[1] and [9]), and later ELLIOTT and SARKOZY [2] also proved the multiplicative
analog of this result with shifted products ab + 1 in place of the sums a + b.

G. Halédsz asked the question whether the Turan—Kubilius inequality has a
similar sum set analogue? (Oral communication.) In [8] we showed that, indeed,
there is such an inequality which is, however, not quite as strong as (6): we proved
a similar result midway between Turan’s and Kubilius’s inequality. In this paper
our goal is to prove the multiplicative analogue of the theorem in [8], i.e., we will
prove a similar result with shifted products ab + 1 in place of the sums a + b.
The proof will also be reminiscent of the proof in [8], however, there will be a
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crucial difference: while in [8] we used additive characters and the main tool was
the standard form of the large sieve, here, due to the multiplicative nature of
the problem we will use multiplicative characters and Gallagher’s (multiplicative)
character version of the large sieve [4].

2. The theorem and comments
We will prove the following theorem:

Theorem 1. Let f be a complex valued additive arithmetic function, define
Ky(m) = max{|f(p®)|, p prime, a € N, p* <m}, (7)

let Ag(n) be defined by (3), C' a fixed positive number, n € N (with n — +00)
and A, B C{1,2,...,n} with

VIA[|B] > n exp (—C\/log lognlog loglogn) . (8)

Then we have

1
[AlB|

| 2

SN |fab+1) — Ap(n® + 1)

acAbeB
=0 (C’QKJ%(n2 +1) loglog(n® +1)). (9)

Remarks.
(i) The special case f(n) = w(n) and A = B = N, shows that (9) is sharp.

(ii) Condition (8) is also sharp, i.e., to ensure that the left hand side of (9) is
O(K3(n* + 1) loglog(n® + 1)) one needs assumption (8). This can be shown
by an example similar to the one in [8].

(iii) While Theorem 1 is sharp for f(m) = w(m), it gives only a very weak upper
bound for the left hand side of (9) if f(m) = Q(m). The reason of this is that
the prime powers p® with small p and large @ may influence the distribution

of the values Q(ab + 1) (with a € A, b € B) significantly. Again this can be
shown by an example similar to the one in [8].
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3. Structure of the proof

Let P denote the set of prime powers p® < n? + 1, and write
B n
~ VIAIBI
We split P into three parts:
Pi={p":p<V, a>1, p* <n®+1}

Po={p":V<p a>1, p* < (n?+1)Y/%)
={p*:V<p ax1, P+ <p*<n?+1},

so that P =Py UP,UPs and P;NP; =0 for 1 <i < j < 3. Define the additive
arithmetic functions fi(m), fo(m), f3(m) b

@) it p* e P .
fi(p®) = {(J;(p ) ifq];aZ'pi (for i =1,2,3).

Then clearly we have f(m) = fi1(m)+ f2(m) + f3(m). Thus by using the elemen-
tary inequality |z1 + 2o + 23)* < 3(|21] + |22]” + |z3]%) (Where 21, 2y, 23 are any
complex numbers) we may estimate the sum on the left hand side of (9) in the
following way:

IAI\ ‘ZZUab—i—l Ap(n® +1)|* < 3(Ty + To + Ts) (11)
acA beB
where
T, = |A||B| Zq,z filab+1) = > flp (fori=1,2,3). (12)
beB p<n3+1

The crucial part of the proof is the estimate of T5 which is based on Gal-
lagher’s (multiplicative) character version of the large sieve; this estimate will
be carried out in Sections 4 and 5. T} will be estimated in Section 6, while the
(nearly trivial) estimate of T3 and the completion of the proof of Theorem 1 will
be presented in Section 7.

4. The estimate of T>. Preliminary lemmas

We will use the following application of GALLAGHER’s character version of
the large sieve [4]:
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Lemma 1. If M, N are positive integers and cpr41, - .., Cp+N are complex
numbers then for 0 < K < L we have

2

1 L | MAN N_1 M+N ,
> =0l LD exn) <<K+2L—K) > el (13)
K<k<L ¥ x mod k In=M+1 n=M+1

(the asterisk indicates a summation over the primitive Dirichlet characters x
modulo k.)

