메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터

주제분류

정기구독(개인)

소속 기관이 없으신 경우, 개인 정기구독을 하시면 저렴하게
논문을 무제한 열람 이용할 수 있어요.

회원혜택

로그인 회원이 가져갈 수 있는 혜택들을 확인하고 이용하세요.

아카루트

학술연구/단체지원/교육 등 연구자 활동을 지속하도록 DBpia가 지원하고 있어요.

영문교정

영문 논문 작성에 도움을 드리기 위해, 영문 교정 서비스를
지원하고 있어요.

고객센터 제휴문의

...

저널정보

저자정보

표지
이용수
내서재
0
내서재에 추가
되었습니다.
내서재에서
삭제되었습니다.

내서재에 추가
되었습니다.
내서재에서
삭제되었습니다.

이 논문의 연구 히스토리 (2)

초록·키워드

오류제보하기
The Fourth Industrial Revolution, the introduction of ICT technology, expanded throughout society, increases daily convenience and industrial productivity. But along with the advancing technology, new malicious program threats have also continued to surge. This study proposes a malware detection method using static analysis and stacking techniques to detect new malware as fast and accurately. And we used PE header features, which are extracted through static analysis to process malware without executing it actually. The pe_packer feature was the most efficient in the experiment due to processing the extracted data in various ways and applying it to the machine learning model. So we selected as the feature data to be used to the stacking model. The detection model is implemented based on the stacking technique rather than a single model to detect with high accuracy. The proposed system can classify malware or normal files with fast and accurately. And It has a 94.7 percent detection rate and is better than the existing single model-based detection system.

목차

Abstract
1. 서론
2. Related Work
3. Proposed Model
4. Experiments Result
5. Conclusion
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-560-001154337