Hypoglycemic Effect of Orally Delivered Insulin Nanoparticles Compared to Subcutaneous Recombinant Human Soluble Insulin in Hyperglycemic Male Rats

Authors

  • Ghasak Kais Abd-Alhussain Department of Pharmacology, College of Medicine, University of Baghdad, Baghdad, Iraq https://orcid.org/0000-0003-2958-4954
  • Mohammed Qasim Alatrakji Department of Pharmacology, College of Medicine, University of Baghdad, Baghdad, Iraq
  • Shayma'a Jamal Ahmed Department of Human Biology, College of Medicine, University of Baghdad, Baghdad, Iraq https://orcid.org/0000-0002-8693-3260

DOI:

https://doi.org/10.54133/ajms.v5i1S.360

Keywords:

Drug delivery system, Hypoglycemic rats, Insulin nanoparticles, Polylactic acid-polyglycolic acid copolymer, Polyethylene glycol-polylactide-polyethylene glycol

Abstract

Background: Insulin is available as an injectable drug and remains the mainstay of therapy. Researchers have attempted to develop an oral formulation of insulin, particularly utilizing nanoparticles (NPs). Objective: To assess the efficacy and safety of insulin-loaded D-α-Tocopherol polyethylene glycol succinate (TPGS)-emulsified PEG-capped PLGA NP in comparison to insulin-loaded PLGA NP and subcutaneous (SC) insulin in an in vitro and in vivo diabetic rat model. Methods: Two biocompatible and biodegradable NPs were used, in which 20 IU/kg of recombinant human soluble insulin was incorporated. NP1 was PLGA-loaded with human insulin, while NP2 was PLGA-PEG-TPGS-loaded with human insulin. The physical characteristics of the NPs were examined in an in vitro and in vivo study on a hyperglycemic rat model for a 24-hour duration. Results: For the first 3 hours, SC insulin showed a better reduction in serum glucose levels (SG) compared to both NP1 and NP2. A smooth, sustained reduction in SG was observed and maintained till the end of 24 hours with both NPs. NP1 maintained SG reduction for 6 hours before experiencing an increase, while NP2 demonstrated superior sustained reduction in SG beyond the 12-hour evaluation period. Conclusions: PLGA-PEG-TPGS NP can act as a potential carrier for oral insulin delivery and maintain good glycemic control for up to 24 hours.

Downloads

Download data is not yet available.

References

Mikhael EM, Hassali MA, Hussain SA, Shawky N. Self-management knowledge and practice of type 2 diabetes mellitus patients in Baghdad, Iraq: a qualitative study. Diabetes Metab Syndr Obes. 2018;12:1-17. doi: 10.2147/DMSO.S183776.

Al Rashed AM. Pattern of presentation in type 1 diabetic patients at the diabetes center of a university hospital. Ann Saudi Med. 2011; 31: 243-249. doi: 10.4103/0256-4947.81529.

Abusaib M, Ahmed M, Nwayyir HA, Alidrisi HA, Al-Abbood M, Al-Bayati A, et al. Iraqi experts consensus on the management of type 2 diabetes/prediabetes in adults. Clin Med Insights Endocrinol Diabetes. 2020;13:1179551420942232. doi: 10.1177/1179551420942232.

Mansour AA, Al-Maliky AA, Kasem B, Jabar A, Mosbeh KA. Prevalence of diagnosed and undiagnosed diabetes mellitus in adults aged 19 years and older in Basrah, Iraq. Diabetes Metab Syndr Obes. 2014;7:139-144. doi:10.2147/DMSO.S59652.

Gorial FI, Sayyid OS, Al Obaidi SA. Prevalence of sarcopenia in sample of Iraqi patients with type 2 diabetes mellitus: A hospital based study. Diabetes Metab Syndr. 2020;14:413-416. doi: 10.1016/j.dsx.2020.04.021.

Al-Azzawi OFN, Alobaidy MW, Saham MM. Nephrotic range proteinuria; does it predict lung involvement in patients with type 2 diabetes. Diabetes Metab Syndr. 2019;13(1):622-625. doi: 10.1016/j.dsx.2018.11.031.

Hami A, M. Association between HbA1c and Serum Lipid Profile among a sample of Iraqi Patients with Type2 Diabetes Mellitus. J Fac Med Bagdad. 2021;63:100-105. doi: 10.32007/jfacmedbagdad.6331864.

Zainab SA, Mohammed QA, Ahmed AA-M, Hussein KI, Saad AH. Influence of metformin dose and treatment adherence on glycemic control, adiposity, and cardiovascular risk markers in Iraqi patients with T2DM. J Fac Med Bagdad. 2022;4:218-226. doi: 10.32007/jfacmedbagdad.6441939.

