
Efficient and Flexible Index Access in MapReduce

Zhao Cao
IBM Research
Beijing, China

caozhao@cn.ibm.com

Shimin Chen
∗

State Key Laboratory of Computer Architecture
Institute of Computing Technology

Chinese Academy of Sciences

chensm@ict.ac.cn

Dongzhe Ma
Tsinghua University

Beijing, China

mdzfirst@yahoo.com.cn

Jianhua Feng
Tsinghua University

Beijing, China

fengjh@tsinghua.edu.cn

Min Wang
Google Research

Mountain View, CA, USA
minwang@google.com

ABSTRACT

A popular programming paradigm in the cloud, MapReduce is ex-

tensively considered and used for “big data” analysis. Unfortu-

nately, a great many “big data” applications require capabilities be-

yond those originally intended by MapReduce, often burdening de-

velopers to write unnatural non-obvious MapReduce programs so

as to twist the underlying system to meet the requirements. In this

paper, we focus on a class of “big data” applications that in addi-

tion to MapReduce’s main data source, require selective access to

one or many data sources, e.g., various kinds of indices, knowledge

bases, external cloud services.

We propose to extend MapReduce with EFind, an Efficient and

Flexible index access solution, to better support this class of ap-

plications. EFind introduces a standard index access interface to

MapReduce so that (i) developers can easily and flexibly express

index access operations without unnatural code, and (ii) the EFind

enhanced MapReduce system can automatically optimize the in-

dex access operations. We propose and analyze a number of in-

dex access strategies that utilize caching, re-partitioning, and index

locality to reduce redundant index accesses. EFind collects index

statistics and performs cost-based adaptive optimization to improve

index access efficiency. Our experimental results, using both real-

world and synthetic data sets, show that EFind chooses execution

plans that are optimal or close to optimal, and achieves a factor

of 2x–8x improvements compared to an approach that accesses in-

dices without optimization.

1. INTRODUCTION
MapReduce [6] is one of the most popular programming para-

digms in the cloud. As the amount of digital information is ex-

ploding [11], MapReduce is extensively considered and used for

processing the so-called “big data”, such as web contents, social

media, click streams, event logs, and so on. Higher-level query

languages, such as Pig [15] and Hive [19], facilitate data analy-

∗Corresponding author

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0.

sis with friendly SQL-like interface on top of MapReduce. Map-

Reduce programming is still important because these higher-level

languages mainly provide data processing functionality when data

schemas are declared, but essentially fall back to MapReduce pro-

gramming for unstructured and semi-structured data.

In this paper, we are interested in improving MapReduce to bet-

ter support a class of “big data” applications that require selective

access to one or many data sources in addition to MapReduce’s

main input data source. MapReduce is originally designed to se-

quentially scan and process a single input data source for a job.

As a result, developers often have to write unnatural non-obvious

MapReduce programs so as to twist the underlying MapReduce

system to selectively access extra data sources. We believe that

a good solution to this problem benefits MapReduce programming

as well as higher-level query languages on top of MapReduce.

Big Data Applications Requiring Index Access. We use the word

“index” broadly in this paper to mean data sources that allow selec-

tive accesses, including but not limited to database-like indices, in-

verted indices, key-value stores, knowledge bases, and data sources

behind cloud services. We use the term “index access” to mean se-

lective access to data sources that are not the main input data in

MapReduce. From our experience, index accesses are often re-

quired in the following applications:

• Text analysis. Unstructured text analysis is an important task for

analyzing web contents and social media. Text analysis of-

ten requires accessing indices, e.g., inverted indices [23], pre-

computed acronym dictionaries [8], and knowledge bases such

as Wikipedia [13].

• Index-based joins. Present join implementations on MapReduce

are mainly scan based. Index-based joins, such as index nested

loop join and join using bitmap indices, have been shown to

out-perform scan-based joins under high join selectivity or for

analyzing read mostly data [16, 10]. Hence, the capability to

naturally express index-based joins on MapReduce is desirable.

• Location-based analysis. Location-based analysis analyzes lo-

cation information to model user preferences [14] and to cate-

gorize location types [21], in order to provide more personal-

ized services and better quality recommendations. An example

algorithm is k-nearest neighbor join between two spatial data

sets [22]. Spatial indices are often required in such analysis.

• Data sources behind cloud services. The utility computing model

of the cloud lowers the cost for developing cloud services. When

an organization does not own all the data for supporting her

analysis needs, she can subscribe to third-party cloud services

to obtain relevant data. We consider a cloud service as a selec-

61 10.5441/002/edbt.2014.07

tively accessed index because a user is often charged on a pay-

per-use basis. Hence we would like to reduce accesses to such

cloud service as much as possible. It is preferable to flexibly

and seamlessly integrate cloud services into MapReduce.

Interestingly, indices in the above examples can be dynamic in that

given a search key the return value is dynamically computed. For

example, a knowledge base index can use machine learning classi-

fiers to compute topics from input text. (More details will be shown

in Figure 4.) Note that this index can compute results for any in-

put text, thus the number of valid keys (valid input texts) is infinite,

which is very different from traditional indices. While access-

ing extra data sources using traditional indices may be regarded as

index-based joins, such dynamic computation-based index access

cannot be supported by traditional join operations, such as index-

based, hash-based, or sort-based joins.

Accessing Index is a Pain in Vanilla MapReduce. Unfortunately,

vanilla MapReduce lacks efficient and flexible support for selec-

tively accessing data sources that are not the main input data [17,

18]. To get around this limitation, current solution is to hand-code

index access in Map or Reduce functions, which are treated as

black boxes by the runtime MapReduce system. However, there

are two problems of this approach. First, the MapReduce system

has no way to know about the index operations, let alone optimiz-

ing them. To make matters worse, index access often performs

network and disk operations, interfering with the normal I/O oper-

ations in MapReduce. Second, the burden of achieving good index

access performance is entirely on developers. A developer has to

spend a lot of time and effort to analyze the index access char-

acteristics and fine tune the index operations, considering issues

such as data transfer and distributed computing. This essentially

violates MapReduce’s design principle of hiding data transfer and

distribution details from developers. The resulting code could be

error-prone and difficult to reuse for other index access tasks.

Our Solution: EFind. We propose EFind, an Efficient and Flexible

index access solution in MapReduce. As illustrated in Figure 1,

EFind is a connection layer between MapReduce and indices. Note

that EFind does NOT implement any indices by itself. From EFind’s

viewpoint, an index is a black box. The user-provided lookup

method implements the actual index access functionality, as will

be described in Section 2. We aim to support efficient index access

while minimizing restriction on both MapReduce and indices:

• Index Flexibility: We propose a flexible index access interface

for easily incorporating index access into MapReduce. There

are four dimensions of index flexibility: (1) What type of in-

dex is used? EFind interface can be easily programmed to sup-

port different types of indices, e.g., database-like indices, in-

verted indices, key-value stores, and so on. (2) Where is an

index invoked? Index access can be configured before Map, in

between Map and Reduce, and after Reduce in a MapReduce

data flow. (3) How is an index invoked? Developers can eas-

ily customize the invocation of an index by optionally providing

pre-processing and post-processing procedures for accessing an

index, e.g., to implement filtering or data field projection. (4)

How many indices are used? EFind is capable of expressing

and supporting multiple indices to be used in a single MapRe-

duce job. Our only assumption is that an index lookup with the

same key returns the same result during an EFind enhanced job.

There is no other restriction on indices. Indexed data sources

can be structured, semi-structured, or unstructured. Indices can

be tree-based or hash-based, or even dynamic.

• MapReduce Flexibility: For MapReduce, we do not place any

restriction on the functionality of Map/Reduce functions and the

MapReduce

EFind

Index Index

Figure 1: EFind provides an efficient and flexible index access

connection layer between MapReduce and indices.

structure of main input data from HDFS.

