Electrical installations running through masonry walls: developing waste generation indicators for environmental performance analysis

Authors

DOI:

https://doi.org/10.5327/Z217694781240

Keywords:

Construction and demolition waste, waste generation index, Sustainable construction

Abstract

Waste generation is one of the most relevant environmental aspects of the construction industry. About 47 million tons of construction and demolition waste are collected annually by Brazilian municipalities. One of the activities that generates waste is cutting chases on walls for installations. However, there are no waste generation indicators for this activity. Understanding waste generation processes enables managers to prevent them and promote their proper environmental management. This study assessed the generation of waste resulting from the cutting of clay bricks for electrical installations using three tools: milling cutter, marble saw, and cold chisel. The study included data collected from residential construction works and experimental data collected from the construction of real-scale walls. In a laboratory, five different wall configurations were built and the three tools mentioned were used to cut a chase on the walls. The results were statistically analyzed to define a waste generation index (WGI) by linear regression. The type of tool employed had no influence on the waste generation index, which was 26.5 ± 2.6 kg/m2. However, the tools used directly influenced the quality of the service, productivity, and the volume of waste generated. The waste from the milling cutter showed the smallest maximum aggregate size and the largest bulk density, followed by the waste resulting from the marble saw and the cold chisel. The marble saw and cold chisel waste samples had around 78% of their composition in the coarse aggregate grain size range. The milling cutter waste samples were the finest and had on average 60% of their composition in the fine aggregate grain size range. The width of the chases made with the milling cutter were smaller and more consistent than those made with the cold chisel,  which showed irregularities and larger dimensions than necessary. From the waste generation indicators obtained in this study, construction managers will be able to choose more appropriate cutting tools and improve their planning and management systems to minimize associated environmental impacts.

Downloads

Download data is not yet available.

References

Abdelhamid, M. S., 2014. Assessment of different construction and demolition waste management approaches. HBRC Journal, v. 10, (3), 317-326. https://doi.org/10.1016/j.hbrcj.2014.01.003.

Adjei, S. D., 2016. Review of waste management in the UK construction industry. Thesis (Doctoring in Engineering and Science) – University of Wolverhampton, United Kingdom.

Ajayi, S. O., Oyedele, L. O., Bilal, M., Akinade, O. O., Alaka, H. A., Owolabi, H. A., Kadiri, K. O., 2015. Waste effectiveness of the construction industry: Understanding the impediments and requisites for improvements. Resources, Conservation and Recycling, v. 102, 101-112. https://doi.org/10.1016/j.resconrec.2015.06.001.

Akinade, O. O.; Oyedele, L. O.; Ajayi, S. O.; Bilal, M.; Alaka, H. A.; Owolabi, H. A.; Arawomo, O. O., 2018. Designing out construction waste using BIM technology: Stakeholders' expectations for industry deployment. Journal of Cleaner Production, v. 180, 375-385. https://doi.org/10.1016/j.jclepro.2018.01.022.

Associação Brasileira de Normas Técnicas (ABNT), 1982. NBR 7251: Agregado em estado solto-determinação da massa unitária. ABNT, Rio de Janeiro.

Associação Brasileira de Normas Técnicas (ABNT), 1987. NBR 7217: Agregados: determinação da composição granulométrica. ABNT, Rio de Janeiro.

Associação Brasileira para a Reciclagem dos Resíduos de Construção e Demolição (ABRECON), 2020. Relatório Pesquisa Setorial 2020. ABRECON, São Paulo (Accessed April 5, 2022) at:. https://abrecon.org.br/pesquisa_setorial/.

Bakshan, A.; Srour, I.; Chehab, G.; El-Fadel, M., 2015. A field-based methodology for estimating waste generation rates at various stages of construction projects. Resources, Conservation and Recycling, v. 100, 70-80. https://doi.org/10.1016/j.resconrec.2015.04.002.

Behera, M.; Bhattacharyya, S. K.; Minocha, A. K., Deoliya, R.; Maiti, S., 2014. Recycled aggregate from C&D waste & its use in concrete–A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, v. 68, 501-516. https://doi.org/10.1016/j.conbuildmat.2014.07.003.

Biju, B.; Nagalli, A.; Moura, E., 2021. Uso do SIG auxiliado pela análise multicritério de tomada de decisão na indicação de possíveis áreas aptas para a disposição em solo de resíduos de construção civil. Revista Brasileira De Ciências Ambientais (Online), v. 56, (3), 470-479. https://doi.org/10.5327/Z21769478947.

Bossink, B. A. G.; Brouwers, H. J. H., 1996. Construction waste: quantification and source evaluation. Journal of Construction Engineering and Management, 122, (1), p. 55-60. https://doi.org/10.1061/(ASCE)0733-9364(1996)122:1(55).

Brito, J.; Pereira, A. S.; Correia, J. R., 2005. Mechanical behavior of non-structural concrete made with recycled ceramic aggregates. Cement and Concrete Composites, 27, (4), p. 429-433. https://doi.org/10.1016/j.cemconcomp.2004.07.005.

