Contributions of the periphyton to the growth of Nile tilapia (Oreochromis niloticus) fingerlings on different fixation substrates: an ecological approach

Authors

DOI:

https://doi.org/10.5327/Z2176-94781253

Keywords:

periphytic algae; ecologic aquaculture; commercial fish feeding

Abstract

Knowing about the ecological aspects involved in the commercial breeding of aquatic organisms becomes an important tool to make aquaculture more productive and less impactful. Thus, periphyton taxon composition and biomass on different substrates and the influence of these on water quality and growth parameters of Nile tilapia fingerlings were examined. An experiment with three treatments (substrates for growth of periphyton: geomembrane, polyethylene terephthalate (PET), and bamboo) and a control (without substrate), each with five replicates, was conducted in a greenhouse with controlled aeration and temperature. Each mesocosm was populated with ten tilapia fingerlings with an average weight of 2.3 g for 30 days. Water quality parameters were not significantly different among treatments but remained within that established by the environmental legislation. In all treatments, 36 periphyton taxa were observed. The bamboo substrate was the most diverse, which could be attributed to the fact it was a natural substrate. Regarding fish growth, there was a significant difference among the treatments, with the PET treatment having a higher condition factor (kn). The bamboo substrate was good for colonization concerning alga diversity; however, fish in the PET treatment and control exhibited higher performance and algae consumption values, respectively.

Downloads

Download data is not yet available.

References

Abimorad, E.G.; Garcia, F.; Romera, D.M.; Sousa, N.S.; Paiva-Ramos, I.; Onaka, E.M.; Campos, W.J.; David, L.H.C.; Tucci, A., 2013. Valor nutricional de perifíton em substrato de bambu na criação de tilápia em tanque-rede. Boletim do Instituto de Pesca, v. 37, (1), 31-38.

Anderson, M., 2005. Permutational multivariate analysis of variance: a computer program. Department of Statistics, University of Auckland, Auckland, New Zealand.

Andrion, B.C., 2014. Substratos artificiais melhoram a qualidade da água em sistema de cultivo multitróficos e multiespaciais? Master Dissertation, Centro de Aquicultura de Jaboticabal, Universidade Estadual Paulista “Júlio de Mesquita Filho”, São Paulo.

Araújo, C.C.; Flynn, M.N.; Pereira, W.R.L., 2011. Fator de condição e relação peso comprimento de Mugil curema valenciennes, 1836 (Pisces, mugilidae) como indicadores de estresse Ambiental. RevInter, v. 4, 51-64.

Azim, M.E.; Wahab, M.A.; Biswas, P.K.; Asaeda, T.; Fujino, T.; Verdegem, M.C.J., 2004. The effect of periphyton substrate density on production in freshwater polyculture ponds. Aquaculture, v. 232, (1-4), 441-453. https://doi.org/10.1016/j.aquaculture.2003.08.010.

Azim, M.E.; Wahab, M.A.; Van Dam, A.A.; Beveridge, M.C.M.; Huisman, E.A.; Verdegem, M.C.J., 2001. Optimization of stocking ratios of two Indian major carps, rohu (Labeo rohita Ham.) and catla (Catla catla Ham.) in a periphyton- based aquaculture system. Aquaculture, v. 203, (1-2), 33-49. https://doi.org/10.1016/S0044-8486(01)00602-0.

Barlaya, G.; Umalatha, H.; Hegde, G.; Ananda Kumar, B.S.; Raghavendra, C.H., 2021. Growth performance, carcass composition, and digestive enzyme activity of Labeo fimbriatus in tanks provided with feed and periphyton substrate in two orientations. Journal of Applied Aquaculture, 1-12. https://doi.org/10.1080/10454438.2021.1957054.

Bergey, E., 2005. How protective are refuges? Quantifying algal protection in rock crevices. Freshwater Biology, v. 50, (7), 1163-1177. https://doi.org/10.1111/j.1365-2427.2005.01393.x.

Bicudo, C.E.M.; Menezes, M., 2006. Gêneros de algas continentais do Brasil: chave para identificação e descrições. 2ª ed. Rima, 502 p.

Biswas, B.; Das, S.K.; Mondal, I.; Mandal, A., 2018. Composite fish farming in West Bengal, India: redesigning management practices during the course of last five decades, International Journal of Aquaculture, v. 8, (12), 90-97. http://doi.org/10.5376/ija.2018.08.0012.

Biswas, G.; Sundaray, J.K.; Bhattacharyya, S.B.; Shyne Anand, P.S.; Ghoshal, T.K.; Kailasam, M., 2017. Influence of feeding, periphyton and compost application on the performances of striped grey mullet (Mugil cephalus L.) fingerlings in fertilized brackishwater ponds. Aquaculture, v. 481, 64-71. http://doi.org/10.1016/j.aquaculture.2017.08.026.