• Efficiency: For an index access operation expressed using the

EFind interface, the EFind enhanced MapReduce system auto-

matically optimizes the operation without user intervention. We

study a number of index access strategies that aim to reduce the

redundancy of index accesses. EFind performs cost-based op-

timization to choose the best index access strategy. It collects

index access statistics on the fly, and adaptively re-optimizes a

job when necessary. In this way, EFind achieves efficient in-

dex access, while freeing application developers from the diffi-

cult task of fine tuning index operations. Like the MapReduce

design, EFind hides the details of distributed computation for

simplicity of programming.

Related Work. Our work is in the same spirit as recent studies

that improve various aspects of MapReduce [1, 12, 7]. To the best

of our knowledge, our work is the first to propose a flexible and

efficient solution for incorporating index access into MapReduce.

Indices have been extensively studied in relational database sys-

tems. An RDBMS has full knowledge of relational operations and

index structures. Therefore, it can transparently make decisions on

whether to use indices for a query. In contrast, the MapReduce

setting is different and challenging because (i) the extensive use of

user-defined functions (e.g., Map and Reduce) makes it difficult to

understand the semantics and use patterns of index access, and (ii)

a wide variety of index types and index invocation behaviors need

to be supported. Consequently, it is difficult to transparently use

an index as in RDBMS. Instead, users have to manually place in-

dex operators into a MapReduce data flow. Compared to a naïve

solution, EFind significantly reduces user efforts and automatically

optimizes index access operations while maintaining the flexibility

of the MapReduce programming and index accesses.

Higher-level query languages such as Pig [15] and Hive [19] pro-

vide friendly SQL-like interface on top of MapReduce. However,

their optimization is limited when user-defined functions exist or

data schema is unclear. In constrast, EFind does not have such lim-

itation. EFind supports arbitrary user-defined functions and even

external cloud services. We believe that these higher-level query

languages can employ EFind to achieve flexible index access.

There are a large number of studies on designing efficient in-

dices or distributed data services [2, 5, 4]. Note that EFind is not a

distributed index in itself. EFind provides the glue logic that incor-

porates index access into MapReduce.

Contributions. This paper makes the following contributions. First,

we propose the EFind index access interface. To our knowledge,

this is the first paper that introduces a flexible index access interface

to MapReduce to support various index types, various index access

locations in a MapReduce data flow, flexible customization of in-

dex invocation behaviors, and multiple indices in a single MapRe-

duce job. Second, we propose and analyze a number of index ac-

cess strategies, including caching, re-partitioning, and index local-

ity optimizations. Third, we design and implement an adaptive op-

timization framework for EFind that is capable of collecting index

statistics on the fly and dynamically choosing the best index access

62

IndexAccessor
lookup

Index
Operator

Index

preProcess postProcess

E
F

in
d

Index

(k
1

,v
1

)

(k
2

,v
2

) IndexAccessor
lookup

IndexAccessor:: Input: ik
lookup Output: {iv}
IndexOperator:: Input: (k1, v1)
preProcess Output: (k1′, v1′, {{ik1}, ..., {ikm}})
IndexOperator:: Input: (k1′, v1′, {{ik1, {iv1}}, ..., {ikm, {ivm}}})
postProcess Output: (k2, v2)

Figure 2: An EFind IndexOperator class accesses one or multiple indices at a single point in the MapReduce data flow. The

IndexAccessor::lookup method(s) is implemented once for each type of index, while the IndexOperator::preProcess

and IndexOperator::postProcessmethods customize index access behaviors at a specific point in a specific MapReduce job.

public class UserProfileAccessor extends IndexAccessor{
String server; int port;
public UserProfileAccessor(String server_desc) {

// extract server and port from server_desc, then create socket connection to server:port
}
public Vector<Writable> lookup(Writable ik) {

// look up ik in the index and return results
}

}
public class UserProfileIndexOperator extends IndexOperator{

public void preProcess(Writable k1, Writable v1, IndexInput iklist) {
String user = extractUserAccount(v1);
iklist.put(1, user); // {{ik}}
v1 = removeOtherFields(v1); // v1’

}
public void postProcess(Writable k1, Writable v1, IndexOutput indexValues,

OutputCollector<Writable, Writable> output){
String profile = indexValues.get(0).getAll()[0];
String city = extractCity(profile);
String result = ((Text) v1).toString().append(city);
output.collect(k1, result);

}
}

Figure 3: An implementation of an IndexAccessor and an IndexOperator that obtain the city information from a user profile index

for a tweet in Example 2.1.

strategies. Finally, we present an extensive experimental study us-

ing both real-world and synthetic data sets. Experimental results

show that EFind selects execution plans that are optimal or close to

optimal, and achieves a factor of 2x–8x improvements compared to

an approach that accesses indices without the optimization.

Outline. The rest of the paper is organized as follows. Section 2

proposes EFind’s index access interface. Then Section 3 presents

and analyzes a number of index access strategies, followed by the

description of EFind’s cost-based adaptive optimization in Section 4.

Section 5 empirically evaluates the proposed EFind solution. Fi-

nally, Section 6 concludes the paper.

2. EFIND INDEX ACCESS INTERFACE
In this section, we propose an EFind programming interface for

easily and flexibly integrating indices into MapReduce. For con-

crete presentation, we show code that extends Hadoop [3], a popu-

lar open-source implementation of MapReduce, while the proposal

is applicable to any MapReduce implementation. We use the fol-

lowing example to illustrate the interface.

EXAMPLE 2.1. An analyst would like to understand the spatio-

temporal patterns of popular topics from a large number of Twitter

messages collected over a period of several months. She would like

to compute the top-k most popular Twitter topics for every combi-

nation of (city, day), then associate the topics with important news

events. Every tweet contains a twitter user account, a timestamp, a

message, and a few other fields. The computation takes five steps:

1) Look up the user account of every tweet in a user profile in-

dex to obtain the cities for the tweets;

2) Extract keywords from every tweet message;

3) Call an external knowledge-base service to convert the key-

words of every tweet into a topic;

4) Group tweets according to combinations of (city, day), then

compute the top-k popular topics for each group;

5) For each combination of (city, day), use an event database to

enrich the result with important local, national, and global

news events.

Note that Step 1), 3), and 5) need to access three indices, respec-

tively. The index in Step 3) uses machine learning classifiers to

dynamically compute a topic for a given input tweet. It would take

a lot of manual coding and tuning efforts to effectively use the three

indices in the original MapReduce. In the following, we show how

to easily express the computation with EFind.

EFind Programming Interface. Figure 2 depicts the EFind in-

terface that accesses one or multiple indices at a single place in

a MapReduce job. Following the convention in MapReduce, the

input is a key-value pair (k1, v1), and the output result of the in-

dex access is also a key-value pair (k2, v2). The interface specifies

three user-defined methods in two separate classes, i.e., lookup in

IndexAccessor, and preProcess and postProcess methods in

IndexOperator. The IndexAccessor class is implemented for

each type of index and can be reused for the same type of index,

while IndexOperator contains invocation specific code that cus-

tomizes the index behaviors for a specific MapReduce job.

