
INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Master’s Thesis

Processing of Historical Phonetic
Maps using Computer Vision and

Deep Learning

Manh Duy Nguyen

INSTITUT FÜR INFORMATIK
DER LUDWIG–MAXIMILIANS–UNIVERSITÄT MÜNCHEN

Master’s Thesis

Processing of Historical Phonetic
Maps using Computer Vision and

Deep Learning

Manh Duy Nguyen

Supervision: Prof. Dr. Dieter Kranzlmüller

Advisors: Sophia Grundner-Culemann
Peter Zinterhof

Date: 11. Oktober 2019

Hiermit versichere ich, dass ich die vorliegende Masterarbeit selbständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 11. Oktober 2019

. .
(Unterschrift des Kandidaten)

Abstract

In the course of digitization, automated systems are increasingly being developed that
simplify and accelerate processes in industry. The area of humanities would also benefit
from automated data processing as it works with a large number of data collections. This
work, which is developed in collaboration with the Institute of Romance Languages and
Literatures and the IT Group Humanities of the Ludwig Maximilian University Munich
(LMU), examines methods to automatically process historical phonetic maps from the
VerbaAplina project. Using Computer Vision and Deep Learning methods, algorithms
are developed to recognize the correct mapping of phonetic transcriptions to correspond-
ing position numbers on a map. The quality of the mappings is evaluated by statistical
measurements. The algorithms are then compared and evaluated.

Abstrakt

Im Zuge der Digitalisierung werden vermehrt automatisierte Systeme entwickelt, die
Prozesse in der Industrie vereinfachen und beschleunigen. Auch der Bereich der Geis-
teswissenschaften würde von einer automatisierten Datenverarbeitung profitieren, da er
mit einer hohen Anzahl von Datensammlungen arbeitet. Die vorliegende Arbeit, welche
in Zusammenarbeit mit dem Institut für Romanistik und der IT-Gruppe Geisteswis-
senschaften der Ludwig-Maximilians-Universität München (LMU) entstand, untersucht
Methoden zur automatischen Verarbeitung von historischen phonetischen Karten aus
dem VerbaAplina-Projekt. Mittels Computer Vision- und Deep Learning-Methoden
werden Algorithmen entwickelt, die korrekte Zuordnungen von Lautschriften zu korre-
spondierenden Positionsnummern auf einer Karte erkennen. Die Qualität der Zuordnun-
gen wird mittels statistischer Messwerte evaluiert. Anschließend werden die Algorithmen
miteinander verglichen und bewertet.

vii

Contents

1. Introduction 1
1.1. Motivation . 1

1.2. VerbaAlpina . 2

1.3. Objective . 2

1.4. Outline . 3

2. Related Work 5
2.1. Object Localization . 5

2.2. Semantic Segmentation . 8

2.3. Instance Segmentation . 11

2.4. Classification of this Work . 12

3. Fundamentals 13
3.1. Historical Phonetic Maps . 13

3.2. Computer Vision . 14

3.2.1. OpenCV . 14

3.2.2. Image Morphology . 14

3.2.3. Image Thresholding . 16

3.2.4. Connected Components . 17

3.2.5. Image Transformation . 17

3.2.6. Contour . 18

3.3. Deep Learning . 19

3.3.1. Definition . 19

3.3.2. Training . 21

3.3.3. Convolutional Neural Network . 23

3.3.4. Data Augmentation . 24

3.4. Image Segmentation . 24

3.5. Dice Loss . 25

4. Methodology 27
4.1. Rule-Based Approach . 28

4.2. Deep Learning Approach . 30

4.2.1. Infrastructure . 31

4.2.2. U-Net Architecture . 31

4.2.3. Data Preprocessing . 32

4.2.4. Methodology . 33

4.3. Mapping of Position Numbers and Phonetic Transcriptions 36

ix

Contents

5. Evaluation 39
5.1. Data . 39
5.2. Model Training . 40
5.3. Mapping Results . 43

6. Conclusion 49
6.1. Outlook . 50

A. Appendix 53

List of Figures 57

Bibliography 59

x

List of Abbreviations

AI Artificial Intelligence

CNN Convolutional Neural Network

CV Computer Vision

DL Deep Learning

FCN Fully Convolutional Network

ML Machine Learning

NN Neural Network

ReLU Rectified Linear Unit

ROI Region Of Interest

RPN Region Proposal Network

SVM Support Vector Machine

xi

1. Introduction

1.1. Motivation

In recent years, deep learning has developed enormously and achieved many successes
[MN18]. Multiple deep learning methods have proven to be a state-of-the-art approach
to many complex tasks [KSH12, ODZ+16, MKS+13], such as image classification, natu-
ral language processing or object detection. Most of them replaced the classical symbolic
Artificial Intelligence (AI) approaches, where problems are solved by providing a large
set of specific rules to cover the whole problem space. Especially for well-defined and
logical problems, this is an appropriate application. Older chess programs, for example,
are based on predefined rules created by humans. With increasing complexity, it is not
possible to find enough rules to meet the complexity, so deep learning is becoming more
popular [Cho18]. With Neural Networks (NNs) complex games such as Go [SHM+16]
can be mastered to even beat humans.
The development of Convolutional Neural Networks (CNNs) led to a breakthrough in
image processing and thus to new possibilities to process problems in Computer Vision
(CV). Traditional CV techniques have been surpassed in terms of accuracy and occa-
sionally efficiency [GGOEO+17]. With the advancement of CNNs, not only objects in
an image can be classified, but also localized [GDDM14, Gir15, RHGS15, RDGF16].
Furthermore, specific CNNs can even segment an image into entities [ZMCL16], where
for each pixel a label is identified [GGOEO+17]. This allows for example to recognize
every pixel of a specific animal in an image (Figure 1.1).

Figure 1.1.: Example of Image Segmentation [BKC17]

1

1. Introduction

In the course of digitization, these developments form the basis for the automation
of many data-based systems, such as in the area of humanities. This work is originally
developed in collaboration with the Institute of Romance Languages and Literatures and
the IT Group Humanities of the Ludwig Maximilian University (LMU) in Munich.

1.2. VerbaAlpina

The current research project of the Romance Institute and the IT Group Humanities:
VerbaAlpina researches the ”documentation and analysis of languages and dialects spo-
ken in the Alpine region with a focus on lexis and with interdisciplinary and diachronic
scope” [KL18].
VerbaAlpina is a research project of the LMU that explores the cultural- and linguistic
area of the alpine region. The leading researchers Krefeld and Lücke [KL14] describe the
project as the opening-up of the Alpine region, which is strongly fragmented in terms of
individual language and dialect, selectively and analytically in its cultural and linguistic-
historical togetherness. This overcomes the traditional limitation to essentially current
political units.
Language atlases and dictionaries are used as the basis for the project database. To
build this database, they are digitized in several steps. The starting point is the pa-
per format, which is scanned to display the content as a text file. From this text file,
the data is structured and stored in a database. One of the main atlas sources is the
AIS, Language and Subject Atlas of Italy and Southern Switzerland [JJS28]. On these
maps, atlas informants are depicted as position numbers and expressions are depicted
as phonetic transcriptions. The goal is to automatically acquire structured data [Lü19].