Cochran, K. M.; Townsend, T. G., 2010. Estimating construction and demolition debris generation using a materials flow analysis approach. Waste Management, 30, (11), p. 2247-2254. https://doi.org/10.1016/j.wasman.2010.04.008.

Corinaldesi, V.; Moriconi, G., 2009. Behaviour of cementitious mortars containing different kinds of recycled aggregate. Construction and Building Materials, 23, (1), p. 289-294. https://doi.org/10.1016/j.conbuildmat.2007.12.006.

Duarte, A.; Bezerra, S.; Gonçalves, E. 2021. Indicador de salubridade ambiental para avaliação de bairros em áreas urbanas: um estudo de caso em Caruaru (PE), Brasil. Revista Brasileira de Ciências Ambientais (Online), v. 56, (1), 166-179. https://doi.org/10.5327/Z21769478750.

Evangelista, A. C. J.; Tam, V. W. Y.; Santos, J., 2018. Recycled ceramic fine aggregate for masonry mortar production. Proceedings of the 21st International Symposium on Advancement of Construction Management and Real Estate. Springer, pp. 1141-1148.

Fatta, D.; Papadopoulos, A.; Avramikos, E.; Sgourou, E.; Moustakas, K.; Kourmoussis, F.; Loizidou, M., 2003. Generation and management of construction and demolition waste in Greece: an existing challenge. Resources, Conservation and Recycling, 40, (1), p. 81-91. https://doi.org/10.1016/S0921-3449(03)00035-1.

Ferreira, J. C.; Patino, C. M., 2015. O que realmente significa o valor-p? Jornal Brasileiro de Pneumologia, 41, (5), p. 485-485. https://doi.org/10.1590/S1806-37132015000000215.

Formoso, C. T.; Soibelman, L.; Cesare, C.; Isatto, E. L., 2002. Material waste in building industry: main causes and prevention. Journal of Construction Engineering and Management, 128, (4), p. 316-325. https://doi.org/10.1061/(ASCE)0733-9364(2002)128:4(316).

Fraga, M. F., 2006. Panorama da geração de resíduos da construção civil em Belo Horizonte: medidas de minimização com base em projeto e planejamento de obras. Dissertation (Mastering in Civil Engineering), Programa de Pós-Graduação em Saneamento, Meio Ambiente e Recursos Hídricos, Universidade Federal de Minas Gerais, Belo Horizonte.

Frotté, C.; Di Nubila, C. S. A.; Nagalli, A.; Mazer, W.; Macioski, G.; Oliveira, L. O. S., 2017. Estudo das propriedades físicas e mecânicas de concreto com substituição parcial de agregado natural por agregado reciclado proveniente de RCD. Matéria, v. 22, (2), e11811. https://doi.org/10.1590/S1517-707620170002.0143

Galán, B.; Viguri, J. R.; Cifrian, E.; Dosal, E.; Andres, A., 2019. Influence of input streams on the construction and demolition waste (CDW) recycling performance of basic and advanced treatment plants. Journal of Cleaner Production, v. 236, 117523. https://doi.org/10.1016/j.jclepro.2019.06.354.

Gayarre, F. L.; Boadella, Í. L.; Pérez, C. L. C.; López, M. S.; Cabo, A. D., 2017. Influence of the ceramic recycled aggregates in the masonry mortars properties. Construction and Building Materials, v. 132, 457-461. https://doi.org/10.1016/j.conbuildmat.2016.12.021.

Ghisellini, P.; Ripa, M.; Ulgiati, S., 2018. Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review. Journal of Cleaner Production, v. 178, 618-643. https://doi.org/10.1016/j.jclepro.2017.11.207.

Jalali, S., 2007. Quantification of construction waste amount. 6ª Jornadas Técnicas Internacionais de Resíduos, Viseu, Portugal.

Juan-Valdés, A; Rodríguez-Robles, D.; García-González, J.; Guerra-Romero, M. I.; Morán-Del Pozo, J. M., 2018. Mechanical and microstructural characterization of non-structural precast concrete made with recycled mixed ceramic aggregates from construction and demolition wastes. Journal of Cleaner Production, v. 180, 482-493. https://doi.org/10.1016/j.jclepro.2018.01.191.

Khalaf, F. M.; Devenny, A. S., 2004. Recycling of demolished masonry rubble as coarse aggregate in concrete. Journal of Materials in Civil Engineering, v. 16, (4), 331-340. https://doi.org/10.1016/(ASCE)0899-1561(2004)16:4(331).

Li, J.; Ding, Z.; Mi, X.; Wang, J., 2013. A model for estimating construction waste generation index for building project in China. Resources, Conservation and Recycling, v. 74, 20-26. https://doi.org/10.1016/j.resconrec.2013.02.015.

Liu, Q.; Xiao, J.; Sun, Z., 2011. Experimental study on the failure mechanism of recycled concrete. Cement and Concrete Research, v. 41, (10), 1050-1057. https://doi.org/10.1016/j.cemconres.2011.06.007.