PROOF. Let
i | MAN 2
Uk = —03 Z Z cn x(n)
LA BN e
X Mo n=M+1

By partial summation we have

L
28,2,k (B

K<k<L K<k<L K<k<t

Using the optimal form of the large sieve (see for example [7, Theorem 3]), Gal-
lagher’s character version of the large sieve becomes:

2

I .| MEN M+N
Yoo 2| X x| SOV =148) 3 el
k<t ¥ x mod k [n=M+1 n=M+1
This leads to
L M+N
Uk 1 2 2 dt 2
— < | =(N—-1+1L N—-1+1t")—=
K%L k <L( ! )+/K( ! )t2 n§+1|cn|
M+N
N-1 N-1 N-1 )
= +L+—+L—K> Z len]
( L K L eyt
and (13) follows. O
For A, BC {1,2,...,n} and m € N we define
B
R(m) = > - HALBL (14)

m
(a,b)e AxB
ab+1=0 mod m
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(where A x B denotes the set of the ordered pairs (a,b) with a belonging to A, b

belonging to B). Using Dirichlet characters we can write

Rm) = =5 Y 20 (e - AL

x mod m acA beB

Denoting by xo the principal character modulo m, we write

R(m) = Ro(m) + R1(m)

with
Ro(m) = ——xo(~1) 3 3" xo(ad) — AL
(p(m) acA beB m
and 1
Ri(m)=—— > X(=1))_ > x(ab).
('0( )Xm;z)dm acAbeB

Notation 1. In the sequel p and ¢ will always denote prime numbers.

Lemma 2. We have

> Ro(p™)| < |Al|B]

p*EP2

and

E E ‘Ro(p“‘qﬂ)} < |A||B|loglog(n? 4+ 1).+
p*€EP2 ¢Pep,
q#p

PRrROOF. For m € N we deduce from (16) that

1 1 1
Ro(m)| € — 1—-|A||B —l—(—)AB,
Rl < | X 1= lliel |+ (=) e
(abym)=1

(15)

(16)

(17)

1 1 1
= o 2 (G ) AL

(a,b)e AxB
(ab,m)>1

Taking m = p® we first observe that

> (7)< 2 (Z1-3) T2

p*€EP2 a>1
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Hence
DILTTTIRS o) pIE SR
PYEP, p>Vor>1 p (a,b)eAXB
p|ab

< Z > 14|48 (20)

>V P (ap)eaxs
p|ab

Observing that

Z L loglog(V?) — loglog V + O(1) = O(1)

V<pgLV2
we get
DD DEEED S SRR R}
v P (a,b)EAXB p>v2 (a,b)eAXB
plab p|ab
But
> 1<) B+ A<
(a,b)e AxB acA beB
p|ab pla plb

It follows that

Z > 1<<Zp—+|A||B\<< +|A|\B\

p>V (a,b)e AxB p>V?2
p|ab

and by (10) we obtain

Z > 1< 48] (21)

p>V (a,b)eEAXB
p|ab

Inserting this estimate in (20) we get (18).
Similarly taking m = p®¢® with p # ¢ we have

2 Z( (r*q?) pa1q5>

PYEP2 ¢Pep,
a#p

< Y 0 Y (omem ) 20X e

V<p<n2+1l  V<g<n2+1 a1l B>1
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L2 2 ) )

V<p<n2+1 V<qg<n2+1

N

< loglog(n? +1).

Hence
SEDIRLTSIED DD D D SF=rc-7 D S
P*EP2 ¢P Py V<p<n2+l Veggni41 a2l 21 (a,b)EAXB
q#p q7#p (ab,pg)>1
+ |A||B|loglog(n? + 1),
and observing that for p # ¢,
1
2.2 S T g <o
a1 821 v (2a”) g —1) a>1 S pq
we get
o B 1 1
Sa Y reel< Y 2 L) v
p*€EP2 QBEP2 V<p q§n2+1 (a,b)eAxB
q#p a#p p|ab
+Z < Z > Z 1+ |A||B|loglog(n® + 1),
V<q p<n’+1 p (a,b)e AxB
P#q qlab
thus by symmetry of the roles of p and ¢
Z Z ’Ro(paqﬁﬂ < <Z Z 1+ A |B|> loglog(n? + 1).
PYEP2 ¢P Py P>V (a,b)e AxB
q#p plab
Using (21) we get (19).
Lemma 3. We have
> IR < |A]|B]
pYEP,
and
> > [R0"e")| < | AlIB|loglog(n? + 1).