The input and output parameters of the three methods are listed

in the table in Figure 2. lookup takes an index key ik as input

63

 city, day,
top-k topics,

important events

city, day,
top-k topics

city, day,
topic

city, day,
keywords

city, time,
message user, time,

message

user
profile

user profile keywords topic city, day events

M
ap

R
ed

u
ce

knowledge
base service

event
database

EFind
IndexOperator&
IndexAccessor

Figure 4: An EFind-enhanced MapReduce job that computes spatio-temporal topic patterns from tweets for Example 2.1. Three

EFind IndexOperators are placed before Map, in between Map and Reduce, and after Reduce, respectively. The knowledge base

service dynamically computes topics using machine learning classifiers, while the other two indices perform traditional lookups.

public class JobDriver{
public void run(){

IndexJobConf iConf = new IndexJobConf();
// 1. look up user profile before Map

UserProfileIndexOperator I1 = new UserProfileIndexOperator();
I1.addIndex("indexaccessor.UserProfileAccessor","cassandra,localhost,9160,userprofile");
iConf.addHeadIndexOperator(I1);

// 2. Map
iConf.setMapper(KeyWordExtractMapper.class);

// 3. obtain topic between Map and Reduce
TopicCategoryIndexOperator I2 = new TopicCategoryIndexOperator();
I2.addIndex("indexaccessor.TopicCategoryAccessor","external.TopicCategoryService");
iConf.addBodyIndexOperator(I2);

// 4. Reduce
iConf.setReducer(TimeRangeCityGroupReducer.class);

// 5. look up important events after Reduce
ImportantEventIndexOperator I3 = new ImportantEventIndexOperator();
I3.addIndex("indexaccessor.ImportantEventAccessor","mySQL,15.154.147.160,3216,event");
iConf.addTailIndexOperator(I3);
iConf.submit();

}
}

Figure 5: A MapReduce job driver that configures the three EFind IndexAccessors and IndexOperators in Figure 4 for Example 2.1.

and returns a list of results {iv}. preProcess takes the input

key-value pair (k1, v1), extracts one key list {ikj} for every in-

dex j to access (j = 1, 2, ...m), and optionally modifies (k1, v1).
postProcess combines index lookup results into the result key-

value pair (k2, v2), while performing optional operations, such as

applying filtering criteria.

Figure 3 shows an example implementation for accessing the

user profile index in Example 2.1. The UserProfileAccessor
is implemented as a sub-class of IndexAccessor. This class can
be reused whenever a user profile index is to be accessed. The con-

structor method records the server and port information for access-

ing the index, then creates a socket connection to the server. The

lookup method will send and receive messages using the socket

connection to access the user profile index. Moreover, we im-

plement a UserProfileIndexOperator class as a sub-class of

IndexOperator. The preProcess and postProcess methods

deal with the tasks of extracting the user account from a tweet and

extracting the city information from the index lookup result, which

are specific to support Example 2.1.

Note that in general, an index can be distributed across a large

number of machine nodes. The server in the constructor of an

IndexAccessor class specifies an entry point to the index, e.g.,

the root node in a distributed B-tree [2], the central metadata server

in a master-worker organized index (e.g., BigTable [5]), or one of

the index servers in a p2p organized index (e.g., Cassandra [4]). In

each case, we can further obtain a list of index servers for optimiza-

tion purpose, which we will discuss in Section 3.

Placing EFind Index Operators in a MapReduce Job. Our de-

sign follows the convention of MapReduce to take (generate) key-

value pairs as inputs (outputs) of an IndexOperator. In this way,

one can easily place an IndexOperator at any location in aMapRe-

duce data flow, i.e., before Map, between Map and Reduce, and af-

ter Reduce. In other words, the input of an IndexOperator can

come from the main input of MapReduce, the output of Map, or

the output of Reduce. The output of an IndexOperator can pro-

vide input to Map, input to Reduce, or the final output of MapRe-

duce. Moreover, several IndexOperators can be linked next to

each other in a MapReduce data flow.

Figure 4 shows the high-level picture of an EFind based imple-

mentation of Example 2.1. Step 1)–5) of Example 2.1 are imple-

mented with I1, Map, I2, Reduce, and I3, respectively. The user

profile index, knowledge base, and event database are accessed at

I1 before Map, at I2 between Map and Reduce, and I3 after Re-

duce, respectively. Map mainly extracts keywords from tweet mes-

sages, while the group-by and top-k computation fits well with the

computation model of Reduce.

This computation can be easily configured in a MapReduce job

driver, as shown in Figure 5. A vanilla MapReduce job is speci-

fied with a JobConf class. We extend it into an IndexJobConf
class to express an EFind enhanced MapReduce job. Specifically,

it supports three additional methods, addHeadIndexOperator,
addBodyIndexOperator, and addTailIndexOperator, that in-
sert EFind IndexOperators before Map, between Map and Re-

duce, and after Reduce, respectively. Figure 5 shows how the three

IndexOperators are configured for Example 2.1. Note that the

addIndexmethod specifies the IndexAccessor class and its con-
structor parameter (e.g., server description) for an IndexOperator.

Achieving Four Dimensions of Index Flexibility. (1) “What”:

A new type of index can be supported by implementing a new

IndexAccessor class; (2) “Where”: EFind index access can be

64

easily configured at any point in a MapReduce data flow by speci-

fying an IndexJobConf class; (3) “How”: The IndexOperator
class can customize index access behaviors for a specific MapRe-

duce job; and (4) “How many”: multiple indices can be accessed at

any location in a MapReduce data flow either by configuring mul-

tiple IndexAccessor classes for a single IndexOperator or by

linking multiple IndexOperators together. The index accesses

are independent in the former, but may be dependent in the latter.

3. INDEX ACCESS STRATEGIES AND

COST ANALYSIS
The EFind programming interface exposes index access opera-

tions to the EFind enhanced MapReduce system. The system can

automatically optimize index operations to achieve good perfor-

mance. In this section, we propose and analyze a number of ex-

ecution strategies for accessing indices.

Note that unlike database join optimizations, where various join

orders result in the same correct results, it is not an option to re-

order IndexOperators for two reasons. First, the placement of

an IndexOperator in a MapReduce data flow is often restricted

by the data dependencies in the computation. For example, in Fig-

ure 4, accessing knowledge base at I2 depends on the keywords ex-
tracted in the Map step. Second, user defined functions in MapRe-

duce make it difficult to understand the computation logic. Without

such understanding, it would be unsafe to reorder IndexOperators.
Consequently, we consider each IndexOperator instance sepa-

rately when optimizing index access. On the other hand, EFind

does provide a feature to specify independent index accesses: a

single IndexOperator can access multiple independent indices.

Then, the system will compute an optimal plan for accessing the

multiple indices. Application developers are advised to take ad-

vantage of this feature to give EFind more freedom for performing

optimizations.

In the following, we consider four index access strategies for

the case where an IndexOperator is associated with one index

in Section 3.1 to 3.4. Then we discuss the more sophisticated case

where multiple indices are associated with an IndexOperator in

Section 3.5. Terms used in the analysis are summarized in Table 1.

3.1 Baseline Strategy
Figure 6 shows the baseline strategy for implementing an EFind

IndexOperator that accesses a single index. Specifically, we take
advantage of the chained function feature in existing MapReduce

systems (e.g., Hadoop). In a chain of functions, the output of one

function is the input to the next function on the chain. Both the

Map computation and the Reduce computation can take a chain of

user defined functions.

From left to right in Figure 6, we show the cases where the

IndexOperator is before Map, between Map and Reduce, and

after Reduce, respectively:

• Before Map: preProcess, lookup, and postProcess are in-

serted as three chained functions before the original Map func-

tion as part of the Map computation.

• Between Map and Reduce: The methods preProcess, lookup,
and postProcess are inserted as three chained functions after

the original Map function as part of the Map computation.

• After Reduce: preProcess, lookup, and postProcess are in-

serted as three chained functions after the original Reduce func-

tion as part of the Reduce computation.

For the second case, we choose to implement the three methods as

part of the Map computation rather than part of the Reduce com-

Table 1: Terms used in cost analysis.
Term Description

N1 Average number of input (k1, v1) to preProcess on a single
machine

S1 Average size of input (k1, v1) to preProcess

Nikj
Average number of index lookup keys per input (k1, v1) for
index j

Sikj Average size of index keys for index j

Sivj Average size of lookup results per lookup key for index j

Tj Average time for index j to serve a lookup

BW
Network bandwidth between two machines in the computation
environment

Tcache Average time for a probe in the lookup cache

R Miss ratio of the lookup cache

Spre
Average size of output (k1′, v1′, {{ik1}, ..., {ikm}}) of
preProcess per (k1, v1) input

Sidx
Average size of output (k1′, v1′, {{ik1, {iv1}}, ...,
{ikm, {ivm}}}) of lookup per (k1, v1) input

Spost Average size of output of postProcess per (k1, v1) input
Smap Average size of output of the original Map per input

f
Average cost of storing and retrieving a byte from the dis-
tributed file system

Θ Average number of duplicates per index lookup key

putation. This gives application developers the most flexibility in

choosing group-by keys, who can either choose the Map output key

as the group-by key by setting k2 = k1 in the IndexOperator or
compute a different group-by key in postProcess.