Kader S, Al-Shamma KJ, Majeed IA, Al-Ani AT. Comparative study between oral hypoglycemic drugs repaglinide, glibenclamide and rosiglitazone on some biochemical parameters in type 2 diabetic patients. Iraqi J Pharm Sci. 2009;18:32-38. doi: 10.31351/vol18iss2pp32-38.

Yonus SS, Ahmed MA. Mitochondrial copies number and some renal function biomarkers in type 2 diabetes mellitus on metformin. Iraqi J Pharm Sc. 2022;31:33-38. doi: 10.31351/vol31iss2pp33-38.

Abdulrahman AJ, Jabarah MA, Najjar SA. Effects of liraglutide on weight control and blood pressure in type 2 diabetes mellitus Iraqi patients. J Fac Med Bagdad. 2022;4:227-232. doi: 10.32007/jfacmedbagdad.6441971.

Hamid OA, Al-Humairi AK. Assessment of the level of adherence to insulin therapy and diet recommendations among diabetes patient. IJDDT. 2021;6:205-208.

Mukhtar Y, Galalain A, Yunusa U. A modern overview on diabetes mellitus: a chronic endocrine disorder. EJB. 2020;5:1-14. doi: 10.47672/ejb.409.

Arnolds S, Kuglin B, Kapitza C, Heise T. How pharmacokinetic and pharmacodynamic principles pave the way for optimal basal insulin therapy in type 2 diabetes. Int J Clin Pract. 2010;64(10):1415-1424. doi: 10.1111/j.1742-1241.2010.02470.x.

Owens DR, Zinman B, Bolli G. Alternative routes of insulin delivery. Diabet Med. 2003; 20:886-898. doi: 10.1046/j.1464-5491.2003.01076.x.

Khafagy el-S, Morishita M, Onuki Y, Takayama K. Current challenges in non-invasive insulin delivery systems: a comparative review. Adv Drug Deliv Rev. 2007;59(15):1521-1546. doi: 10.1016/j.addr.2007.08.019.

Jain S, Rathi VV, Jain AK, Das M, Godugu C. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine (Lond). 2012;7(9):1311-1337. doi:10.2217/nnm.12.31.

Florence AT. The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual. Pharm Res. 1997;14(3):259-266. doi: 10.1023/a:1012029517394.

Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1-18. doi: 10.1016/j.colsurfb.2009.09.001.

Reix N, Parat A, Seyfritz E, Van der Werf R, Epure V, Ebel N, et al. In vitro uptake evaluation in Caco-2 cells and in vivo results in diabetic rats of insulin-loaded PLGA nanoparticles. Int J Pharm. 2012;437(1-2):213-220. doi: 10.1016/j.ijpharm.2012.08.024.

Al-hadedee LT, AL-Sadoon TH and Jasim BA. The Effect of polyethylene glycol-coated gold nanoparticle on mice’s renal function. IJDDT. 2021;11:664-668.

Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557-570. doi: 10.1016/j.addr.2011.12.009.

Zhu K, Meng Z, Tian Y, Gu R, Xu Z, Fang H, et al. Hypoglycemic and hypolipidemic effects of total glycosides of Cistanche tubulosa in diet/streptozotocin-induced diabetic rats. J Ethnopharmacol. 2021;276:113991. doi: 10.1016/j.jep.2021.113991.

Cui F, Shi K, Zhang L, Tao A, Kawashima Y. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Control Release. 2006;114(2):242-250. doi: 10.1016/j.jconrel.2006.05.013.

Akbarzadeh A, Norouzian D, Mehrabi MR, Jamshidi Sh, Farhangi A, Verdi AA, et al. Induction of diabetes by Streptozotocin in rats. Indian J Clin Biochem. 2007;22(2):60-64. doi: 10.1007/BF02913315.

Malathi S, Nandhakumar P, Pandiyan V, Webster TJ, Balasubramanian S. Novel PLGA-based nanoparticles for the oral delivery of insulin. Int J Nanomedicine. 2015;10:2207-2218. doi: 10.2147/IJN.S67947.

Yang J, Sun H, Song C. Preparation, characterization and in vivo evaluation of pH-sensitive oral insulin-loaded poly(lactic-co-glycolicacid) nanoparticles. Diabetes Obes Metab. 2012;14(4):358-364. doi: 10.1111/j.1463-1326.2011.01546.x.

McNeil-Watson F, Tscharnuter W and Miller J. A new instrument for the measurement of very small electrophoretic mobilities using phase analysis light scattering (PALS). Colloid Surf A Physicochem Eng Asp. 1998;140:53-57. doi: 10.1016/S0927-7757(97)00267-7.

Sonaje K, Lin YH, Juang JH, Wey SP, Chen CT, Sung HW. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials. 2009;30(12):2329-2339. doi: 10.1016/j.biomaterials.2008.12.066.