Lovato, P. S.; Possan, E.; Dal Molin, D. C. C.; Masuero, Â. B.; Ribeiro, J. L. D., 2012. Modeling of mechanical properties and durability of recycled aggregate concrete. Construction and Building Materials, v. 26, (1), 437-447. https://doi.org/10.1016/j.conbuildmat.2011.06.043.

Lu, W.; Yuan, H.; Li, J.; Hao, J. J.; Mi, X.; Ding, Z., 2011. An empirical investigation of construction and demolition waste generation rates in Shenzhen city, South China. Waste Management, v. 31, (4), 680-687. https://doi.org/10.1016/j.wasman.2010.12.004.

Mália, M.; Brito, J.; Pinheiro, M. D.; Bravo, M., 2013. Construction and demolition waste indicators. Waste Management & Research, v. 31, (3), 241-255. https://doi.org/10.1177%2F0734242X12471707.

Martínez, P. S.; Cortina, M. G.; Martínez, F. F., 2016. Comparative study of three types of fine recycled aggregates from construction and demolition waste (CDW), and their use in masonry mortar fabrication. Journal of Cleaner Production, v. 118, 162-169. https://doi.org/10.1016/j.jclepro.2016.01.059.

Miranda, L. F. R.; Angulo, S. C.; Careli, E. D., 2009. A reciclagem de resíduos de construção e demolição no Brasil: 1986-2008. Ambiente Construído, v. 9, (1), 57-71.

Mundstock, E.; Fachel, J. M. G.; Camey, S. A.; Agranonik, M., 2006. Introdução à Análise Estatística utilizando o SPSS 13.0. Cadernos de Matemática e Estatística Série B. Universidade Federal do Rio Grande do Sul, Porto Alegre.

Nagalli, A.; Carvalho, K. Q., 2018. Model for estimating construction waste generation in masonry building. Proceedings of the Institution of Civil Engineers – Waste and Resource Management, v. 172, (1), 28-36. https://doi.org/10.1680/jwarm.18.00016.

Poon, C. S.; Ann, T.W.; Ng, L. H., 2001. On-site sorting of construction and demolition waste in Hong Kong. Resources, Conservation and Recycling, v. 32, (2), 157-172. https://doi.org/10.1016/S0921-3449(01)00052-0.

Scalone, P.; Souza, S.; Figueiredo, E., 2016. Gerenciamento de resíduos de construção civil: estudo de caso em empreendimentos comercial e residencial em Londrina (PR). Revista Brasileira de Ciências Ambientais (Online), (40), 95-106. https://doi.org/10.5327/Z2176-947820168014.

Seo, S.; Hwang, Y., 1999. An estimation of construction and demolition debris in Seoul, Korea: waste amount, type, and estimating model. Journal of the Air & Waste Management Association, v. 49, (8), 980-985. https://doi.org/10.1080/10473289.1999.10463863.

Shahidan, S.; Azmi, M. A. M.; Kupusamy, K.; Zuki, S. S. M.; Ali, N., 2017. Utilizing Construction and Demolition (C&D) Waste as Recycled Aggregates (RA) in concrete. Procedia Engineering, v. 174, 1028-1035. https://doi.org/10.1016/j.proeng.2017.01.255.

Shi, J.; Xu, Y., 2006. Estimation and forecasting of concrete debris amount in China. Resources, Conservation and Recycling, v. 49, (2), 147-158. https://doi.org/10.1016/j.resconrec.2006.03.011.

Skoyles, E. R., 1976. Materials wastage: a misuse of resources. Building Research and Practice, v. 4, (4), p. 232-243. https://doi.org/10.1080/09613217608550498.

Tanaka, G. M.; Costa, M. R. M. M.; Silva, N. G.; Dyminski, A. S., 2010. Efeitos do tipo de areia de resíduo de construção e demolição (RCD) nas propriedades de argamassa de cimento e areia. Encontro Nacional de Tecnologia do Ambiente Construído, 13.

Tavira, J.; Jiménez, J. R.; Ayuso, J.; López-Uceda, A.; Ledesma, E. F., 2018. Recycling screening waste and recycled mixed aggregates from construction and demolition waste in paved bike lanes. Journal of Cleaner Production, v. 190, 211-220. https://doi.org/10.1016/j.jclepro.2018.04.128.

Wu, Z.; Yu, A. T. W.; Shen, L.; Liu, G., 2014. Quantifying construction and demolition waste: an analytical review. Waste Management, v. 34, (9), 1683-1692. https://doi.org/10.1016/j.wasman.2014.05.010.

Yost, P. A.; Halstead, J. M., 1996. A methodology for quantifying the volume of construction waste. Waste Management & Research, v. 14, (5), 453-461. https://doi.org/10.1006/wmre.1996.0044.

Downloads

Published

2022-06-20

How to Cite

Steffen, L. O., de Oliveira, C. J., Schamne, A. N., & Nagalli, A. (2022). Electrical installations running through masonry walls: developing waste generation indicators for environmental performance analysis. Revista Brasileira De Ciências Ambientais (RBCIAMB), 57(2), 268–278. https://doi.org/10.5327/Z217694781240

Similar Articles

You may also start an advanced similarity search for this article.