The cost of the baseline strategy is computed as the sum of the

costs of preProcess, lookup, and postProcess, respectively. As
all the index access strategies pay similar local computation costs

for preProcess and postProcess, we can omit them in the cost

analysis formulae without changing the relative costs of different

index access strategies. Therefore, we focus on computing the cost

of lookup for index j:

Costbase = N1 ·Nikj(
Sikj+Sivj

BW
+ Tj) (1)

N1 · Nikj computes the total number of index keys that a single

machine searches in the index. The cost of looking up a key has

two parts: index local computation time (Tj) and network transfer

cost ((Sikj + Sivj)/BW)1.

3.2 Lookup Cache Strategy
We observe that index lookups are typically read-only. There-

fore, we assume that an index lookup is an idempotent operation.

That is, the index data stays unchanged (at least during the EFind

enhanced MapReduce job). Given the same index key, the lookup

result will be the same.2

Under this assumption, we optimize the baseline strategy when

there are many duplicate index lookup keys. Since index lookups

often incur the overhead of remote communications, it is beneficial

to reduce redundant index lookups. In the lookup cache strategy,

we reduce redundant index lookups at a single machine node by

implementing a lookup cache mechanism. EFind inserts the input

ik and the result {iv} of a lookup operation into an LRU-organized
cache. Before invoking the lookup for another ik′, it checks if ik′

already exists in the cache. For a cache hit, EFind immediately

returns the cached result. It invokes the lookup method only when

1In all the cost analyses, we assume a common case where the
MapReduce computation and the indices are hosted in the same
data center. The network bandwidth between two machines in the
data center is BW . However, the analyses can be easily modified
for other networking situations.
2Application developers can force EFind to use the baseline strat-
egy if this assumption is false.

65

pre idx pst M R pre idx pst R M R M pre idx pst

Map Reduce Map Reduce Map Reduce

(a) Before map (b) Between map and reduce (c) After reduce

Figure 6: Baseline strategy for implementing EFind IndexOperator. (pre: preProcess, idx: lookup, pst: postProcess)

Map

pre idx pst M Rshuf

pre idx pst RshufM

pre idx pst M Rshuf

pre idx pst RshufM pre idx pstshufM RM

pre idx pstshufM RM

pre idx pst M Rshuf

Map Reduce Map Reduce

Map Reduce Reduce

Map Reduce Reduce

ReduceMap ReduceMap

Map Reduce Reduce

Map Reduce

Map ReduceReduce

Map Reduce

(a) Before map (b) Between map and reduce (c) After reduce

pre idx pst M Rshuf

Map Reduce Map Reduce

pre idx pst RshufM

ReduceMap ReduceMap

Figure 7: Re-partitioning strategy for implementing EFind IndexOperator. (pre: preProcess, shuf: shuffling, idx: lookup, pst:
postProcess)

there is a miss in the lookup cache.

Let Tcache and R be the probe time and the miss ratio of the

lookup cache, respectively. We can compute the cost of the lookup

cache strategy as follows:

Costcache = N1 ·Nikj [Tcache +R(
Sikj+Sivj

BW
+ Tj)] (2)

3.3 Re-partitioning Strategy
While the lookup cache strategy reduces redundancy at a ma-

chine node that performs index lookups, there can also be dupli-

cate index keys across multiple machine nodes. As shown in Fig-

ure 7, we propose a re-partitioning strategy in order to reduce inter-

machine redundancy.

The basic idea is to add a shuffling step between preProcess
and lookup in order to group the index lookup requests with the

same lookup key ik together, thereby removing inter-machine re-

dundancy. The implementation introduces an additional MapRe-

duce job and utilizes the group-by between Map and Reduce in this

new MapReduce job for the shuffling step. We call this additional

MapReduce job shuffling job.

From left to right in Figure 7, we show the cases where the

IndexOperator is before Map, between Map and Reduce, and af-

ter Reduce, respectively. In each case, we consider multiple ways

to implement the strategy varying the boundary between the two

MapReduce jobs. The boundary is significant because the results

of the first job will be stored to the distributed file system. We

would like to consider different boundaries in order to minimize

the result size of the first job.

The cost of the re-partitioning strategy consists of three parts: the

cost of shuffling, the overhead of storing and retrieving the results

of the first job from the distributed file system, and the cost of the

actual index lookups:

Costrepart = Costshuffle + Costresult + Costlookup (3)

Here, the cost of shuffling mainly comes from transferring the out-

put of preProcess:

Costshuffle = N1·Spre

BW

For Costresult, we place the job boundary to minimize the result

size of the first job:

Costresult = f ·N1 · Smin

Smin=







min{Spre, Sidx, Spost, Smap}, before Map

min{Spre, Sidx, Spost}, between Map & Reduce

min{S1, Spre}, after Reduce

Finally, suppose there are Θ duplicates per distinct index lookup

key. We can compute Costlookup as follows:

Costlookup =
N1·Nikj

Θ
(
Sikj+Sivj

BW
+ Tj)

3.4 Index Locality Strategy
A distributed index often employs hash or range-based parti-

tion schemes. In many cases, it is possible to obtain the partition

scheme from the distributed index. For example, the root of a dis-

tributed Btree describes the range partition scheme of the second

level nodes. The meta-data server of a master-worker style index

can often tell the partition scheme of the workers. It is also feasi-

ble to figure out the hash value intervals for machine nodes in the

consistent hashing scheme in a Cassandra Key-Value store.

The partition scheme of an index can be communicated to EFind

by implementing a partition method and setting a flag in the class

of IndexAccessor. Then EFind will apply the partition method

in the shuffling job of the re-partitioning strategy. As a result, the

shuffling results (e.g. the lookup keys) will be co-partitioned as the

index. This provides the basis for the index locality strategy.3

3A tempting idea is to try co-locating a lookup key partition i with
its associated index partition i by setting Reducer i to be the ma-
chine hosting index partition i, thereby making index lookups local
operations. Unfortunately, it is a bad idea to restrict a reducer to
select only a single machine in a dynamic cloud environment be-
cause the unavailability of the machine can slow down the entire
MapReduce job. Therefore, we do not assume the co-location of
lookup keys and index partitions in this paper.

66

Let’s consider the MapReduce job after the shuffling job in the

above re-partition strategy (in the first case in Figure 7(a) and the

first case in Figure 7(b)). There are two execution strategies:

• Data Locality: This is used by the original MapReduce. The sys-

tem tries to schedule a Map task to run on a machine that hosts

the main input data (e.g., index lookup keys). Then lookup pays
the overhead of remote communications to access the index.

• Index Locality: We can modify the MapReduce task scheduling

mechanism to run a Map task on a machine that hosts an index

partition. In this way, lookup becomes local operations, saving

network communication overhead. However, we need to trans-

fer the main data to the machine.

The index locality strategy will be preferred if the result size of an

index lookup is larger than the size of the lookup key and additional

data in (k1, v1). We compute the cost of the index locality strategy

as follows:

Costidxloc = Costshuffle + Costresult + Cost′lookup (4)

where Costshuffle and Costresult are the same as computed in

Section 3.3. Cost′lookup is computed as follows:

Cost′lookup =
N1·Nikj

Θ
Tj +

N1·Spre

BW

3.5 Multiple Indices in a Single IndexOperator

Having discussed execution strategies for a single index, we now

consider multiple independent indices in an IndexOperator. From
the cost analysis of the four index access strategies, we observe the

following four properties:

• Property 1: The costs of the baseline strategy and the lookup

cache strategy of an index j are not affected by the order to

access the multiple indices.