PYEP2 ¢Pep,
qF#p

1
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PrOOF. By (15) and Lemma 2 it suffice to show the estimates (22) and (23)
with R; in place of R. We first observe that we may assume

V< (n?4+1)Y¢ (24)

for otherwise Py = ) thus (22) and (23) are trivially true.
Let My = Py and My = {paqﬂ, p* € P2, ¢ €Py, p # q}. For i € {1,2}
we can write

SR = Y | S =) Y x(ay)

meM; meM; <p(m) x mod m a€A beB
X#X0
1
CY S S| [Sw
meM; ¥ x mod m |a€A beB
X#Xo

By Cauchy’s inequality this is bounded above by

2\ 1/2
1 1
<m§4iw< j 2 |2 ) <m§4iw<m>xr§£m
XF#X0 X#Xo0

> x(b)

beB

2>1/2

By symmetry it is sufficient to consider the first parenthesis. If the Dirichlet

character xy modulo m is induced by the primitive character x; modulo k (with
k | m) then x(n) = x1(n) for all n such that (n,m) = 1. Therefore

dox@= > xta= > xla

acA acA acA

q (a,m)=1 (a,m)=1
an
2
1
DELID O SIS o= SR Dl I DRC
meM; x mod m |a€A eM; k|m x1 mod k acA
XF#Xo k>1 (a,m)=1

where the asterisk indicates summation over the primitive characters y; modulo k.
For i = 1 we have k = p® with a > 1 and m = p®*t# with 8 > 0. We need to

estimate )

Z Z a+,8) Z* Z x1(a)

PEP, £=0 x1 mod p& acA
petBep, (a,p)=1
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For (a,p) > 1 we have x1(a) = 0 so we can drop the condition (a, p) = 1. Moreover

I R =T D DR
e(poth) = pel(p—1) &= pf = o(p*)’

B=0 B=0
pa+ﬁ€7)2
hence
1 2
*
oLy Y > [y
meM;y x mod m |a€A p 6732 x1 mod p* |a€.A

X#X0

Using (13) with K =V, L = (n? +1)'/6 we obtain

> o X [Xx@

meM; ® x mod m |a€A
X#Xo

2

< (% +n?+ 1)1/6) |Al.

Using (24) we have (n? +1)Y/6 < 2n/(n? +1)Y/6 < 2n/V, hence

2

1 n
Yo —— > Doxe)| <AL
meMy cp(m) x mod m |a€.A 4
XF#Xo0

A similar estimate is valid when A is replaced by B. Combining these two est-
imates we get

> Iram)l < (e 14) " (R18) " = 1481,

meMi

hence we get (22).
For i = 2 we may have k = p® (a > 1), in which case m = p®+'¢% (a/ >0,
B> 1q7ép)ork—pq'6( > ,5>1p7éq) in which case m = pte’ ¢8+5

(¢! 20, 8" >0) thus

E E E E (a)‘ <UL+ U (25)
meMs (P lz\ 711 x1 mod k ( ae.)A )
> a,m

with
2

SPID D IS DD S

P*EP2 ¢Pcp, a’>0 x1 mod p™ acA
q#p (a,pq)=1
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and

2

= Z > Z a+aqﬂ+6> Z* > xila)

P*EP2 ¢gPep, o' 20 B’>0 x1 mod p*qP acA
q#p (a,pq)=1

In U; we have x1(a) = 0 whenever (a,p) > 1, hence we may replace the
condition (a,pq) = 1 by (a,q) = 1. The sum over o’ contributes by a constant
factor. This leads to