1.3. Objective

NavigAIS, a web page provided by Tisato et al. [Tis17], represents the current state of
research for historical phonetic maps. It allow users to navigate through the different
historical phonetic maps and maneuver from one position number to another.
At the moment there is no suitable automated approach for the mapping of phonetic
transcriptions to their corresponding position number on a historical phonetic map since
it is a domain-specific task. The mapping is currently accomplished manually, which is a
time-consuming and laborious process. This thesis develops and evaluates an automated
method for the mapping of phonetic transcriptions to position numbers. We propose and
compare two different approaches. Since this is a closed problem, the first approach is
based on the concept of symbolic AI and classical CV. The second approach uses modern
deep learning methods.

2

1.4. Outline

1.4. Outline

This thesis is structured as follows: Chapter 2 gives an outline of existing deep learning
methods for the problem of image segmentation. Chapter 3 provides the theoretical
background of a few computer vision methods and the basics of deep learning. In Chap-
ter 4, we present the main contribution of this work: a methodology for the mapping
of phonetic transcriptions to position numbers. This includes the corresponding pre-
processing steps and a comparison of two different approaches. Chapter 5 presents the
available data and analyzes the training of the neural networks. Furthermore, the results
of the mapping of the two different approaches are evaluated and compared with each
other. Finally, Chapter 6 concludes this work and discusses future work.

3

2. Related Work

This chapter provides an overview of some related work on deep learning for image
segmentation. Since we can’t cover all of the work, we present a few of the papers which
are considered important for us. We group them into object localization, semantic
segmentation and instance segmentation. The goal of object localization is to classify
and localize each object in an image by creating exact bounding boxes around them.
While semantic segmentation aims to locate every pixel corresponding to an object,
instance segmentation even tries to apply different labels for different objects of the
same class [GGOEO+17].

2.1. Object Localization

R-CNN

One of the first approaches to solving the problem of image segmentation with CNNs
is called R-CNN and was developed by Girshick et al. [GDDM14]. Their goal was
to use CNN to localize and segment objects. Figure 2.1 shows their methodology for
this purpose. In the first step, the input image is preprocessed by the Selective Search
[UVDSGS13]. By inspecting the image with windows of different sizes and grouping
adjacent pixels according to certain properties such as textures or colors, so-called region
proposals are generated for an input image. In the next step, these region proposals are
transformed to the size of 227 x 227 pixels, regardless of size or aspect ratio, to be
forwarded to a pre-trained CNN. A 4096-dimensional feature vector is extracted for
every region proposal. Each feature vector is classified and scored by a Support Vector
Machine (SVM) that is trained for every class. Bounding boxes are created by applying
linear regression to each region proposal [GDDM14].

Figure 2.1.: R-CNN Methodology by Girshick et al. [GDDM14]

5

2. Related Work

Fast R-CNN

Girshick et al. discovered some drawbacks for their proposed R-CNN [GDDM14], for
each image every detected region proposal has to be forwarded to the CNN, which leads
to long computation times. Furthermore, the localization process consists of several
components, including a CNN, SVMs and bounding-box regressors. Hence R-CNN is
not trained end-to-end. With Fast R-CNN Girshick et al. [Gir15] resolved these draw-
backs and improved the speed and accuracy. Instead of processing all region proposals
individually and using different components for the localization process, the whole image
and all region proposals are used at once. A single network is employed to classify and
build bounding boxes. Figure 2.2 illustrates the architecture of this method. The CNN
takes the whole image as input and computes a conv feature map. A feature vector
is extracted from the feature map for every class that uses a region of interest (ROI)
pooling layer. By forwarding all feature vectors into a sequence of fully connected layers,
two output layers are created. One for the classification and one for the prediction of
the bounding boxes [Gir15].

Figure 2.2.: Fast R-CNN Methodology by Girshick et. al. [Gir15]

Faster R-CNN

R-CNN and Fast R-CNN uses region proposals generated by the Selective Search
[UVDSGS13]. Ren et al. [RHGS15] identified this method as a bottleneck of these
approaches. The computation time for the region proposals consumes as much time as
localization time. Therefore Ren et al. introduced Faster R-CNN [RHGS15], a Region
Proposal Network (RPN) based on the Fully-Convolutional Network [LSD15] (Section
2.2) is used to create almost cost-free region proposals. As input, the RPN takes an im-
age of arbitrary size and outputs object proposals along with the corresponding bounding
box and objectness score. The objectness score represents the likelihood that an object
is in the box. These outputs are used by the Fast R-CNN for detection. Faster R-CNN
is a unified network, consisting of the RPN and the Fast R-CNN, both sharing the same
convolutional layers, which results in an almost cost-free generation of region propos-
als. Figure 2.3 depicts the RPN. A sliding window is used on the convolutional feature
map generated by the last shared convolutional layer. Each window returns k bounding
boxes with their objectness score. Only those that are considered objects and have ap-
propriate aspect ratios and sizes are passed to the Fast R-CNN as a lower-dimensional

6

2.1. Object Localization

vector. As a result, the Fast R-CNN predicts classification scores and bounding boxes
of an image. Overall, the quality of the region proposal and the detection accuracy are
improved [RHGS15].

Figure 2.3.: Region Proposal Network (RPN) by Ren et al. [RHGS15]

YOLO - You Only Look Once

Redmon et al. [RDGF16] introduced another approach to object detection with YOLO,
instead of performing the detection on region proposals, object detection is considered
as a single regression problem. A CNN is trained to predict bounding boxes and the cor-
responding class probabilities. Figure 2.4 illustrates the methodology. The input image
is divided into an S x S grid. For every grid cell, an arbitrary amount of bounding boxes
are predicted, including their confidence score and class probabilities. Only bounding
boxes with a confidence score above a specific threshold value are further processed.

Figure 2.4.: YOLO Model by Redmon et al. [RDGF16]

The whole image is only processed once by the CNN, so YOLO sees the entire image
and can encode class information during training and testing. Furthermore it is gen-
eralizable as it learns general representations of objects. In terms of processing time,

7

2. Related Work

YOLO is extremely fast because a new image is simply processed by the trained CNN.
Compared to Fast R-CNN [Gir15] (Figure 2.5), the localization errors are increased, but
the number of false positives in the background is decreased.

Figure 2.5.: Error Comparison of YOLO [RDGF16] with Fast R-CNN [Gir15] by Redmon
et al. [RDGF16]

YOLO also has limitations, since each grid is only capable of predicting two boxes
and assigned to one class, the amount of predicted nearby objects is limited. It also has
problems with the detection of small objects appearing in groups [RDGF16].

2.2. Semantic Segmentation

Fully Convolutional Network

Garcia et al. [LSD15] defined the Fully Convolutional Network (FCN) as the foundation
for the latest most successful deep learning methodologies for semantic segmentation
[GGOEO+17]. Long et al. [LSD15] trained an end-to-end network for pixelwise predic-
tion and named it Fully Convolutional Network. The FCN takes an input of arbitrary
size and generates a fully segmented image of a corresponding size. In this network, all
fully connected layers are replaced by convolutional layers. Hence, instead of a flat non-
spatial output, a heatmap is outputted that retains the spatial coordinates (Figure 2.6a).
The heatmap represents many small feature maps and requires upsampling to restore
the original size. Upsampling, also called deconvolution, consists of a convolutional layer
with a fractional stride. In every upsampling step, an output with a larger size than the
input is created. This enables an end-to-end learning using the pixelwise loss (Figure
2.6b) [LSD15]. Since the multiple upsampling steps create a coarse output, Long et al.
introduced a skip architecture to improve semantic context and localization accuracy.
By combining fine layers with coarse layers, the location information of the fine layers is
not lost when going deeper, while at the same time deep features are obtained. Figure
2.7 illustrates the segmentation result of different FCN models. The FCN-32s does not
use the skip architecture at all and performs the upsampling 32 times, while the FCN-
16s and FCN-8s use the skip architecture in different depth. The FCN-8s achieved the
best result, while the result of FCN-32s is coarse due to the loss of location information
[LSD15].