• Property 2: The cost of the re-partitioning strategy and the index

locality strategy depend on the order to access multiple indices

because the data to be shuffled must contain all the results of

earlier index lookups.

• Property 3: If the order to access multiple indices is fixed, then

the costs of index access strategies for an index j are not affected
by the strategy choices of the other indices.

• Property 4: In an optimal plan, indices with the re-partitioning

strategy or the index locality strategy (if any) will be accessed

before those with the baseline or the lookup cache strategy.

Property 1 and 2 are clear from the cost formulae. For Property

3, we note that the result size of an index lookup will be the same

regardless of the choice of index access strategies. Therefore, if the

order of accessing multiple indices is fixed, all the size parameters

in the cost formulae will be fixed, and therefore the costs for a given

index will be fixed.

Property 4 results from the fact that the intermediate data size

always increases as EFind includes index lookup results {ivj} into
the output (k1′, v1′, {{ik1}, ..., {ikm}}) of preProcess. The larger
the intermediate data size, the larger the costs for the re-partitioning

strategy and the index locality strategy, while the costs of the other

two strategies are not affected. Therefore, to minimize the total

cost, the optimal plan will access indices with the re-partitioning

strategy or the index locality strategy first.

Given these four properties, we propose the following two algo-

rithms for computing the index access strategies for multiple inde-

pendent indices in an IndexOperator:

• Algorithm FullEnumerate: Given m independent indices, the al-

gorithm generates all m! orders to access the indices. For a

given order, it determines the index access strategy for each

Adaptive job
optimizer

E
F

in
d

 en
h

an
ced

 jo
b

Runtime
environment

Catalog

In
d

ex

access
p

lan

Jo
b

 resu
lt

Statistics

Plan
implementer

M
R

 jo
b

s

Job progress

Statistics

Figure 8: EFind runtime system overview.

index using Property 3. Once the strategy of an index is de-

termined to be either baseline or lookup cache, the algorithm

would only consider baseline/lookup cache strategies for the rest

of indices (Property 4). After computing the cost for each index

access order, the algorithm chooses the index access order with

the minimum cost.

• Algorithm k-Repart: Givenm independent indices, the algorithm

generates all the k-permutations of the m independent indices.

For each generated k-permutation, it computes the strategies for

the first k indices as in Algorithm FullEnumerate, while only

considering the baseline or the lookup cache strategies for the

rest (m − k) indices. After computing the cost for each index

access order, the algorithm chooses the index access order with

the minimum cost.

Algorithm FullEnumerate computes m! plans, while Algorithm k-
Repart computes P (m, k) = m(m− 1) · · · (m− k+ 1) plans. In
a typical situation, the number of indices at an IndexOperator is

small. For example, m ≤ 5, m! ≤ 120. It is feasible to employ

Algorithm FullEnumerate to compute the optimal plan. Whenm is

very large, Algorithm FullEnumerate may be too expensive to use.

We fall back to Algorithm k-Repart with a small k, e.g., 1-Repart or
2-Repart. Note that the cost of adding an extra MapReduce job by

the re-partitioning or the index locality strategies can be high, thus

it is rare that such strategies are chosen by many indices. Therefore,

Algorithm k-Repart with a small k often generates a good plan.

4. ADAPTIVE OPTIMIZATION FOR

INDEX ACCESS
Having discussed how to optimize index access if sufficient and

accurate statistics about the indices are available, we switch our at-

tention to applying these techniques in optimizing EFind enhanced

jobs in this section.

One approach is to record statistics at the end of a job, and then

use the statistics collected from previous jobs to statically compute

an index access plan for a new job. However, in practice, a statically

generated plan can be sub-optimal for two reasons: (i) statistics

(for a new index or a new IndexOperator) may be missing; and

(ii) statistics collected from previous MapReduce jobs may not be

accurate for the current job if the data use patterns differ. Compared

to traditional databases, the latter concern is more significant in

the MapReduce system because the extensive use of user-defined

functions in MapReduce limits the system’s power to understand

the data use patterns.

Given these considerations, we design an EFind runtime system

to support adaptive optimization for index access. In the following,

we first overview the system in Section 4.1. Then we discuss how

to collect statistics and how to change the index access plan for an

ongoing job in details in Section 4.2 and 4.3, respectively.

4.1 Overview of Adaptive Optimization
Figure 8 depicts the components of the EFind runtime system.

First, the adaptive job optimizer generates an initial index access

67

Algorithm 1 Dynamic Re-Optimization

Input: Job currJob, Plan currPlan

1: for each Collected Statistics do

2: if Standard deviation / Mean > Threshold then

3: return null;

4: IndexOperatorSet idx_ops← null;

5: if currJob.isAtMapPhase() then

6: idx_ops← getIdxOpsBeforeReduce(currJob);

7: else

8: idx_ops← getIdxOpsAfterReduce(currJob);

9: newPlan← optimize(idx_ops);

10: if currPlan.cost - newPlan.cost < planChangeCost then

11: newPlan← null;

12: return newPlan;

plan, and re-optimizes the plan if necessary during runtime. Us-

ing the cost formulae and the algorithms as described in Section 3,

it finds the best index access strategies based on the statistics as

recorded in the catalog. Second, the plan implementer implements

the chosen index access plan by inserting chained functions into the

MapReduce job and/or by adding shuffling MapReduce jobs (e.g.,

for the re-partitioning strategy). Third, the runtime environment

enhances the original MapReduce runtime by collecting index ac-

cess statistics. In addition, when a new plan is generated for an

on-going job J , the plan implementer and the runtime environment

collaborate to stop Job J at an appropriate point, submit a new job

according to the new index access plan, and try to reuse the inter-

mediate results of Job J as much as possible in the new job. Finally,

the catalog stores statistics about index accesses.

Since the characteristics of one Map (Reduce) task is often rep-

resentative of that of all the other Map (Reduce) tasks, EFind up-

dates the statistics in the catalog after a Map task or a reduce task

completes. Note that when processing a large amount of data, it is

typical to configure a MapReduce job to use much larger number

of Map tasks than the number of machine nodes so that Map tasks

are performed in multiple rounds. The original intention is to start

transferring the Map outputs to Reducers after the first round of

Map tasks, thereby overlapping the data transferring time with the

Map computation. We take advantage of such job structure in that

the statistics collected from the tasks in the first round of Map may

trigger re-optimization of the job and the rest of the computation

will be better optimized.

Algorithm 1 shows the algorithm for dynamically re-optimize a

running job. The algorithm performs re-optimization only when

the variance of the collected statistics is small enough (line 1–3).

Otherwise, the statistics may not represent the characteristics of

the entire job. (We will discuss this point in more details in Sec-

tion 4.2.) If the current running job (currJob) is at the Map phase

(line 5), the algorithm extracts IndexOperator(s) (idx_ops) that
appear before the Reduce phase (line 6). EFind will ignore the

IndexOperator(s) at the Reduce phase because their statistics

have not yet been updated. Otherwise, the current running job is at

the Reduce phase, and the algorithm extracts the IndexOperator(s)
that appear after the Reduce tasks (line 8). EFind ignores the op-

erators at the Map phase because the Map phase has already com-

pleted. Then, the algorithm invokes the adaptive runtime optimizer

to re-optimize idx_ops based on the up-to-date statistics (line 9).

If the generated new plan significantly improves the current plan

such that the improvement is larger than the overhead to perform

the plan change, the algorithm returns the new plan. Otherwise, it

returns null and EFind continues with the current plan.

We will change the execution plan of a job at most once in order

to keep the overhead of plan changes low. Note that we expect the

runtime optimizer (line 9) to find the best plan when statistics are

representative of the entire job.