1 *
U1 < Z ) > ) YooY

qﬁEPz pEP2 X1 mod p> | a€A
p#q (a,9)=1

2

)

hence extending the summation from p® to every k with V < k < (n? + 1)1/ 6 we
get
2

Z X1 (a/) )
acA
(a,q)=1

1 "
U< 2 <q> 2w

9P EP2 V<k<(n241)1/6 x1 mod k

~

and applying (13) on the summation over k with K =V and L = (n? +1)'/6 we

get
U< Y o ( DY) S L
PPy

acA
(a,9)=1
We drop the condition (a,q) = 1 and by (24) we have (n?+1)1/6 < 2n/(n? +1)/6<
2n/V, and
1 1 )
Z 2@ < Z - < loglog(n® +1)
q°€Py q<(n241)1/6
we obtain
n
U < v |A|loglog(n® + 1). (26)

In Us we have xi(a) = 0 whenever (a,pq) > 1, hence we may remove the
condition (a,pg) = 1. The sums over o’ and ' contribute by a constant factor.
This leads to

Z x1(a)

acA

he Y Y e X

PEP2 qﬁeP X1 mod p*g#
q#p
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hence
2

> xi(a)

acA

1 *
AP S a3

V2<k<(n2+1)1/3 ¥ x1 mod k

and applying (13) with K = V2 and L = (n? + 1)*/3 we get

Us < (% +(n?+ 1)1/3) 4]

By (24) we have (n? + 1)'/3 < 2n/(n? + 1)V/¢ < 2n/V, thus
n
Us < v |A] . (27)

By (26) and (27) from (25) we obtain

2
< % |A|loglog(n? + 1).

Yool X | X @

meMa k|m x1modk| acA
k>1 (a,;m)=1

The same estimate can be obtained with B in place of A. Combining these two
estimates we get

n ) 1/2 /n ) 1/2
Z |R1(m)| < (V | Al log log(n® + 1)) (V |B| log log(n® + 1))
meMa
= |A||B|loglog(n® + 1),
hence we get (23). O

Lemma 4. For any complex valued additive arithmetic function f, such
that fo(p*) = 0 whenever p® € Py and n > 8 we have

S S @bt 1) - 4B Y f;“(l—;) < Kp(n® +1) |4 |B

acA beB pe<n2+1
(28)
where K, is defined by (7).
ProoOF. Let
S1=>"> falab+1). (29)

acA beB
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Since fs is an additive arithmetic function we have

Si=>_3 > LOM=Y, LY Y 1,

acA beB pe|ab+1 pr*<n2+1 (a,b)e AXB
p<|lab+1

SREEED SURT S
(a,b)e AxB (a,b)eAxB (a,b)eAxB
p*llab+1 p* [ab+1 pott | ab+1

and

Using (14) we have

S 2 ALBL B e ey

(o1 a—+1
(a,b)e AxXB p p
p%|lab+1
A||B | X .
- (1p) T RGP) - RG™) (30)

and

1)

pr<n2+1
+ Y LEOREY) - Y. LERET)
pe<n2+1 pr<n?+1

so that using (7) and f2(p®) = 0 whenever p® ¢ P, we obtain

e 5 (1)

pr<n?+1
<Kf2<n2+1>( S RGN+ Y \R<pa+1>|). (31)
prEP2 prEPs

By (22) we have
Y IRMM)| < Al 8]

P*EP2

and

Yo IR = Y RO+ D [RE™T)

p*EP2 pYEP2 petlePy
ptigP,

< > |RETH| +|AlB].
p*EP2

Pt gP,
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Using (14) we have

Al |B

L D S
(a,b)e AxB p
ab+1=0 mod p”+1

If ab+ 1 = 0 mod p®*! then (a,p**!) = 1 and a admits an inverse i(a) modulo
p>*tL. Therefore

n n|A|
Z 1= Z Z I'< Z potl < potl’
(a,b)e AxB acA beB acA
ab+1=0 mod pa'*'1 (a’p{ﬂ—l):l b=—i(a) mod pa+1 (a,pa+1):1

and exchanging the roles of A and B we obtain

. (n]A] n|B| n
Z 1<m1n< 1 att ) S QH\/\AHBL
(a,b)eAxB p p p
ab+1=0 mod po‘Jrl

so that

o 1
> R < (VIANBI+ AIB) Y —
peEP, pEEP, p
ptlgp, p TP,

If p* € P, and p*t! ¢ P, then by the definition of Py we have V < p and
p® < (n? +1)/6 < p>*1 50 that « is uniquely defined. Hence