Bolger, T.; Connolly, P.L., 1989. The selection of suitable indices for the measurement and analysis of fish condition. Journal Fish of Biology, 34, (2), 171-182. https://doi.org/10.1111/j.1095-8649.1989.tb03300.x.

Bowen, S.H., 1992. Quantitative description of the diet. In: Nielsen, L.A.; Johnson D.L. (Eds.), Fisheries techniques. American Fisheries Society, Bethesda, pp. 325-336.

Boyd, C.E., 2015. Overview of aquaculture feeds. Feed and Feeding Practices in Aquaculture, 3-25. https://doi.org/10.1016/b978-0-08-100506-4.00001-5.

Brasil. Conselho Nacional do Meio Ambiente (Conama), 2005. Resolução Conama nº 357, de 17 de março de 2005. Diário Oficial da União.

Capolupo, M.; Sørensen, L.; Jayasena, K.D.R.; Booth, A.M.; Fabbri, E., 2020. Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Research, v. 169, 115270. https://doi.org/10.1016/j.watres.2019.115270.

Carballo, E.; Van Eer, A.; Van Schie, T.; Hilbrands, A., 2008. Agrodok Agromisa. CTA, 96 pp.

Cavalcanti, L.D.; Gouveia, E.J.; Carrijo-Mauad, J.R.; Russo, M.R., 2021. Effect of poultry litter as an organic fertilizer on water quality, parasitic abundance, and growth of Nile tilapia. Boletim do Instituto de Pesca, v. 47, e622. https://doi.org/10.20950/1678-2305/bip.2021.47.e622.

Conselho Nacional de Controle de Experimentação Animal, 2018. Diretriz Brasileira para o cuidado e a utilização de animais para fins científicos e didáticos. Conselho Nacional de Controle de Experimentação Animal, Brasília.

Felisberto, S.A.; Rodrigues, L., 2012. Successional dynamic of the periphytic algal community in ecossistem lotic subtropical. Rodriguésia (online), v. 63, (2), 463-473. https://doi.org/10.1590/S2175-78602012000200018.

Food and Agriculture Organization of the United Nations (FAO). The State of World Fisheries and Aquaculture, 2020. Sustainability in action. Food and Agriculture Organization of the United Nations, Rome.

Garcia, F.; Sabbag, O.J.; Kimpara, J.M.; Romera, D.M.; Sousa, N.S.; Onaka, E.M.; Ramos, I.P., 2017. Periphyton-based cage culture of Nile tilapia: An interesting model for small-scale farming. Aquaculture, v. 479, 838-844. https://doi.org/10.1016/j.aquaculture.2017.07.024.

Gomiero, L.M.; Villares Junior, G.A.; Braga, F.M.S., 2010. Length-weight relationship and condition factor for Oligosarcus hepsetus (Cuvier, 1829) in Serra do Mar State Park - Santa Virgínia Unit, Atlantic Forest, São Paulo, Brazil, Biota Neotropica, v. 10, (1), 101-105. https://doi.org/10.1590/S1676-06032010000100009.

Gouveia, E.J.; Cavalcanti, L.D.; Russo, M.R., 2020. Echinorhynchus gomesi Machado Filho, 1948 infecting the Patinga hybrid (♀ Piaractus mesopotamicus x ♂ Piaractus brachypomus) in fish farms in Mato Grosso do Sul, Brazil. Aquaculture Research, v. 51, (12), 5118-5124. https://doi.org/10.1111/are.14850.

Hahn, N.S.; Delariva, L., 2003. Métodos para avaliação da alimentação natural de peixes: o que estamos usando? Interciência, v. 28, (2), 100-104.

Heindler, F.M.; Alajmi, F.; Huerlimann, R.; Zeng, C.; Newman, S.J.; Vamvounis, G.; Van Herwerden, L., 2017. Toxic effects of polyethylene terephthalate microparticles and Di(2-ethylhexyl)phthalate on the calanoid copepod, Parvocalanus crassirostris. Ecotoxicology and Environmental Safety, 141, 298-305. https://doi.org/10.1016/j.ecoenv.2017.03.029.

Huchette, S.M.H.; Beveridge, M.C.M.; Baird, D.J.; Ireland, M., 2000. The impacts of grazing by tilapias Oreochromis niloticus L. on periphyton communities growing on / artificial substrate in cages. Aquaculture, v. 186, (1-2), 45-60. https://doi.org/10.1016/S0044-8486(99)00365-8.