8

2.2. Semantic Segmentation

(a) Transforming Fully Connected Layers Into
Convolution Layers

(b) FCN Architecture Without Skip

Figure 2.6.: Fully Convolutional Network by Long et al. [LSD15]

Figure 2.7.: Tests of different FCN Models [LSD15]

SegNet

Based on FCN [LSD15] Badrinarayanan et al. [BKC17] developed SegNet, a convolu-
tional encoder-decoder architecture for segmentation. Figure 2.8a shows the architecture
of the model, the last layer is a softmax layer, which enables pixel-wise classification.
The difference to FCN is in the decoder part. Every upsampling layer corresponds to
one pooling layer in the encoder. Only the max-pooling indices are used for upsam-
pling the feature maps, reducing the number of trainable parameters while maintaining
high-level details. To construct a segmented input image, the resulting feature maps are
convolved with a trainable decoder filter bank. Due to the decoder size, the accuracy is
higher compared to FCN. Also, less memory is used during the prediction because only
the max-pooling indices are stored, in contrast to FCN, which stores the full encoder
feature maps. However, the forward time is slower due to more convolution layers in the
decoder. Figure 2.8b shows a comparison of the two methods. Overall, the segmentation
results of SegNet are more superior to FCN, especially with regard to the definition of
object boundaries [BKC17].

9

2. Related Work

(a) Network Architecture

(b) SegNet Results Compared To FCN [LSD15] Results

Figure 2.8.: SegNet by Badrinarayanan et al. [BKC17]

ParseNet

According to Liu et al. [LRB15] the FCN disregards the global context of the input image
since it only considers the largest receptive field. A more global context can improve
the results of segmentation tasks. Therefore ParseNet was introduced, an end-to-end
FCN for semantic segmentation. It takes the whole image as input in order not to lose
global information and simultaneously predict all pixel values. By adding a contexture
module (Figure 2.9e) to a convolutional layer, context features can be used to improve
the segmentation results. The module takes feature maps as input. In the first step, a
context vector is generated with global pooling. Then the original feature map and the
pooled context vector are normalized using L2 normalization. The normalization scales
different sizes of feature maps that are combined for the prediction. In the next step, the
scaled vector is unpooled to generate a new feature map of the same size as the original
input feature map, which is concatenated to the original input in the last step. Figure
2.9 shows the result of a segmentation example with FCN and ParseNet.

10

2.3. Instance Segmentation

Figure 2.9.: Segmentation Comparison between FCN & ParseNet and Overview of the
ParseNet Module by Liu et. al. [LRB15]

2.3. Instance Segmentation

Deep Mask

Instance Segmentation is viewed as the next level of semantic segmentation. Objects of
the same class are not only segmented but also differentiated into individual instances
[GGOEO+17]. Pinheiro et al. [PCD15] proposed a single based CNN for this problem
with Deep Mask. Figure 2.10a illustrates the network architecture. For an input patch,
the model predicts a segmentation mask and the corresponding likelihood of containing
an instance. The prediction tasks share most layers of the network, except the last, and
are therefore trained together. At the last shared feature layer, the network is divided
into two parts. The first predicts the segmentation mask of the input patch, while the
second predicts the likelihood of containing an object [PCD15]. Figure 2.10b shows an
example of an instance segmentation.

(a) Network Architecture (b) Instance Segmentation Results

Figure 2.10.: Deep Mask by Pinheiro et al. [PCD15]

Mask R-CNN

Based on Faster R-CNN [RHGS15] He et al. [HGDG17] developed a method called
Mask R-CNN that adds an additional output branch to the initial method to predict an
object mask for a Region of Interest (ROI) generated by the Region Proposal Network
(RPN). The other two branches predict in parallel the corresponding bounding box and
classification score (Figure 2.11a). The segmented mask is generated by a FCN. Since

11

2. Related Work

Faster R-CNN was not designed to segment pixel by pixel, the RoI Pooling Layer is
replaced by the RoIAlign Layer to correct misalignment of pixels by maintaining the
precise spatial locations. The decoupling of mask and class predictions results in better
performance when segmenting instances. A binary mask is predicted independently
for each class. This is achieved by a multi-task loss that combines the prediction loss
of the bounding box, class and segmentation mask. During training, the model tries
to optimize each loss separately, resulting in better overall performance. Figure 2.11b
shows an example of the instance segmentation results, for each instance, a bounding
box is created with the corresponding likelihood and segmentation.

(a) Network Architecture (b) Instance Segmentation Results

Figure 2.11.: Mask R-CNN by He et al. [HGDG17]

2.4. Classification of this Work

This chapter introduced several methods for the different areas in image segmentation.
In our work, we focus on the area of object localization and semantic segmentation.
For this purpose classical Computer Vision methods as well as the Fully Convolutional
Network are used. The next chapter covers the basics of all methods employed in this
work.

12

3. Fundamentals

In this chapter the historical phonetic maps are explained. Furthermore, we cover several
Computer Vision methods used in this thesis and the basic concepts of Deep Learning.

3.1. Historical Phonetic Maps

The foundation of this work consists of images of historical phonetic maps. The maps
originate from the VerbaAlpina-Project [KL14] and display the geographical map of
southern Switzerland and Italy. Each map represents the phonetic transcriptions of
different localities for a specific term. The phonetic transcriptions are displayed as black
text, localities as red numbers. At the top left of the map, the corresponding term
is displayed on the map. Below the term there is a legend that provides additional
information. Figure 3.1 shows a historical phonetic map on which the term father is
explored.

Figure 3.1.: Example of a historical phonetically Map displaying the term father

13

3. Fundamentals

3.2. Computer Vision

This section provides information about the image processing framework used and an
overview of the various image processing methods.

3.2.1. OpenCV

OpenCV is an open-source computer vision library. It provides an infrastructure for
computer vision applications by implementing algorithms than can solve computer-vision
problems in a computationally efficient and quick way. The library contains low-level
image processing algorithms as well as high-level algorithms for a wide range of topics.
Starting with basic image processing methods up to object detection and extraction and
many other functions [Tea19b] [BK08][Lag14].

3.2.2. Image Morphology

The processing of digital images can be approached with mathematical morphology.
Mathematical morphological operators can transform image data into a simpler repre-
sentation by preserving shape characteristics and removing noise [HSZ87]. With the
help of a structuring element/kernel defined as a set of pixels or a shape and a defined
anchor point, morphological operations can be performed. When a given pixel is aligned
with the anchor point, the pixels of the intersection with the image are used to apply
a morphological operation. The shape of the structuring element is not predetermined
but can be any shape, mostly is consists of elementary shapes such as square, circle or
diamond [Lag14]. In the following we introduce with dilatation and erosion two mor-
phological operators. They are used for noise removing, isolating of particular elements
or for connecting inconsistent elements in an image [BK08].