1 1 1
Z potl S Z ;ﬁ < i7a (32)
pilepz p>V
P EP2

By these estimates and the definition of V' given by (10) we get

VIAIB] + | Al |B

pEP,
p TP,

We deduce that

STREM+ Y |RE™TY| < |Al1B]. (33)

pEP, prEP2

(28) follows from (31) and (33). O
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Lemma 5. For any complex valued additive arithmetic function f, such
that fo(p*) = 0 whenever p® € Py and n > 8 we have

2

DNV LY (Y

acA beB pe<n2+1

< K7, (n® +1) |A||B| loglog(n® +1) (34)

where K, is defined by (7).

Sp = > |falab+ 1) (35)

acAbeB

PROOF. Let

Since f5 is an additive arithmetic function we can write

2

Sa=> D1 > fr)

acA beB |p>|lab+1

and expanding the square we get

So= Y LM Y 1+ > ROVEG) Y 1. (36)

pr<n2+1 (a,b)eAXB pegP<n?+1 (a,b)eAXB
p*llab+1 p#q p*|lab+1
q”|lab+1

First we will give an upper bound for the first term. Using (30) we can write

SR Y 1

po<n2 41 (a,b)€AXB
p<|lab+1
oo (A8 1 o a
T (' j (1—)+R<p>—R<p +1>)
pr<n?+1 b b
Al|B 1
<E3L(n?+1) Y ("(y( >+|R )| + | R( “*1)|>
Py p p
Now

£ M8 D) e ¥ ()

prEP2 p<n2+1 Oc>1

1
= | Al |B| Z — < |A||B| loglog(n® + 1)

p<n3+1



652 Joél Rivat and Andras Sarkozy

while by (33) we have
Do REMI+ D[R] < A8
pEP2 p€P2
Using these two estimates we obtain from (36)

So= Y. LG D, 1

paq5<n2+1 (a,b)EAXB
p#q p*|lab+1
¢°||ab+1
+ O(K7,(n* + 1) |A||B]| loglog(n® 4 1)). (37)
For g # p,
DOERE D DI E D DENE S DS E D DR
(a,b)e AxB (a,b)eAXB (a,b)eAXB (a,b)eAXB (a,b)eAXB
p®lab+1 p*q” | ab+1 p*T1¢? |ab+1 p*g?t! |ab+1 pT1gP T ab+1
q°llab+1

thus using (14) we get

aqbB
(a,b)e AxB pPq p q
p“|lab+1

° lab+1
+ R(p*q”) — R(p“™¢%) — R(p“d°*') + R(p*T1¢°*h).  (38)

Writing
fa(p*) f2(¢%) ( 1) ( 1)
Sy = ELAC VLA SN (5 T N I
N ;:2 p*q° p q
pYg"<n+1
p#q

and

Ry= ) ([R@¢°)|+ R 4| + [Rp¢™)| + [R "))
P EP2
®ePs
P#q

we obtain from (37) and (38) that

|So — | A]|B] S5] < Ké(n2 +1) (JA]|B] loglog(n® + 1) 4+ Ry). (39)
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By (23) we have

Z Z ’R(po‘qﬂﬂ < |A||B| loglog(n? + 1).
prEP2 qﬁGPg
p#q

Using (14) we have

+1 8 |Al 1B
[R(™¢")] < > L+ g
(a,b)eAXB
ab+1=0 mod p**1¢”

653

and counting trivially (using the fact that only a and b which are invertible modulo

p®*T1g? are counted) we can write
. n|Al  n|B ) n
E 1 < min < |A] 8],
(a,b)EAXB <pa+1q5 ptte? p*tigh

ab+1=0 mod p**t'q¢”
thus using (32)

Yo > R0

p*EP2 qBGPQ
p*T1gPy q#p

1 1 ny/|Al|B
< ny/|Al|B| Z T Z q—ﬁ<< %loglog(rﬁ—kl),

p° 16732 qﬁ EPs
p*TlgP, q#p

and by the definition of V' given by (10) we get

S 3 RG™)| < Al |Blloglog(n® + 1),
P EP2 ¢Pep,
p* T Py q#p

Similarly
S Y |Rp*PT| < Al |B]loglog(n® + 1).