Zhang X, Sun M, Zheng A, Cao D, Bi Y, Sun J. Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration. Eur J Pharm Sci. 2012;45(5):632-638. doi :10.1016/j.ejps.2012.01.002.

Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-191. doi: 10.3758/bf03193146.

Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4(4):303-306. doi: 10.4103/0976-500X.119726.

Festing MF. Design and statistical methods in studies using animal models of development. ILAR J. 2006;47(1):5-14. doi: 10.1093/ilar.47.1.5.

Underwood W and Anthony R. AVMA guidelines for the euthanasia of animals: 2020 edition. Retrieved on March 2020; 2013:2020-2021.

Pierozan P, Jernerén F, Ransome Y, Karlsson O. The Choice of Euthanasia Method Affects Metabolic Serum Biomarkers. Basic Clin Pharmacol Toxicol. 2017;121(2):113-118. doi: 10.1111/bcpt.12774.

Santander-Ortega MJ, Bastos-González D, Ortega-Vinuesa JL, Alonso MJ. Insulin-loaded PLGA nanoparticles for oral administration: an in vitro physico-chemical characterization. J Biomed Nanotechnol. 2009;5(1):45-53. doi: 10.1166/jbn.2009.022.

Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res. 1996;13(12):1838-1845. doi: 10.1023/a:1016085108889.

van de Weert M, Hoechstetter J, Hennink WE, Crommelin DJ. The effect of a water/organic solvent interface on the structural stability of lysozyme. J Control Release. 2000;68(3):351-359. doi: 10.1016/s0168-3659(00)00277-7.

Morishita M, Morishita I, Takayama K, Machida Y, Nagai T. Novel oral microspheres of insulin with protease inhibitor protecting from enzymatic degradation. Int J Pharm. 1992;78:1-7. doi: 10.1016/0378-5173(92)90348-6.

Tobío M, Sánchez A, Vila A, Soriano I I, Evora C, Vila-Jato JL, et al. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf B Biointerfaces. 2000 Oct 1;18(3-4):315-323. doi: 10.1016/s0927-7765(99)00157-5.

Cui FD, Tao AJ, Cun DM, Zhang LQ, Shi K. Preparation of insulin loaded PLGA-Hp55 nanoparticles for oral delivery. J Pharm Sci. 2007;96(2):421-427. doi: 10.1002/jps.20750.

Pan Y, Li YJ, Gao P, Ding PT, Xu H, Zheng JM. Yao Xue Xue Bao. 2003;38(6):467-470.

Sun S, Liang N, Kawashima Y, Xia D, Cui F. Hydrophobic ion pairing of an insulin-sodium deoxycholate complex for oral delivery of insulin. Int J Nanomed. 2011;6:3049-3056. doi: 10.2147/IJN.S26450.

Wu ZM, Zhou L, Guo XD, Jiang W, Ling L, Qian Y, et al. HP55-coated capsule containing PLGA/RS nanoparticles for oral delivery of insulin. Int J Pharm. 2012;425(1-2):1-8. doi: 10.1016/j.ijpharm.2011.12.055.

Kumar PS, Ramakrishna S, Saini TR, Diwan PV. Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles. Pharmazie. 2006;61(7):613-617. PMID: 16889069.

Asad M, Aslam M, Munir TA, Nadeem A. Effect of Acacia nilotica leaves extract on hyperglycaemia, lipid profile and platelet aggregation in streptozotocin induced diabetic rats. J Ayub Med Coll Abbottabad. 2011;23(2):3-7. PMID: 24800330.

Mwafy S, Yassin M. Physiological changes associated with streptozotocin induced experimental diabetic rats. ICBAS. 2010;12:31-35.

Ghazanfar K, Ganai BA, Akbar S, et al. Antidiabetic activity of Artemisia amygdalina Decne in streptozotocin induced diabetic rats. Biomed Res Int. 2014;2014:185676. doi: 10.1155/2014/185676.

Adaramoye OA. Antidiabetic effect of kolaviron, a biflavonoid complex isolated from Garcinia kola seeds, in Wistar rats. Afr Health Sci. 2012;12(4):498-506. doi: 10.4314/ahs.v12i4.16.

Downloads

Published

2023-11-29

How to Cite

Abd-Alhussain, G. K., Alatrakji, M. Q., & Ahmed, S. J. (2023). Hypoglycemic Effect of Orally Delivered Insulin Nanoparticles Compared to Subcutaneous Recombinant Human Soluble Insulin in Hyperglycemic Male Rats. Al-Rafidain Journal of Medical Sciences ( ISSN 2789-3219 ), 5(1S), S164–171. https://doi.org/10.54133/ajms.v5i1S.360

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.