Dilation

The dilation operator is also called the local maximum operator. It expands the region
on which it is applied and tends to smooth concavities. For this purpose, the maximum
pixel value, computed from the intersection of the structuring element with the region,
is used to replace the pixel value in the anchor point [BK08].

dilate(x, y) = max
(x′,y′)∈kernel

src(x+ x′, y + y′)

14

3.2. Computer Vision

Figure 3.2.: Example of the dilation operator [BK08]

Erosion

Erosion is the complementary operator to dilation. It is also referred to as the local
minimum operator and reduces the region on which it is applied and tends to smooth
protrusions away. The minimum pixel value is computed from the overlap of the struc-
turing element with the region. The image pixel in the anchor point is replaced by the
minimum value [BK08].

erode(x, y) = min
(x′,y′)∈kernel

src(x+ x′, y + y′)

Figure 3.3.: Example of the erosion operator [BK08]

Opening

The dilation of the erosion of an image is called opening [Lag14]. It is mainly used to
count areas in a binary image and also to remove individual outliers that have a higher
pixel value than their neighborhood [BK08] (Figure 3.4) .

Figure 3.4.: Opening Operation: Elimination of the upward Outliers [BK08]

15

3. Fundamentals

Closing

While the dilation of the erosion of an image is called opening, the erosion of the dila-
tion of an image is called closing [Lag14]. It is mainly used to remove noise-driven or
undesired sections. Lone outliers that have a lower pixel value than their neighborhood
are eliminated [BK08] (Figure 3.5).

Figure 3.5.: Closing Operation: Elimination of the downward Outliers [BK08]

3.2.3. Image Thresholding

Another image processing method is called thresholding. It is used to categorize pixels
into two classes that are either below or above a certain threshold value [BK08]. We only
consider the binary variants of thresholding since the output is a binary image and can,
therefore, separate foreground objects from the background [SS04]. Figure 3.6 depicts
an example of the binary and inverse binary thresholding.

Figure 3.6.: Example of the Binary and Inverse Binary Thresholding [Tea19a]

In the case of binary thresholding, pixels below a certain threshold get a black color
value of 0, while the others get a white color value of 255. As seen in equation 3.1 for
binary thresholding, the threshold value can be freely chosen as well as the color value
M for a pixel that is above the threshold. The color value for a pixel that is below the
threshold is always black.

dst(x, y) =

{
M, if src(x,y) > threshold

0, otherwise
(3.1)

16

3.2. Computer Vision

3.2.4. Connected Components

Areas of adjacent pixels are denoted as connected components. A pixel a is adjacent to
pixel b only if it is an immediate neighbor of b and both pixels have the same color value.
Connected components can be used to find letters in a document or objects in an image.
The computation of these components is divided into two phases. In the first phase,
adjacent pixels are labeled with unique labels, the pixels are accessed horizontally first.
Whenever it is possible labels of vertically adjacent pixels are reused. In the second
phase, pixels with different labels but the same color value are merged [Sze10]. Figure
3.7 shows an example of the entire process with a grayscale input image containing
four connected components (Figure 3.7a). First all horizontal, equal pixels are labeled
(Figure 3.7b) and then connected (Figure 3.7c).

Figure 3.7.: Example of the Connected Component Computation [Sze10]

3.2.5. Image Transformation

The technique for changing an image into an alternate representation of data is called
image transformation. As a result of this transformation, new unseen features of the
original data may arise [BK08]. There exists a large number of different transformations
in computer vision. In the following, the edge and line detection methods are further
explained.

Edge Detection

At borders between areas of different colors, intensity and shape, edges can occur. With
the computation of derivatives, it is possible to detect the edges. The gradient can be
used to determine the positions of these edges [Sze10]. In 1986 Canny [Can87] developed
the Canny algorithm for edge detection. The first derivatives are calculated in horizontal
and vertical direction and then combined into vertical, horizontal and two diagonal
directions. The points of the local maxima of these derivatives are considered as possible
edge candidates. By applying a hysteresis threshold to these points, where there is an
upper and lower threshold, the Canny algorithm attempts to group the candidates. If
the gradient of a point is higher than the upper threshold, it is seen as an edge point,
if it is below the lower threshold, it is declined. If the gradient is in between the two
thresholds, the point is accepted as an edge when it is connected to an edge point [BK08].

17

3. Fundamentals

Figure 3.8.: Application Example of the Canny Edge Detection [BK08]

Line Detection

A method for detecting lines in an image was developed by Hough et al. [Hou62] in
1962, called Hough transform. It groups edges into lines but can also find circles and
other simple forms. In this work we use the Hough line transform method [BK08]. For
every edge point, all possible lines that can pass through it are considered [Sze10]. If
each line is parameterized by a slope a a and an intercept b then for every point a, locus
of points can be built, which is localized in the (a,b) plane. Every locus corresponds to
all lines passing through the corresponding point. With the conversion of all nonzero
pixels into a locus of points and the sum over all, local maxima appear in the (a,b) plane
that corresponds to lines in the image. Due to the summing of all loci, the (a,b) plane
is called the accumulator plane.

Figure 3.9.: Application Example of the Hough Line Transformation [BK08]

Because of the various densities of the lines depending on the slope and the interval
of possible values for a slope (−∞ − +∞), the slope-intercept form is not the most
suitable. Therefore the representation of each line as point in polar coordinates(ρ,Θ)
is more appropriate, where each line goes through the given point and is orthogonal
to the radial from the origin to the point [BK08]. Θ represents the angle and ρ the
perpendicular distance of the line from the origin. The following equation denotes a
line:

ρ = xcos(Θ) + ysin(Θ)

3.2.6. Contour

As seen in Chapter 3.2.4 a method to find related pixels is called connected components.
However, a closed structure with multiple connected components cannot be recognized
as a whole component. Hence contours are introduced. A contour presents a curve in

18

3.3. Deep Learning

an image as a list of points, whereby the curve can be of any shape. Each point in the
list has knowledge about the location of the next point on the curve. The concept of
viewing a contour as a tree is important to find contours. The contour tree contains
the relationship and the structure of the individual connected components. Figure 3.10
represents the methodology for finding contours. The input image contains 5 white
regions and is shown in the upper part of the figure. The lower figure depicts the
different levels of contours, where the contours are marked with ”c”, the holes with ”h”
and the level with the length of numbers. Here the contour ”c0” is the root node and
has the holes ”h00’ and ”h01’ as his children. These holes in return have the contours
”c000” and ”c010” as its children. The contour tree is complete when the leaf is reached
[BK08]. A leaf can also be seen as a connected component.

Figure 3.10.: Example of the finding contours method [BK08]

3.3. Deep Learning

In this section first, the relation of the terms artificial intelligence, machine learning
and deep learning are shown and then defined. Afterward, we briefly cover the basics
of deep learning and convolutional neural networks. In the end, the concept of image
segmentation is explained.

3.3.1. Definition

Nowadays the terms Artificial Intelligence (AI), Machine Learning (ML) and Deep
Learning (DL) are often used in the same context when talking about latest techno-
logical developments such as autonomous driving, face recognition or recommendation
systems, without even knowing their true meaning. Figure 3.11 shows the relationship
between these terms.

19

3. Fundamentals

Figure 3.11.: Relationship between the terms Artificial Intelligence, Machine Learning
and Deep Learning [Cho18]

Artificial Intelligence

Chollet [Cho18] defined AI as ”the effort to automate intellectual tasks normally per-
formed by humans”. Artificial intelligence is a general area that includes machine learn-
ing and deep learning as well as tasks not involved with learning, such as rule-based
approaches. These approaches are called symbolic AI. By providing a very large set
of explicit rules, a specific domain should be manipulated or controlled. Early chess
programs, for example, contain a large number of hard-coded rules to assess the game
situation and making the best possible move. Well-defined and logical problems are the
best application for symbolic AI. For more complex and fuzzy problems, like image clas-
sification or natural language processing, symbolic AI reaches its limit since the amount
of needed rules are countless and in most cases indeterminable [Cho18].