¢’epy PUEP:
PP, a#p

Using (14) we have

|A||B|

R(pa+1q5+1) < 1+

| | (a,b);‘\xl’)’ po‘+1q6+1
ab+1=0 mod p*T1g¢?*+!
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and counting trivially (using the fact that only a and b which are invertible modulo
p*T1gP+1 are counted) we can write

: n|A| n|B] n
Z 1 < min (pa+1q,8+l ? patlghtl < potightl A8
(a,b)e AxB
ab4+1=0 mod p*T1¢?+1

we obtain
+1 B+1
E E absR(p“ < E E S B—s—l VIA| B,
PP EP2  ¢Pep, p*€P2  ¢Pep,
PP, i, pHigp, rigp,

thus using (32) we get

VAl B Al |B
E E oc+1 B+1)‘<<n |‘/2|| |:| ‘|/| |<<|AHB‘
p “EP2 6732
PP, q5+1€77

Thus it follows from (39) that
|S2 — |Al1B| 85| < K3,(n* + 1) |A]|B| loglog(n® + 1).
In order to prove (34) it is sufficient to show that

= 205

2
— 55+ O(K3,(n +1)).

pr<n3+1
We write
2
Z f2(p®) <1_1> _ Z f2(p?) fo( qﬁ) <1_1> (1_1)
a - T pagB
po<n2 il p p P41 p*q p q
¢’ <n*+1
- Y o+ Y s ¥

pe<n3+1 pgP<n?+1 p<n?+1

5<n +1 paﬁq ¢’ <n?+1

p=q pgP>n?+1

pF#q

By the definition of fo we have fo(p®)f2(¢?) # 0 only if p® < (n? 4+ 1)1/ and
¢® < (n?+1)Y/6. This implies that the third sum above is empty (p®¢® > n?+1
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is not possible). S} is the second sum above. The first sum can be majorized

easily:
y L0IAE) (1_1> (1_1)‘
O pagB
o O p q
qﬁ<n2+1
p=q
cxper oy (- S iy L
p a1 P =P
1
=K;,(n*+1)> 5= O(K7,(n* +1)).
P
This completes the proof of (34). O

5. Completion of the estimate of T,

Our first step is to replace the function Ay, (n) = 3 fQTSp) in the definition
psn

of Ty by Ef,(n) defined by

Ep(n)=Y f2(p%) (1— 1). (40)

po<n P p
We have o
2(p
EfQ(n) - Af2(n) = Z Z a+1 ,
pr<n pe<n
a>2
so that )
|Ef,(n) — Ay, (n)] < 2Kp,(n) —.
p<n p
a>2

Observing that

we obtain
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Using the inequality |u + v|*> < 2 [u|*+2 |v|* with u = fa(ab+1)—Ep, (n?+1)
and v = Ep,(n? + 1) — Ay, (n? + 1) (so that |v| < 2Ky,(n? + 1)), we get
SN | felab+ 1) — Agy(n? + 1)

ac AbeB
< 2sumaea Y | falab+ 1) = Ep, (n® + D” +8 |A||B| K2 (n® +1). (41)
beB

Now we will prove

Z Z | fa(ab+ 1) — Ep,(n® + 1)‘2 < Ki (n? +1) |A||B| loglog(n?® +1). (42)
acA beB

We have

SN | falab +1) — Egy(n? + 1))
acAbeB
= % = $1 En (0 +1) = 51 Br, (n® + 1) + | A/ B| | Ep, (n? + 1)

where S; and Sy are defined by (29) and (35) respectively. We can rewrite this
as