4.2 Collecting Statistics during Execution
EFind collects statistics on the fly and updates the catalog when-

ever a Map task or a Reduce task completes. We leverage a feature

in MapReduce systems, called counter, in the implementation. A

counter can be incremented by individual Map or Reduce tasks and

will be globally visible. We create a set of counters at the following

places as the basis to obtain the statistics in Table 1:

• preProcess: We add counters to record the number of inputs, the

total input size, the number of keys extracted for each index, and

the total output size. Based on these counters, we can calculate

N1, S1, Nikj , and Spre, respectively.

• lookup: We add counters to record the total input size and the total

output size. Based on these counters, we can calculate Sikj and
Sivj , respectively.

• postProcess: We add a counter to record the total output size in

order to compute Spost.

• Map: We add a counter to record the total output size in order to

compute Smap.

Moreover, statistics such as network bandwidth (BW), aver-

age time for storing and retrieving from the distributed file system

(f), and average time for a probe in the lookup cache (Tcache) are

straightforward to measure offline.

Furthermore, we consider how to obtain average time for index

j to serve a lookup (Tj) and miss ratio of lookup cache (R). For

Tj , we sample the time to perform an index lookup, and subtract

the estimated network communication cost (
Sikj+Sivj

BW
) from the

time. The result is accumulated and averaged to obtain Tj . For

estimating R, we use a simple version of the lookup cache that

does not cache lookup results, and sample significantly long (e.g.,

100x of the cache size) sequences of lookups.4

Finally, we consider the most challenging statistics to obtain in

Table 1 — Θ, i.e. average number of duplicates per index lookup

key. We apply the Flajolet and Martin’s (FM) algorithm [9], which

estimates the number of distinct values in data streams. For each

Map or Reduce task, we keep a FM bit vector updated by the lookup

keys. Local FM bit vectors are OR-ed together to compute the

distinct number of keys across machines. Then we divide the total

number of lookup keys by the estimated number of globally distinct

keys to obtain Θ.

Variance of Collected Statistics. Re-optimization makes sense

only when the collected statistics reflect the characteristics of the

job. We consider the statistics collected at each Map or Reduce

task as a random sample. Note that according to the central limit

theorem, we can assume the normal distribution when the number

of samples is large. Then with a probability of 99%, the sample

mean is within 3 times the standard deviation from the true mean.

Therefore, a small variance across the samples gives a high confi-

dence that the computed sample mean is close to the true mean.

For each type (y) of statistics on preProcess, lookup, and post-

Process, we compute the sample variance (S2) of the statistics

across different Map or Reduce tasks.

S2 = 1

n−1

n
∑

i=1

(yi − ȳ) = 1

n−1

n
∑

i=1

y2
i −

n
n−1

ȳ2
(5)

where yi is the local statistics computed at task i, n is the number

of Map or Reduce tasks from which we collect statistics, and
∑

y2
i

4Note that the lookup cache size is fixed in our implementation.
We leave the study of varying lookup cache sizes to future work.

68

1

1 1

2

2 2 3

3 3

1

1 1

2
 2 2 3

 3 3 1

1

1 1

2

2 2 3

3 3 3

(a) EFind
enhanced job

(b) Initial
 plan

(c) New
 plan 1

(d) New
 plan 2

Figure 9: Adaptive optimization for an EFind enhanced job. (Note: a dotted rectangle shows a single MapReduce job.)

Curr. plan

Map Reduce Reduce

S1

S2

S3

S4

M1

M2 X1

X2

X3

Y2

Y1

M3

Map Maps/Reduces

M4

Curr. plan

new plan

new plan

new plan

Map Reduce

M1

M2

M3

M4

S1

S2

S3

S4

Reduce

R1

Y1’

Y2’

R2

R3

Curr. plan

Curr. plan

Curr. plan

Curr. plan

new plan

new plan

Maps/Reduces

R2’

R3’

R1 R1 Move to the output directory

(a) Plan change in the middle of the Map phase (b) Plan change in the middle of the Reduce phase

Figure 10: Dynamically changing index access plans while reusing intermediate results.

is accumulated using a counter. The sample standard deviation is

the square root of S2. In Algorithm 1, we make sure that the stan-

dard deviation over mean is below a threshold (e.g., 0.05) before

performing re-optimization.

4.3 Changing the Index Access Plan of an
Ongoing Job

A naïve approach kills the current MapReduce job, discards all

the intermediate results, then restarts the job with the new plan.

However, it wastes all the previous computation.

We would like to reuse previously computed results as much as

possible. Figure 9 and Figure 10 illustrate our design for dynam-

ically changing index access plans. Figure 9(a) shows an EFind

enhanced job with three IndexOperators I1, I2, and I3. Fig-

ure 9(b) depicts the initial plan that employs the baseline strategy.

Figure 9(c) and (d) show two cases, changing index access plans

either in the middle of the Map phase or in the middle of the Re-

duce phase. As discussed previously in Figure 7, the two new plans

employ the re-partitioning strategy for I1 and I3, respectively.
When EFind decides to change the plan in the middle of the Map

or Reduce phase, a task can be in one of the following three states:

(1) it has already completed (e.g., M1 in Figure 9(c), R1 in Fig-

ure 9(d)); (2) it is being processed with partial results (e.g., M2 in

Figure 9(c), R2 in Figure 9(d)); or (3) it has not yet started (e.g.,

M3 and M4 in Figure 9(c), R3 in Figure 9(d)). It is almost free

to reuse results from completed tasks. For a completed Map task

M , EFind only needs to configure all the Reduce tasks to obtain

intermediate results from M (in addition to the new Map tasks in

the new plan). For a completed Reduce task R, EFind only needs

to specify that the output of R should be part of the job output.

Note that in both cases, there is no need to transfer any significant

amount of data or perform significant computation. On the other

hand, it can be very expensive to merge the results of a partially

completed task with those from the new plan in order to guarantee

that each result is produced once and exactly once. Based on these

considerations, EFind reuses results from completed tasks in state

(1), but applies the new plan to tasks in state (2) or state (3).

We describe how EFind changes the index access plan:

• Plan Change in the Middle of the Map Phase: As shown in Fig-

ure 10(a), EFind performs two steps for the plan change. First, it

applies the new plan to the input splits that have not completed

(e.g., S2, S3, and S4). Second, it runs the Reduce tasks of the

new plan (e.g., Y1 and Y2). The Reduce tasks retrieve outputs

not only from the new Map tasks (e.g., X1, X2, and X3), but

also from the completed tasks in the old plan (e.g., M1).

• Plan Change in the Middle of the Reduce Phase: As shown in

Figure 10(b), to apply the new plan, EFind runs the new Reduce

tasks (e.g.,R′

2 andR
′

3), merges the results of the new tasks (e.g.,

R′

2 andR
′

3) with those of previously completed tasks (e.g.,R1),

and perform any subsequent processing.

5. EXPERIMENTS
In this section, we empirically evaluate EFind using both real-

world and synthetic data sets.

5.1 Experimental Setup

Cluster setup. We perform the experiments on a cluster of 12

nodes. Every node is an HP ProLiant BL460c blade server equipped

with two Intel(R) Xeon(R) X5675 64-bit 3.07GHz CPUs (6 cores/12

threads, 12MB cache), 96GB memory, and a 1TB 7200rpm HP

SAS hard drive, running 64bit Red Hat Enterprise Linux Server

release 6.2 with Linux 2.6.32-220 kernel. The blade servers are

connected through a 1Gbps Ethernet switch.

We implemented EFind on top of Apache Hadoop 1.0.0. In our

Hadoop cluster, 1GB memory is allocated for each Hadoop dae-

mon. One TaskTracker and one DataNode daemon run at each

worker node. Every TaskTracker is configured to run up to 8 Map

69

and 4 Reduce tasks by default. The DFS chunk size and replication

factor are 64MB and 3, respectively. The lookup cache contains

up to 1024 index key-value entries. We use Oracle Java 1.7 in our

experiments.