Machine Learning

To overcome the hurdle of indeterminable and countless rules Machine Learning comes
to use. The Symbolic AI approach requires predefined rules in order to process the
incoming data. In ML the task performance is seen with a different perspective, the
computer should learn the corresponding rules to a task by himself (Figure 3.12). By
providing input data, the expected outcome and a measurement a machine-learning
system can learn useful representations of the input data to produce the correct output.
To determine the quality of the machine-learning algorithm the measurement is needed
as the produced output is compared with the expected output. The result is used for
adjustment and improvement to the algorithm, this process is called learning [Cho18].

Deep Learning

While other machine learning algorithms mostly focusing on learning one or two layers of
representations of the data, deep learning is trying to learn multiple representations by
stacking up layers of representations. Hence the word deep in the name. Typically these
layered representations are learned with neural networks (NNs). A deep neural network

20

3.3. Deep Learning

Classical Programming
Paradigm

Rules

Input Data
Correct Output

Machine Learning
Approach

Input Data

Correct Output
Rules

Figure 3.12.: Rule-Based Approach vs. Machine Learning Approach [Cho18]

consists of multiple layers (Figure 3.13) in which each layer tries to learn a different,
useful representation of the input data [Cho18]. The deeper the layer, the more finely
granular is the representation of the original input.

Figure 3.13.: Learning of Deep Representations with the help of a number classification
model [Cho18]

3.3.2. Training

Figure 3.14 visualizes the training process of a neural network (NN) with input X,
output Ŷ and ground truth Y. The layers between the input and output are called fully
connected hidden layers. Every layer consists of n ∈ N units and is connected to the
previous layer via a weight matrix W ∈ Rm x n, where m is the number of units and
n the number of units of the previous layer. With the help of the weight matrices, the
state of each hidden layer can be calculated by computing the weighted sum of all its
input. As for the first layer, the state is calculated by multiplying its weight matrix W1

with the input layer X. All states for every layer will be computed consecutively so that
the result Z can be used to calculate output Ŷ. Hence the input X needs to be passed
through all the layers. This chain of computation is called forward-propagation.

Z =
∑

WiXi

21

3. Fundamentals

For the sake of simplicity the bias term b is omitted. A non-linear function (e.g.
ReLU) also called activation function σ is applied to the output of the last layer Z to
compute the output Ŷ [LBH15]. Activation functions are needed to decide whether
a unit should be activated or not, in other words, whether the information the unit
contains is important for the training process. The output Ŷ of a neural network is also
called prediction.

Ŷ = σ(Z)

With a loss function L a score can be calculated which represents the distance between
the prediction Ŷ and the ground truth Y. Based on this score the performance of the
network can be optimized. The score serves as feedback for adjustments of the weights
to minimize the loss score so that the difference between prediction and ground truth
is as small as possible. A method for loss-minimization is gradient descent in particular
back-propagation. In an iterative way the weights in the network can be updated. With
the loss score, the gradients of all weights can be calculated and used to update the
weights according to a learning rate. The repetition of forward- and back-propagation
represents the training of a neural network. This process is repeated several times until
the lowest possible loss score is reached.

Figure 3.14.: Training’s process of a Neural Network [Cho18]

22

3.3. Deep Learning

There are two main types of learning. We distinguish between supervised and unsu-
pervised learning.

Supervised Learning

Supervised learning aims at learning a function f to map input data X to output variables
Y. The name supervised derives from the knowledge of output variables beforehand.
Typically it is used in the area of classification or regression [Cho18].

Y = f(X)

Unsupervised Learning

With unsupervised learning, however, only the input data X is available and no knowl-
edge about the corresponding output variables Y is given. The aim is to discover the data
structure and extract the features of the input data independently of targets. Clustering
is a typical use case [Cho18].

3.3.3. Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a specialized type of neural network for pro-
cessing N-dimensional data. The name for the network originates from the mathematical
operation named convolution, a specialized type of linear operation [GBC16]. Successful
applications of CNNs are in the field of image classification and object detection, as
the strength of CNN is to extract features with complex shapes or color patterns. A
typical CNN consists of two parts (see figure 3.15). The first one is composed of two
specific layers: convolutional and pooling layers (sometimes called subsampling). The
convolutional layer is structured in units that are organized in feature maps. Via a set
of weights each unit is connected to sets in the feature maps of the previous layer. All
units in a feature map share the same weights since they try to detect the same fea-
tures at different locations in the array data. These features are mostly distinct because
many parts of the input data are often correlated. In sum, the task of the convolutional
layer is to detect connections of features from the previous layer. Whereas the pooling
layer attempts to merge semantically related features into a single one to reduce the
dimensionality of feature maps and still keeping the essential features [LBH15]. This
makes the representation more invariant to small changes in the input [GBC16]. The
invariance to the location of these patterns also supports the principle of weight sharing
of the units despite their location. A frequently used pooling method is the max-pooling.
It applies the max function on a patch of units in one feature map and only stores the
maximum. By having multiple consecutive stages of convolutional and pooling layers,
the network is able to learn more complex patterns. These consecutive stages are also
called hidden layers. The second part represents the fully-connected layers that require
one-dimensional data as input. Hence a flatten layer is applied before getting to the
fully connected layers. The last fully connected layers produce the output of the net-
work. Figure 3.15 shows LeNet-5, a CNN for digit classification developed by LeCun et

23

3. Fundamentals

al. [LBB+98], the output of this network contains the confidence levels for the different
digits.

Figure 3.15.: LeNet-5, a Convolutional Neural Network for digits recognition by Yann
LeCun [LBB+98]

3.3.4. Data Augmentation

When training a neural network, typical problems such as overfitting can arise. Data
augmentation is a technique to counter this problem. It can be used as a regularizer
to prevent overfitting and at the same time to improve the generalization capabilities
[GGOEO+17, WGSM16]. It can also improve the class imbalance problems by generating
more training samples from the imbalance class. The generation of additional training
samples is typically performed by an arbitrarily number of transformations to the data.
Rotation, shifting and translation are only a few possible transformations [WGSM16].

3.4. Image Segmentation

Image segmentation is another key problem in the area of computer vision. It represents
the division of an image into meaningful entities. For a human, it is easy to detect
patterns or group related objects in an image without having explicit knowledge of the
content [ZMCL16]. The visual system of a human automatically processes the perception
of the image based on the Gestalt laws [Tod08]. As far as the computer is concerned,
it is a difficult task, as the Gestalt laws do not apply, but for many applications, it
is important to understand the whole image. Autonomous driving or human-machine
interaction are only a few examples. With the advancement in DL and the development
of CNNs not only the image classification task can be tackled, but also the image seg-
mentation problem.
Figure 3.16 represents the different possibilities for object recognition, from a coarse-
grained method like classification to fine-grained method like instance segmentation.
The classification makes a prediction about the whole image without having information
about localization or detection. Semantic segmentation, on the other hand, predicts the
corresponding class for each pixel so that objects or regions can be recognized. The

24

3.5. Dice Loss

instance segmentation even detects the instance of each known object for every pixel
[GGOEO+17]. In this work, we focus on semantic segmentation.