N7 | falab +1) — B, (n? + 1)

acAbeB

= (82 = 1AIBI [Ep (02 + DI) = (51 = |AIIB| By (n* + 1)) B, (n? + 1)

’ 2

~ (57 = JAIIBI B (w? + 1)) Ep(n? + 1),
By Lemma 4 we have
|51 — |A| B Eg,(n* + 1)| < Ky, (n* + 1) |A]|B]
and by Lemma 5 we have
‘5’2 — |A[|B| |Ey,(n* + 1)’2‘ < K3,(n” +1) |A]|B] loglog(n® + 1),
thus we obtain
|2

Z Z |f2(ab+ 1) — Efz(n2 + 1)

acAbeB
< Ky, (n® + 1)(Ky, (n® + 1) loglog(n® + 1) + | Ep, (n + 1)) |A][B].
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Now observing that
|Ef2(n2 + 1)| < |Af2(7?,2 + 1)| + 2Kf2(n2 =+ 1)

1
< Kp,(n® +1) Z -+ 2Ky, (n* +1) < Ky, (n? + 1) loglog(n® + 1),
p<n?+1

we get (42). It follows from (41) and (42) that

T, = O(K3,(n” + 1) loglog(n® + 1)). (43)

6. The estimate of T;

Let wy (m) be the number of distinct prime factors of m not exceeding V:

wy(m) = Z 1.

p<V
plm

Then for all m < n? + 1 we have

A =] Y A< D] 1AEY)
)

so that

fim)| S Kp(n+1) Y 1=Kpn*+1) Y 1=K, (n° +1)wy(m),
p*|m |
p*EP1 p<V

Moreover by (7), (10) and (8) we have

> M ke Y S

p<n?+1 p p<V

< Ky, (n® +1)loglog V < Ky, (n* 4 1) loglog log n.

Using the inequality |21 + 22|° < 2(]z1]* + |22]%) it follows that for a € A, b € B
we have
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2

filab+1)— > fl < 2|f1(ab+1)> +2 > filp)

p<n2+1 p<n2+1

2Kf (n? 4+ 1)w? (ab+1) + O(KJ%1 (n? 4+ 1)(loglog logn)?),

so that
e |AH|ZZf1ab+1 2, fl
acA beB p<n2+1
2K7 (n* +1) 2 2 (2 2
< A[[B E E wy (ab+1) + O(K7F, (n” + 1)(loglog logn)”).

acA beB
We split this double sum in two parts:

T) < 2K7, (n® +1)(X; + Xa) (44)

where i

X, =—— 2(ab+1

L= AT 22 wyleb+1)

wy (ab+1)<5C (log log(n2+1))1/2

and 1

Xo=— Z Z wi (ab+ 1).

A8 Gh bep

wy (ab+1)>5C(log log(n2+1))1/2
Then clearly we have

Z Z (5C (loglog(n? +1))Y/?)2 = 25C2 loglog(n® +1).  (45)
acA beB

Xl X
IAI |B|
In order to estimate X5, we may assume that
|Al < [8B]. (46)

Then we have

Xy = |A\ |B| Z Z wi(ab+1)

beB
wy (ab+1)>5C (log log(n?+1))'/?

w2 am
|A\ B2 > viam 1)

m<n
u.;v(am—&—l)>5€(10glog(n2+1))1/2
1 2
max Z wy (am +1). (47)
|B| asn m<n

wy (am+1)>5C(log log(n?+1))1/2
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The last sum can be rewritten as

Z wi(am +1) = Z Z t2

msn t>5C (log log(n2+1))1/2 m<n
wy (am+1)>5C (log log(n?+1))1/2 wy (am+1)=t
= D £ L (48)
t>5C(log log(n2+1))1/2 m<n

wy (am+1)=t

Note that if the inner sum is non-empty, i.e. there is an m < n with
wy (am + 1) = ¢, then ¢t must satisfy

t=wy(am+1) < kgg)ilwv(k) <n(V) <V,

thus in the last double sum we may restrict ourselves to ¢ values with

t<V. (49)

If an integer m is counted in the last inner sum in (48), then there are primes
g1 < @2 < - - <gq <V such that q1g2---¢: | am + 1. Thus this sum is