Inoue, L.A.K.A.; Bezerra, A.C.; Miranda, W.S.; Muniz, A.W.; Boijink, C.L., 2014. Cultivo de tambaqui em gaiolas de baixo volume: efeito da densidade de estocagem na produção de biomassa. Ciência Animal Brasileira, v. 15, (4), 437-443. https://doi.org/10.1590/1089-6891v15i426758.

Inyang, A.I.; Sunday, K.E.; Nwankwo, D.I., 2018. Composition of periphyton community on water hyacinth (Eichhornia crassipes): In analysis of environmental characteristics at Ejirin part of Epelagoon in southwestern Nigeria. Journal of Marine Biology, v. 2015, 376986. https://doi.org/10.1155/2015/376986.

Keshavanath, P.; Gangadhar, B.; Ramesh, T.J.; Van Dam, A.A.; Beveridge, M.C.M.; Verdegem, M.C.J., 2004. Effects of bamboo substrate and supplemental feeding on growth and production of hybrid red tilapia fingerlings (Oreochromis mossambicus x Oreochromis niloticus). Aquaculture, v. 235, (1-4), 303-314. https://doi.org/10.1016/j.aquaculture.2003.12.017.

Keshavanath, P.; Gangadhar, B.; Ramesh, T.J.; Van Rooij, J.M.; Beveridge, M.C.M.; Baird, D.J.; Verdegem, M.C.J.; Van Dam, A.A., 2001. Use of artificial substrates to enhance production of freshwater herbivorous fish in pond culture. Aquaculture Research, v. 32, (3), 189-197. https://doi.org/10.1046/j.1365-2109.2001.00544.x.

Le Cren, E.D., 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). Journal of Animal Ecology, v. 20, (2), 201-219. https://doi.org/10.2307/1540.

Loures, B.T.R; Ribeiro, R.P.; Vargas, L.; Moreira, H.L.M.; Sussel, F.R., Povh, J.A.; Cavichiolo, F., 2001. Manejo alimentar de alevinos de tilápia do Nilo, Oreochromis niloticus (L.), associado às variáveis físicas, químicas e biológicas do ambiente. Acta Scientiarum Maringá, v. 23, 877-883. https://doi.org/10.4025/actascianimsci.v23i0.2640.

Miloloža, M.; Kucic Grgic, D.; Bolanca, T.; Ukic, Š.; Cvetnic, M.; Ocelic Bulatovic, V.; Dionysiou, D.D.; Kušic, H., 2021. Ecotoxicological assessment of microplastics in freshwater sources—a review. Water, v. 13, (1), 56. https://doi.org/10.3390/w13010056.

Milstein, A.; Peretz, Y.; Harpaz, H., 2008. Culture of organic tilapia to market size in periphyton‐based ponds with reduced feed inputs. Aquaculture Research, v. 40, (1), 55-59. https://doi.org/10.1111/j.1365-2109.2008.02062.x.

Murdock, J.N.; Dodds, W.K., 2007. Linking benthic algal biomass to stream substratum topography. Journal of Phycology, v. 43, (3), 449-460. https://doi.org/10.1111/j.1529-8817.2007.00357.x.

Neal, E.C.; Patten, B.C.; DePoe, C.E., 1967. Periphyton growth on artificial substrates in a radioactively contaminated lake. Ecology, v. 48, (6), 918-924. https://doi.org/10.2307/1934534

Osório, N.; Cunha, E.R.; Tramonte, R.P.; Mormul, R.P.; Rodrigues, L., 2019. Habitat complexity drives the turnover and nestedness patterns in a periphytic algae community. Limnology, v. 20, 297-307. https://doi.org/10.1007/s10201-019-00578-y.

Pérez, G.R., 1992. Fundamentos de limnologia neotropical. Editora da Universidade Antioquia, Medellin, 529 pp.

Putro, S.P.; Sharani, J.; Widowati, A.; Suryono, S., 2020. Biomonitoring of the Application of Monoculture and Integrated Multi-Trophic Aquaculture (IMTA) using macrobenthic structures at Tembelas Island, Kepulauan Riau Province, Indonesia. Journal of Marine Science and Engineering, v. 8, (11), 942. https://doi.org/10.3390/jmse8110942.

Ramos, I.P.; Brandão, H.; Zanatta, A.S.; Zica, É.O.P.; Silva, R.J.; Rezende-Ayroza, D.M.; Carvalho, E.D., 2013. Interference of cage fish farm on diet, condition factor and numeric abundance on wild fish in a Neotropical reservoir. Aquaculture, v. 414-415, 56-62. https://doi.org/10.1016/j.aquaculture.2013.07.013.

R Core Team, (2003). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rivera Vasconcelos, F.; Menezes, R.F.; Attayde, L., 2018. Effects of the Nile tilapia (Oreochromis niloticus L.) on the plankton community of a tropical reservoir during and after an algal bloom. Hydrobiologia, v. 817, 393-401. https://doi.org/10.1007/s10750-018-3591-2.