Figure 3.16.: Development of Object Recognition: from Classification to Segmentation
[GGOEO+17]

3.5. Dice Loss

In order to achieve good segmentation prediction results, not only the network architec-
ture plays an important role, but also the choice of loss function. A neural network can
get stuck in local minima during the learning process due to the apparent importance of
large background areas while small foreground areas are more relevant. Sometimes these
foreground areas are completely missing or only partially detected. The predictions of
a network would be strongly biased towards the background area. Some previous work
approaches this problem with re-weighting the importance towards the foreground areas
[MNA16]. Milletari et al. [MNA16] proposed the Dice Loss (DL) function, which does
not require any reassignment of weights to achieve a correct balance between foreground
and background areas.

DL = 1−D

The loss function is based on the dice coefficient D with the value range from 0 to
1. The dice coefficient between two binary areas consists of the sum over N pixels, the
predicted binary segmentation area pi ∈ P and the ground truth binary area gi ∈ G.
It is a good metric for the segmentation performance, but can only be applied if the
ground truth is available [SLV+17].

D =
2
∑N

i pigi∑N
i p2i +

∑N
i g2i

25

4. Methodology

In this chapter, we present a methodology for mapping phonetic transcriptions to cor-
responding position numbers on a historical phonetic map. Figure 4.1a illustrates the
methodology, it consists of 4 steps. In the first step, we try to remove any noise that
might interfere with the mapping process. The left side of Figure 4.1b shows a section
of a map, in which noise is visible in the form of boundaries or geometric figures such
as circles. Based on a cleaned map, the localization of position numbers and phonetic
transcriptions is easier in the next step. This localization information is used in the
final step to map numbers and phonetic transcriptions. We save each mapped pair as a
separate image file. Figure 4.1b shows the objective output of the methodology, multiple
images of number and text pairs to be stored.

(a) Methodology

(b) Goal of the Method

Figure 4.1.: Methodology for the mapping of position numbers and phonetic transcrip-
tions

We propose two different approaches for the first two processing steps (Figure 4.2).
The first approach is based on the expert system concept of symbolic AI, also known

27

4. Methodology

as a knowledge-based system. Expert systems aim to incorporate the knowledge of a
human expert to solve a specific domain problem [Tri11]. Since we explore a closed
domain-specific problem with the removing of noise and the localization of numbers and
texts on a historical phonetic map, the development of a rule-based expert system is
useful. The second approach focuses on the successor of symbolic AI, Deep Learning.
We try to approach the same problem with neural networks.

Figure 4.2.: Map Processing: Noise Removing and Number/Text Localization

Before we can process the map as an image, we need to convert the maps to PNG
format, as they are available in PDF format. For this purpose we use ImageMagick1, an
open-source tool for converting images. The image processing is done with OpenCV.
At first, the map is read as a color image, since there are two colors on the map, red
and black. All texts, including phonetic transcriptions, are in black. In contrast, the
position numbers and any noise are displayed in red. Therefore removing of this noise
is important because it could interfere with the localization of numbers.
In the following, we refer to the OpenCV color format, which uses the BGR format
instead of the RGB format. Hence all color values in the next sections are in the BGR
format. The red color space ranges over several values, as not every red pixel in the
image have the value [0,0,255]. The same applies to the black color space, thus we
define a threshold range for red and black. For the red color, the lower threshold starts
at [0,0,60] and ends at the upper threshold [55,55,255], each pixel value within this
threshold is considered red. Analog for black the lower threshold starts at [0,0,0] and
the upper threshold ends at [55,55,55]. We extract red and black separately, wherefore
the original map image is divided into two new images, which serve as input for the two
proposed approaches. Henceforth the image containing only black pixel is referred to as
B and the image containing only red pixel as R. For a faster computation time we work
with binary images, instead of three color channels only one is calculated. Therefore
the binary thresholding method is performed for B and R. The new resulting images
Bthreshold and Rthreshold only contain white and black pixels, white for text respectively
red pixels, black for everything else. Figure 4.3 depicts an example of the color extracted,
thresholded images.

4.1. Rule-Based Approach

Figure 4.4 presents the methodology for the rule-based approach of removing noise and
localization of numbers and texts. B and R are processed differently.

Since B contains no noise, only the noise in R has to be cleaned. First, we search for
all connected components in Rthreshold. The method implemented in OpenCV returns

1https://imagemagick.org/

28

https://imagemagick.org/

4.1. Rule-Based Approach

(a) Original Image (b) Text Image B (c) Number Image R

Figure 4.3.: Example of the Color Extraction

the bounding box for each found connected component, where for each box we have the
position, the width, the height and the total area in pixels. Based on these properties,
an expert system for noise classification is developed. We compare the width, height,
ratio and area of pixels of a digit against that of noise, and then define decision rules.
In an iterative process, these rules are improved and extended so that as much noise
as possible is detected. Since the properties of bounding boxes are not sufficient to
detect every form of noise, an additional method is used. The line detection algorithm
is applied to detect all lines for each component that is not recognized as noise by its
bounding box properties. Using the angle Θ and the line distance ρ of each detected
line, we define another set of decision rules for the classification. These rules are created
by analyzing Θ and ρ values of digits and noise and improved in an iterative process.
The same procedure is repeated once to define another set of rules that removes the
remaining noise. All pixels, classified as noise, become black in R.
In the next step, we try to detect all numbers. Therefore we again use the thresholding
technique for R to get an updated version of Rthreshold. Since a number can consist of
multiple digits, Rthreshold is dilated with a kernel multiple times to find related digits.
Dilation ensures that close pixels overlap to allow digits that are close together to be
recognized as a number (Figure 4.5).

We find these new overlapping by finding the contours of them, as each overlapping
represents a number. For every found contour we have the position, the height and the
width. Contours not corresponding to the length or the height of a number are dis-
carded, i.e. their pixels in R become black. All other contours/numbers are saved for
the mapping process.
In the last step, we try to detect every phonetic transcription in B. Just as numbers
consist of multiple digits, a phonetic transcription consists of multiple words and char-
acters. Therefore B is also dilated to find related words and characters that form a
phonetic transcription. For retrieving the contours the finding contours method is used
again. Based on the width and height of the contour, a last filtering mechanism is per-

29

4. Methodology

Figure 4.4.: Methodology for Removing Noise and Localizing Numbers and Phonetic
Transcriptions according to Rules

formed. Every position and bounding box property is stored for the mapping process.
The next chapter presents the deep learning approach for the removing of noise and the
localization of numbers and texts.

4.2. Deep Learning Approach

The recognition of texts and numbers can be considered as a binary segmentation prob-
lem. We try to differentiate texts and numbers from the background. In the case of
numbers, noise shall be classified as background and thus cleaned up when just focusing
on the foreground. Therefore the recognition of numbers and texts are two different
problems. For each problem, we train a different neural network. Because we work with
images we specifically use CNNs.
Our approach is grouped into three phases. First, we define the architecture of the neu-
ral network. The next step is to preprocess the images for the training. In the end, we

30

4.2. Deep Learning Approach

(a) Original Number (b) After 1 Dilation (c) After 2 Dilation (d) After 3 Dilation

Figure 4.5.: Example for the Dilation of the Number 118

describe how the trained model is used to remove noise and localize numbers and texts
on a map (Figure 4.4).

4.2.1. Infrastructure

The Leibniz Supercomputing Centre (LRZ) provides us with two virtual servers for
training and using our neural networks. The first virtual server contains 16 cores, 240
GB of memory, a NVIDIA Tesla P100 16 GB PCIe GPGPU and a 800 GB PCIe SSD.
The second virtual server runs on the LRZ Compute Cloud, which enables us to use
our own virtual machine image. The server is assigned to 20 virtual cores, 368 GB of
memory, a NVIDIA Tesla V100 16 GB PCI GPU and a volume storage of 200 GB.