Index. Our experiments use Apache Cassandra 1.0.6 [4] to pro-

vide index services unless otherwise noted. Our 12-node Cassan-

dra setup is running with Hadoop in the same cluster. To control

the partition of data and be aware of the partition locations, we use

the NetworkTopologyStrategy to control the partition placement

among nodes. PropertyFileSnitch is used as the endpoint_snitch,

so that we can explicitly control the network topology and data

distribution. The index is divided into 32 partitions using the Hash-

Partitioner of Apache Hadoop. One index partition is replicated to

three data nodes. The partition information is stored in a column

family, which is replicated to every data node.

Data sets and Data Analysis Jobs. We evaluate the performance

of EFind using the following four data sets:

• LOG: LOG contains a set of real-world web log traces from a

popular web site. An event record consists of: event ID, times-

tamp, source IP, visited URL, and up to 7 other fields. The data

set contains 15 million events and is 7GB large. The application

computes the top-k frequently visited URLs in each geograph-

ical region. It uses a cloud service to look up the geographical

region for an IP address. The cloud service runs on a single node

with Java RMI interface.

• TPC-H: We generate a TPC-H [20] data set with a scale factor of

10, and perform Q3 and Q9 in the experiments. We compose

MapReduce jobs to follow the same join order as MySQL. For

Q3, the job first joins LineItemwith Orders, then with Customer.

For Q9, the job first joins LineItemwith Supplier, then with Part,

PartSupply, Orders, and finally with Nation. The main input for

both Q3 and Q9 is the LineItem table. We create indices on the

rest of the tables in the queries, and essentially perform index

nested-loop joins. Moreover, we also perform a set of experi-

ments while duplicating the LineItem table 10 times, which are

represented as TPC-H DUP10.

• Synthetic: The synthetic data set contains 10 million records.

Each record consists of an integer key and a 1KB-sized value.

The keys are uniformly randomly generated from [0, 4999999].

We build an index that maps each distinct key to an index value

of size l, and run a job to join the data set with the index. We

vary the parameter l in the experiments to model different work-

load characteristics.

• OSM: We compare an EFind based k-nearest neighbor join (kNNJ)

implementation with a hand-tuned implementation [22] using a

real-world OpenStreetMap (OSM) data set. The data set con-

tains about 42 million records of geographic locations in the US,

and is 14.8GB large. Every record consists of a record ID and a

2D coordinate. The job computes kNNJ (k = 10) between two

randomly selected sub-sets (A and B) of records, each with 40

million records, from the OSM data set. For the EFind based

implementation, we use A as the main input to MapReduce and

build a distributed index onB to support kNN search. We parti-

tion the US map into 4×8 cells with small overlapping regions,

then build an R* tree for each cell. Each R* tree is replicated to

3 machines.

Index Access Strategies. For each job, we run six experiments: (1)

the baseline strategy (Base), (2) the lookup cache strategy (Cache),

(3) the re-partitioning strategy (Repart), (4) the index locality strat-

egy (Idxloc), (5) dynamic adaptive optimization (Dynamic), and

(6) static optimization with sufficient statistics (Optimized). For

(5), we start the job with no statistics, and perform re-optimization

on the fly. Usually, in the first round of Map tasks, EFind collects

sufficient statistics to perform re-optimization. Then EFind may

perform dynamic plan change if a better new plan is generated. We

measure and report the execution time of the jobs.

5.2 Index Access Strategies
We first evaluate each index access strategy using LOG, TPC-H,

and Synthetic data sets.

LOG.We would like to understand the performance of LOG under

various delay conditions for looking up an IP address. The cloud

service incurs a t = 0.8ms delay for a lookup. As shown on the X-
axis in Figure 11(a), we introduce an extra 0, 1ms, · · · , 5ms to the
lookup. From Figure 11(a), we see that (i) compared to baseline,

the lookup cache strategy achieves a factor of 1.2–1.5x improve-

ments; (ii) the re-partitioning strategy achieves an additional factor

of 1.4–2.2x speedups over the lookup cache strategy; and (iii) the

improvements are larger with longer delays.

From the log traces, we find that an IP often visits multiple URLs

in a short period of time. The visits are often served by two or

more web servers, and recorded in two or more log files. Differ-

ent log files are processed in different Map tasks. Consequently,

we see both strong local redundancy and strong cross-machine re-

dundancy in index lookups, which explain the effectiveness of the

lookup cache and the re-partitioning strategies. Moreover, the ben-

efits become larger with longer lookup delays because the savings

of reducing redundant lookups increase.

Note that index locality does not apply to LOG because the cloud

service is located on a single machine.

TPC-H. Figure 11(b)-(e) report the experimental results for TPC-

H Q3 and Q9. First, we see that the lookup cache strategy achieves

2.2–2.4x improvements over baseline for Q3, but has little benefits

for Q9. In Q3, LineItem records are used to look up the index on

Orders. Since the LineItem records that is associated with the same

order record are stored consecutively in the TPC-H data set, there

is high local redundancy in index lookups, which is effectively op-

timized by the lookup cache strategy. On the other hand, Q9 first

probes the index on Supplier using LineItem records. There is no

locality in the index lookup. Hence the cache sees very high miss

rate.

Second, for re-partitioning, we choose one of the indices with

the most benefits to apply re-partitioning (i.e., Orders in Q3, Sup-

plier in Q9), while using the lookup cache strategy for the rest.

As shown in Figure 11(c), re-partitioning reduces the running time

of baseline by a factor of 4.6x. This is because LineItem records

with the same supplier are grouped together after re-partitioning,

effectively removing all redundant index accesses for the index on

Supplier. As shown in Figure 11(e), TPC-H DUP10 duplicates the

LineItem table 10 times. This leads to 10x redundant index keys,

and thus higher benefits from re-partitioning, a 7.9x speedup over

baseline.

Third, as shown in Figure 11(b), re-partitioning has worse per-

formance than the lookup cache strategy for Q3. As explained in

the above, the lookup cache already effectively removes most of the

redundancy. Therefore, it is not worthwhile to pay the cost of re-

partitioning. As shown in Figure 11(d), TPC-H DUP10 introduces

10x redundancy across machines, and re-partitioning removes this

global redundancy, achieving 2.1x improvements over the lookup

cache strategy for Q3.

Finally, for TPC-H Q3 and Q9, index locality does not show

clear benefits over re-partitioning. In fact, it is even slightly worse

than re-partitioning in some cases. The reason is that the number

of index lookups has already been significantly reduced with re-

70

(a) LOG (b) TPC-H Q3 (c) TPC-H Q9

(d) TPC-H DUP10 Q3 (e) TPC-H DUP10 Q9 (f) Synthetic

Figure 11: Experimental results for LOG(a), TPC-H (b− c), TPC-H DUP10 (d− e), and Synthetic (f).

Figure 12: Index lookup latency for Synthetic.

partitioning. The cost of remote index lookup is actually lower

than the cost of transferring input splits to co-locate with the index

partitions.

Synthetic. We vary the size of index lookup result and study its

impact on index access performance. Figure 12 shows the elapsed

time of a local vs. remote index lookup while varying the size of

lookup result from 10B to 30KB. We see that as the result size

increases, both the index access time and the gap between local

and remote index accesses increase. The latter is because more

data need to be transferred over network.

Figure 11(f) compares the index access strategies while varying

index lookup result size. First, the lookup cache strategy sees little

benefits. This is because the lookup keys are randomly generated

from 5 million distinct values, and incur very high miss rate in the

1024-entry lookup cache.

Second, there are 10 million keys in total, and thus on average

every key occurs twice in the data set. Re-partitioning can effec-

tively group the redundant keys together, reducing redundant index

lookups. It achieves 2.0x–2.8x speedups compared to baseline.