SR I I

m<n q1<g2<<qt <V m<n q1<q2<<qt <V
wy (am+1)=t q1q2---q¢ | am+1
t
1 1 w(V) ((1+0(1)) loglog V)* .
<n Za ~t!+(t><n i + V*.
gV
Inserting this estimate in (48), by (49) we get
Z wi(am + 1)
m<n
wy (am+1)>5C(log log(n?+1))'/2
(L+o0(1 ))loglogV 277t
<n > i -2) + > VL (50)
t>5C (log log(n2+1))1/2 t<V

By definition (10) of V, (8) and Stirling’s formula, for large n the first term is
Z (14 0(1))loglog V)*

t>5C(log log(n2+1))1/2 (t - 2)~

t—2
«n Z ((% + 0(1)) logloglog n)* (i’)

t>5C(loglog(n2+1))1/2

n
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2logloglogn K 9
<«n — ) t".
> (=
t>5C (log log(n2+1))1/2

Denote the general term of the last sum by A;, and write
to = L5C(1og log(n? + 1))1/2J +1.
Then for ¢t > ty we have

Apsq t \"h1 1\

loglog1 S = — (loglogl 1— —— -

A, < (logloglogn) — . (logloglog n) P11 ,
loglog1 loglog1

< oglog 0gn<< ogloglogn

t to

=o(1).

It follows that the first term in (50) can be estimated as

" Z ((1+0(1))loglogV)*

o)
+>5C (log log(n2+1))1/2 (t—2)!

2logloglogn\"™ ,
<n Y Ay <nhy =n(———=] 1

t>to tO
= nexp (to(log(2logloglogn) —logty) + 2logty)
=nexp (—(1+o(1)) tologto)

<K nexp ((1 + 0(1))%0(1og log n)*/?loglog log n) (51)

and again by(10) and (8), the second term is

Z t?vt < Z t2vv+2 < VV+3

t<V t<V
< exp (C\/longbg loglogn (exp (C\/Wlog log log n) + 3))
= n°W, (52)
By (50), (51) and (52)
> wir(am +1)

m<n
wy (am+1)>5C(log log(n?+1))1/2

5
<L nexp (—(1 +0(1)) 5 C(loglogn)'/? log log log n) for all a < n. (53)
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Tt follows from (8), (46), (47) and (53) that

exp (—26’(log logn)'/? log log log n)

n
Xo K ——=
VIAlB

< exp( C(loglogn) 1/2 log log logn> =o(1). (54)
Combining (44), (45) and (54) we obtain

Ty = O(C*K3, (n” + 1) loglog(n” + 1)). (55)

7. The estimate of T3 and the completion of the proof of Theorem 1

If m < n?+1 then

|f3(m)| =

> falp”

p*|lm

< Z | f3(p

p*|m

so that, since f3(p®*) = 0 whenever p® ¢ P3 and using (7),

fsm)| < Y Kp(nP+1)=EKp(n*+1) Y L (56)
pYEP3 pYEP3
pelm P lm

Here the last sum is < 5 since otherwise we had

6
m > H pe > H (n2+1)1/6>((n2—|—1)1/6) =n?4+1
pEP; pEP;
p|Im p|Im

which contradicts our assumption m < n? + 1. Thus it follows from (56) that
|f3(ab+1)| <5 Ky (n*+1) foralae A, beB. (57)

Moreover we have

Z f3 < Z | f3(p) <

p<n2+1 p<n2+1 p

/\_
=
3,
+
=
(]
I

so that

> f3 Kp,(n®+1) > 1 O(Kp,(n®+1)).  (58)

p<n2+1 (n2+1)1/6<p<n2+1
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T 778] 2= 2 [OE s (0% + 1) + 0Ky, (0 + 1))

Tt follows from (57) and (58) that

1 2
|” = O(K7,(n* +1)). (59)
acAbeB

(9) follows from (11) (43), (55) and (59), observing that
Kf<n2 + 1) = maX(Kfl (n2 + 1)7 Kfz (n2 + 1)7Kf3(n2 + 1))a

and this completes the proof of Theorem 1.
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