4.2.2. U-Net Architecture

In this work we use the U-Net developed by Ronneberger et al. [RFB15] for segmenta-
tion of biomedical images. It is based on the concept of a Fully Convolutional Network
(FCN)[LSD15]. In contrast to normal CNNs, used for classification, the prediction is
pixelwise and does not apply to the entire image, also each pixel is localized [LSD15].
Adding successive layers to a contracting network and replacing pooling operators with
upsampling operators in these layers, is the main idea behind the FCN. Hence a FCN con-
sists of a downsampling and an upsampling path, sometimes referred to as a contracting
and expansive path. The resolution of the output is increased in the upsampling path.
By combining high-resolution features from the contracting path with the upsampled
output, the localization is performed. Based on the localization information a successive
convolution layer can improve its output. Ronneberger et al. [RFB15] improved this
approach by increasing the number of feature channels in the upsampling part, in order
to forward context information to higher resolution layers. The expansive path almost
contains the same amount of layers as the contracting path, hence the U-shape archi-
tecture. There are no fully-connected layers, which reduces the number of parameters,
making it possible to train with a few samples. For their training, the authors used a
dataset with 30 images and additional data augmentation. In addition, only the valid
part of each convolution is considered, as the full context of the input image is used.
This allows the segmentation of images of any size. The extrapolation of the missing
context of the border areas during a prediction is done by mirroring the input image.
As a result, the output image is cropped.
Figure 4.6 illustrates the network architecture. The left side represents the contract-
ing path and the right side the expansive path. A downsampling step consists of two

31

4. Methodology

convolutional layers, including a rectified linear unit (ReLU), and a directly appended
max-pooling operation. In every step, the number of features is doubled. The number
of downsampling steps is arbitrary but needs to match the number of upsampling steps.
An upsampling step consists of an upsampling layer followed by an up-convolution, that
concatenates the previous upsampling layer with the matching cropped feature map from
the left side. As a result, the number of features is halved. Two convolutional layers
including ReLU follow. The last layer is a 1 x 1 convolution, which maps the resulting
feature vector to the number of classes [RFB15].

Figure 4.6.: U-Net Architecture by Ronneberger et al. [RFB15]

To use U-Net to segment texts and numbers, we adjust the number of down and
upsampling steps. The original U-Net has 4 down and 4 upsampling steps, while in
our case we reduce them to 3, and we also use the ’same’ padding for the convolutional
layers, because we do not want the output to be cropped. Since the contours of the
different characters and digits are too thin to be reproduced legibly so that they can be
distinguished, the extrapolation of the lost information does not work. In addition, the
localization information of the results found in the output needs to match the localization
information in the input image in order to be stored and used. The last adaption affects
the loss function, Ronneberger et al. [RFB15] used the cross-entropy function, while we
use the Dice Loss, as we have a sparse area with content.

4.2.3. Data Preprocessing

Since the training of the U-Net is a supervised learning problem, we need to provide
training samples, which consists of original images and labeled images. The localization
of texts and numbers is independent of each other, hence two NNs are trained, one for
numbers and one for texts. The labeling of positions numbers and phonetic transcrip-
tions on each training map is done manually by hand with a colored marking. The maps
are available in a size of 4821 x 6494 pixels and thus too large to be processed at once,
so we decompose the images into patches of 512 x 512 pixels. Since the image size is

32

4.2. Deep Learning Approach

not a multiple of 512, padding is added before the decomposing. The width is extended
to the right by 199 black pixels and the height is extended to the bottom by 162 black
pixels so that the new image size is 5120 x 6656 pixels and thus divisible by 512. One
map is decomposed into 130 patches, hence 130 training samples for the number model
and 130 training samples for the text model. Figure 4.7 shows some training samples
including the ground truth and the labeled images. In order to improve the generaliza-
tion ability and prevent overfitting, we use data augmentation. By applying different
transformations to the training samples, the number of training samples increases while
making the network more robust to invariance.

(a) Text Samples (b) Number Samples

Figure 4.7.: Training Samples Of Texts and Numbers

4.2.4. Methodology

Figure 4.9 presents the methodology of the deep learning approach for the removing of
noise and localization of numbers and texts. Just like the rule-based approach in Section
4.1, we also work with the binary images Bthreshold and Rthreshold. Since our NNs are
trained with input sizes of 130 x 130 pixels, we decompose the input images Bthreshold

and Rthreshold into patches of 130 x 130 pixels so that they can be processed by the
NNs. For each patch all texts respectively all numbers on it are labeled by the trained
network.

(a) Input (b) Output

Figure 4.8.: Example of Neural Network Segmentation Results for a few Inputs

33

4. Methodology

Figure 4.8 shows the output of the NNs for some text input samples. After each patch
is processed, all patches are merged to restore the original image size for further pro-
cessing. Contrary to the rule-based approach, we do not need to consider corresponding
digits or words, as numbers or phonetic transcriptions are recognized automatically by
the NN. In the following we refer to the predicted image of texts as Bpred and the pre-
dicted image of numbers as Rpred.
First we try to detect every labeled text in Bpred by finding their contours on the map.
Based on the height and width of a contour, we differentiate between phonetic tran-
scription and normal text like headers or descriptions on the map. Only the contour
properties of phonetic transcription are saved for further processing. Regarding the noise
cleaning in Rthreshold no large set of rules is needed like in the rule-based approach. The
noise detection is automatic proceed by the NN, every labeled contour in Rpred repre-
sents a number everything else is noise. However, based on the height and the width of
a number contour, falsely labeled numbers are filtered out. Apart from that, every num-
ber contour is stored for the mapping process. The next section describes the mapping
process of a phonetic transcription to a position number.

34

4.2. Deep Learning Approach

Figure 4.9.: Deep Learning Methodology for Noise Removal and Localization of Numbers
and Phonetic Transcriptions

35

4. Methodology

4.3. Mapping of Position Numbers and Phonetic Transcriptions

In the last step, the mapping of phonetic transcriptions to position numbers is performed
and the results are saved (Figure 4.10). Since the phonetic transcription was handwritten
by a human on the map, the training of a NN for mapping is not feasible because the
Gestalt laws [Tod08] apply. Therefore we use the symbolic AI approach and define
mapping rules, based on our visual perception.

Figure 4.10.: Mapping Of Numbers And Texts And Saving Of Results

In the previous steps, we saved the positions and contours of every number and pho-
netic transcription. These serve as the basis for rule creation. We differentiate between
successfully mapped pairs and unsuccessfully mapped pairs. The map is processed start-
ing from the top left. For every phonetic transcription, we try to find the corresponding
position number. Moreover, each number can only be mapped to one phonetic tran-
scription. We split the mapping of phonetic transcriptions into three cases.
At first, we start with a special case, where phonetic transcriptions are depicted as
crosses X on the map (Figure 4.11). The corresponding phonetic transcription can be
found in the legend on the map.

Figure 4.11.: Special Case: Phonetic Transcription is denoted as a Cross X

Using the height and width of a text contour, we determine whether it corresponds to
a cross X case. Next, we look for the nearest position number with the centroid (x,y) of
the contour as the origin. Thereafter the distance to the centroids (x,y) of all numbers
is calculated. In addition, only the numbers to the left of the cross are considered,
since in this special case only these can be the corresponding position number. The
smallest distance represents the corresponding position number. As distance function,
the euclidean distance is used.

deucl.(centtext, centnumber) =
√

(xtext − xnumber)2 + (ytext − ynumber)2

We need to store an image of the mapped pair. Hence a bounding box is calculated,
containing the cross X and the number. Figure 4.12 shows an example, where we can
see the bounding box of a cross, the bounding box of the corresponding number and
the new calculated bounding box. The thick purple line indicates the mapping of the
two bounding boxes. For the top and the bottom of the new bounding box, padding is
added. The new bounding box is saved as an image.