Finally, index locality can achieve even better performance than

re-partitioning. It plays a more significant role when the result size

is large, and the remote index lookup cost is high. When the result

size is 1KB and smaller, the input transfer overhead dominates, and

index locality is slightly worse than re-partitioning. When the result

size is larger than 1KB, it is more beneficial to remove remote index

lookups, and index locality achieves 1.2–1.4x improvements over

re-partitioning.

5.3 Adaptive Optimization
In LOG, TPC-H, and Synthetics, the optimal performance is

achieved by different index access strategies (i.e. cache, re-partition-

ing, or index locality). In the following, we consider two cases: (i)

optimization with sufficient statistics (Optimized); and (ii) adaptive

optimization starting with no statistics (Dynamic). We compare op-

timized and dynamic with the optimal performance.

LOG and Synthetic. First, in Log (Figure 11(a)) and Synthetic

(Figure 11(f)), we see that the running time of optimized is the

same as the optimal performance. EFind correctly selects the opti-

mal plan with sufficient statistics. Second, dynamic starts running

with the baseline strategy while collecting statistics. Then EFind

dynamically re-optimizes the jobs. We find that EFind chooses the

correct optimal plans after re-optimization. Due to the overhead of

the statistics collection phase, dynamic is slower than the optimal

performance, but it is significantly faster than both baseline and

cache.

TPC-H. First, we see that the running time of optimized is the same

or very close to the optimal performance. When the costs of re-

partitioning and index locality are very close, EFind may choose

a plan different from the optimal plan. Note that cost estimation

based on statistics and simple formulae may not be fully accurate.

Second, the adaptive optimization, dynamic, always achieves

better performance than baseline in all TPC-H experiments. How-

ever, because of the statistics collection phase, dynamic is slower

than the optimal performance. Specifically, for Q9 in Figure 11(c),

the statistics collection phase is the first round of 20 Map tasks,

which takes 765 seconds. After re-optimization, the rest of the

computation with 87 Map tasks and the reduce phase takes only

273 seconds. This effect will be reduced when many Map tasks are

used to process a large amount of data. As shown in Figure 11(d)

and Figure 11(e), if we increase the LineItem table by 10 times,

the statistics collection phase consists of only a small portion of the

total runtime. Therefore, the performance of dynamic is very close

to the optimal performance.

71

Figure 13: Comparing EFind solutions (Base, Cache, Repart,

Idxloc, Optimized, Dynamic) with a hand-tuned implementa-

tion (H-zkNNJ) for k-nearest neighbor join (kNNJ).

5.4 Comparing EFind with Hand-Tuned
Implementation

Finally, we use k-nearest neighbor join as an example to com-

pare an EFind-based solution with a hand-tuned implementation

on MapReduce. The hand-tuned implementation of kNNJ is H-

zkNNJ [22]; We set its two parameters α = 2 and ǫ = 0.003. Our
EFind implementation performs an index nested-loop join between

the two sets of locations. As shown in Figure 13, EFind-based

solution (with index locality as the optimal strategy) achieves sim-

ilar performance as the hand-tune implementation. Using EFind,

application developers can easily and flexibly express operations

involving indices, while achieving very good performance.

6. CONCLUSION
A wide range of big data processing applications require selec-

tively accessing one or many data sources other than the main in-

put of MapReduce. We model such a data source as an index. In

this paper, we present an EFind index access interface to easily

and flexibly incorporate index access into MapReduce. We pro-

pose and analyze a set of index access strategies, and design a run-

time system to support adaptive optimization. From experimental

results on four real-world and synthetic data sets, we see that (i)

the lookup cache, re-partitioning, and index locality strategies can

each be the optimal strategy under certain application scenarios;

(ii) when statistics are sufficient, EFind chooses the optimal plan

or a plan that has very similar performance to the optimal, achiev-

ing 2–8x speedups over the baseline strategy; (iii) when there are

no statistics, EFind starts a job with the baseline strategy, collects

statistics on the fly, and re-optimizes the job to choose a better plan;

and (iv) an EFind-based solution can achieve similar performance

as a hand-tuned implementation. In conclusion, EFind provides

a flexible programming interface and a capable runtime system to

automatically achieve good performance for accessing indices in

MapReduce.

7. REFERENCES
[1] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi,

A. Silberschatz, and A. Rasin. Hadoopdb: an architectural

hybrid of mapreduce and dbms technologies for analytical

workloads. Proc. VLDB Endow., 2(1):922–933, 2009.

[2] M. K. Aguilera, W. Golab, and M. A. Shah. A practical

scalable distributed b-tree. Proc. VLDB Endow.,

1(1):598–609, Aug. 2008.

[3] Apache hadoop project.

http://hadoop.apache.org/.

[4] Apache cassandra project.

http://http://cassandra.apache.org/.
[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.

Gruber. Bigtable: A distributed storage system for structured

data. ACM Trans. Comput. Syst., 26(2):1–26, June 2008.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified data

processing on large clusters. In OSDI, pages 137–150, 2004.

[7] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty,

and J. Schad. Hadoop++: making a yellow elephant run like

a cheetah (without it even noticing). Proc. VLDB Endow.,

3(1-2):515–529, Sept. 2010.

[8] S. Feng, Y. Xiong, C. Yao, L. Zheng, and W. Liu. Acronym

extraction and disambiguation in large-scale organizational

web pages. In CIKM, pages 1693–1696, 2009.

[9] P. Flajolet and G. N. Martin. Probabilistic counting

algorithms for data base applications. J. Comput. Syst. Sci.,

31(2):182–209, Sept. 1985.

[10] G. Graefe. Query evaluation techniques for large databases.

ACM Comput. Surv., 25(2):73–169, June 1993.

[11] IDC. The digital universe in 2020: Big data, bigger digital

shadows, biggest growth in the far east.

http://www.emc.com/leadership/digital-universe/, 2012.

[12] D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The performance of

mapreduce: an in-depth study. Proc. VLDB Endow.,

3(1-2):472–483, Sept. 2010.

[13] P. Jiang, H. Hou, L. Chen, S. Chen, C. Yao, C. Li, and

M. Wang. Wiki3c: exploiting wikipedia for context-aware

concept categorization. In WSDM, pages 345–354, 2013.

[14] J. Lin, G. Xiang, J. I. Hong, and N. M. Sadeh. Modeling

people’s place naming preferences in location sharing. In

UbiComp, pages 75–84, 2010.

[15] C. Olston, B. Reed, U. Srivastava, R. Kumar, and

A. Tomkins. Pig latin: a not-so-foreign language for data

processing. In SIGMOD ’08: Proceedings of the 2008 ACM

SIGMOD international conference on Management of data,

pages 1099–1110, New York, NY, USA, 2008. ACM.

[16] P. E. O’Neil. Model 204 architecture and performance. In

Proceedings of the 2nd International Workshop on High

Performance Transaction Systems, pages 40–59, 1989.

[17] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,

S. Madden, and M. Stonebraker. A comparison of

approaches to large-scale data analysis. In SIGMOD, pages

165–178, 2009.

[18] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden,

E. Paulson, A. Pavlo, and A. Rasin. Mapreduce and parallel

dbmss: friends or foes? Commun. ACM, 53(1):64–71, 2010.

[19] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,

S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive: a

warehousing solution over a map-reduce framework. Proc.

VLDB Endow., 2(2):1626–1629, 2009.

[20] Tpch focus. http://http://www.tpc.org/tpch/.

[21] M. Ye, D. Shou, W.-C. Lee, P. Yin, and K. Janowicz. On the

semantic annotation of places in location-based social

networks. In KDD, pages 520–528, 2011.

[22] C. Zhang, F. Li, and J. Jestes. Efficient parallel knn joins for

large data in mapreduce. In EDBT, pages 38–49, 2012.

[23] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files

versus signature files for text indexing. ACM Trans.

Database Syst., 23(4):453–490, Dec. 1998.

72