Russo, M.R.; Leal, F.C.; Mendes, S.G.F; Souza, E.C.V., 2021. A aquicultura sustentável como alternativa de geração de renda. In: Mauad, J.C.; Mussuri, R.M. (Eds.), Centro de desenvolvimento rural do Itamarati: relatos e vivências. Seriema, Dourados, pp. 221-234.

Salazar-Torres, G.; Silva, L.H.S.; Rangel, L.M.; Attayde, J.L.; Huszar, V.L.M., 2016. Cyanobacteria are controlled by omnivorous filter-feeding fish (Nile tilapia) in a tropical eutrophic reservoir. Hydrobiologia, v. 765, 115-129. https://doi.org/10.1007/s10750-015-2406-y.

Sarkar, U.K.; Khan, G.E.; Dabas, A.; Pathak, A.K.; Mir, J.I.; Rebello, S.C.; Singh, S.P., 2013. Length weight relationship and condition factor of selected freshwater fish species found in River Ganga, Gomti and Rapti, India. Journal of Environmental Biology, v. 34, (5), 951-956.

Sipaúba-Tavares, L.H., 1993. Análise da seletividade alimentar em larvas de tambaqui (Colossoma macropomum) e tambacu (híbrido, pacu Piaractus mesopotamicus e tambaqui Colossoma macropomum) sobre os organismos zooplanctônicos. Acta Limnologica Brasiliensia, v. 6, (1), 114-132.

Siqueira, N.S.; Rodrigues, L., 2009. Biomassa perifítica em tanques-rede de criação de tilápia do Nilo Oreochromis niloticus (Linneau, 1758). Boletim do Instituto de Pesca, v. 35, (2), 181-190.

Tedeschi, A.C.; Chow-Fraser, P., 2021. Periphytic algal biomass as a bioindicator of phosphorus concentrations in agricultural headwater streams of southern Ontario. Journal of Great Lakes Research, v. 47, (6), 1702-1709. https://doi.org/10.1016/j.jglr.2021.08.018.

Tortolero, S.A.R.; Cavero, B.A.S.; Brito, J.G.; Soares, C.C.; Silva Junior, J.L.; Barbosa, H.T.B.; Gangadhar, B.; Keshavanath, P., 2015. Periphyton-based polyculture of jaraqui, Semaprochilodus insignis (Schomburgk, 1841) and tambaqui, Colossoma macropomum (Cuvier, 1816) with feed supplementation. Journal of Aquaculture in the Tropics, v. 30, (3-4), 111-132.

Uddin, M.S.; Azim, M.E.; Wahab, M.A.; Verdegem, M.C.J., 2009. Effects of substrate addition and supplemental feeding on plankton composition and production in tilapia (Oreochromis niloticus) and freshwater prawn (Macrobrachium rosenbergii) polyculture. Aquaculture, v. 297, (1-4), 99-105. https://doi.org/10.1016/j.aquaculture.2009.09.016.

Uys, W.; Hecht, T., 1985. Evaluation and preparation of an optimal dry feed for the primary nursing of Clarias garipineus larvae (Pisces: Clariidae). Aquaculture, v. 47, (2-3), 173-183. https://doi.org/10.1016/0044-8486(85)90063-8.

Van Dam, A.A.; Beveridge, M.C.M.; Azim, M.E.; Verdegem, M.C.J., 2002. The potential of fish production based on periphyton. Reviews in Fish Biology and Fisheries, v. 12, 1-31. https://doi.org/10.1023/A:1022639805031.

Vazzoler, A.E.A.M., 1996. Biologia da reprodução de peixes teleósteos: teoria e prática. Eduem, Maringá, 169 pp.

Vercellino, I.S.; Bicudo, D.C., 2006. Sucessão da comunidade de algas perifíticas em reservatório oligotrófico tropical (São Paulo, Brasil): comparação entre período seco e chuvoso. Brazilian Journal of Botany, v. 29, (3), 363-377. https://doi.org/10.1590/S0100-84042006000300004.

Wetzel, R.G., 1990. Land-water interfaces: metabolic and limnological regulators. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen. SIL Proceedings, v. 24, (1), 6-24. https://doi.org/10.1080/03680770.1989.11898687.

Downloads

Published

2022-06-05

How to Cite

Schroder Rosa, Y. P., Russo, M. R., Inoue, L. A. K. A., & Cavalcanti, L. D. (2022). Contributions of the periphyton to the growth of Nile tilapia (Oreochromis niloticus) fingerlings on different fixation substrates: an ecological approach. Revista Brasileira De Ciências Ambientais (RBCIAMB), 57(2), 333–342. https://doi.org/10.5327/Z2176-94781253