36

4.3. Mapping of Position Numbers and Phonetic Transcriptions

Figure 4.12.: Bounding Box containing a Cross and a Position Number

Next, we process another special case. Based on our mapping knowledge and the
Gestalt laws, we know that position numbers very close to the left edge of the bounding
box of a text contour correspond to it. Therefore, we calculate the distance to the next
left number for each text contour. The distance calculation is the same as in the previous
step. We define a threshold value for the maximum possible distance that a number can
have from the left edge of the contour. If the threshold value is not exceeded, a connected
bounding box containing number and text, with a threshold at top and bottom, is built
(Figure 4.13) and saved as an image. Those whose nearest left number exceeds the
threshold value are considered in the next case.

Figure 4.13.: Bounding Box containing Phonetic Transcription And Position Number

At last, we try to map all remaining text contours to their numbers. For this, we con-
sider every character in a phonetic transcription. By finding all connected components
in a text contour, we can determine each character and their corresponding bounding
boxes. Based on the centroid of each bounding box, the nearest number is calculated
with the euclidean distance and marked for each character. The most frequently marked
number is used as the corresponding position number. However, if the distance of the
selected number exceeds a certain threshold, the phonetic transcription is marked as
unsuccessfully mapped and saved as an image containing only the transcription.
Figure 4.14 represents this mapping process, thin turquoise lines show the nearest num-
ber from each character, the thick purple line represents the final mapped position
number. A bounding box including the phonetic transcription and the final position
number is created and saved as an image.

Figure 4.14.: Mapping of each Character to the nearest Position Number

All other text contours filtered in the previous processing steps are marked as noise and
saved as images in a separate folder. At the end, there are two image folders, one with
the successfully mapped pairs and one with all unknown contours and unsuccessfully
mapped phonetic transcriptions.

37

5. Evaluation

5.1. Data

The IT-Group Humanities of the LMU provides us with historical phonetic maps ex-
tracted from the AIS [JJS28]. We classify them into 4 categories and differentiate
between complete, upper, lower and other maps (Figure 5.1). A map is considered as
complete if only one term is evaluated and the entire geographical map of southern
Switzerland and Italy is visible. As for upper maps, the map of southern Switzerland
and northern Italy is visible twice. Each map represents a different term. Similarly, for
lower maps there a two maps of southern Italy, each representing a different term. Maps
assigned to other show no historical phonetic map at all, but additional information such
as conjugation tables or illustrations with names.

(a) Complete (b) Upper (c) Lower (d) Other

Figure 5.1.: Types of historical phonetic maps

There are a total of 1721 maps, from which 1601 and thus most are classified as
complete. Only about 7% are assigned to other categories. There are 36 upper maps,
39 lower maps and 45 other maps (Table 5.1). Therefore the focus of this work and the
evaluation is on the complete maps.

Total Complete Upper Lower Other

1721 1601 36 39 45

Table 5.1.: Number of all provided historical phonetic maps

39

5. Evaluation

5.2. Model Training

In this section, we discuss the training of our employed neural networks. As ba-
sis for our network we adapted an implementation of U-Net with Keras provided by
https://github.com/zhixuhao/unet. Figure 5.3 illustrates the adopted model with
an input of (512,512,3).
We trained two different models with the same network architecture (Figure 5.3), one
for text segmentation and one for number segmentation. The segmentation is a binary
segmentation, all found texts and numbers should be assigned to the foreground, ev-
erything else to the background. Foreground objects are displayed in white whereas
background objects are displayed in black. To train the text model, we labeled the pho-
netic transcriptions in three historical phonetic maps that are used as training samples,
as described in Chapter 4.2.3. Each map is decomposed into 130 patches of size 512
x 512. In total, there are 390 training samples for the text model. For a more robust
segmentation, we use data augmentation to generate more variety of training samples.
The training samples are randomly rotated, shifted, flipped, zoomed and sheared.

(a) Text Model’s Training Loss (b) Number Model’s Training Loss

Figure 5.2.: Overview of the Training Loss for Text and Number Model

We trained the model for 10 epochs with the Adam Optimizer [KB14] and used a
learning rate of 1e-4, the dice loss and a batch size of 1.
Figure 5.2a shows the progress of the training loss for the text model. As we can see, the
loss per epoch decreases continuously. The final loss is 0.841, which is apparently high,
but many further training attempts showed that the smaller the loss value, the more
pixels are assigned to the background. With a higher number of epochs, the training loss
converges towards 0. The final result is a black image, where all pixels are segmented
towards the background. Because most pixels in a map correspond to the background
and the map is therefore sparse in content, especially when texts or numbers are filtered.
This complicates model optimization since the loss does not cover the true segmentation
performance. To see how well a trained model performs, we need to segment a test
image and visually look at how good the segmentation is. Hence the optimization of our
trained model is also based on our subjective opinion and not only on the loss value.

40

https://github.com/zhixuhao/unet

5.2. Model Training

Regarding the training samples of the number model, we only need to label one historical
phonetic map, since the position of the numbers on each map is the same. The map is
again decomposed into patches of size 512 x 512, representing the training samples. We
simply increased the number of training samples by reusing the already labeled map.
In total, we trained our number model with 1040 training samples. The training and
augmenting parameters remained the same as in the text model training. Figure 5.2b
illustrates the progress of the training loss for the number model. After 2 epochs the loss
stagnates and decreases minimally. This is due to the sparsity in the training samples,
since the amount of pixels corresponding to a number is much smaller than the number
of background pixels. It is also reflected in the final training loss value, which is very
high at 0.961. Compared to the training loss of the text model, the text loss is 0.1 lower,
because the number of text pixels is much higher and therefore the training samples
are denser. We have the same optimization problem as before, however in this case the
training samples are sparser, resulting in a faster convergence towards 0 and thus to a
more difficult optimization. In terms of training time, each model is trained in less than
one hour, as we only trained 10 epochs with a batch size of 1, which makes the model
training very fast.

41

5. Evaluation

Figure 5.3.: Architecture of our employed Model

42

5.3. Mapping Results

5.3. Mapping Results

Next, we evaluate the mapping results of our proposed approaches. An automated
evaluation system is not feasible since the Gestalt laws [Tod08] apply, which is why
we cannot use an appropriate automatic evaluation measure besides looking at each
mapping one by one. For our tests, we randomly select 10 complete historical phonetic
maps from 1601. We consider the evaluation of our results as a binary classification
problem, a mapping can be either correct or incorrect. For the evaluation we use three
statistical measures[Pow11]: precision, recall and F1-measure.

Precision

The precision indicates how many of the found mappings actually are correctly mapped.

Precision =
Correctly Found Mappings

Found Mappings

Recall

The recall, also called sensitivity, specifies the proportion of the correct found mappings.

Recall =
Correctly Found Mappings

Total Mappings

F1-Measure

The F1-measure is the harmonic mean of precision and recall and therefore summarizes
both values.

F1-Measure = 2 ∗ Precision ∗ Recall

Precision + Recall

Figure 5.4.: Overview of all tested complete Maps

43

5. Evaluation

Figure 5.4 shows all complete maps we used for our test. There are a total of 407
position numbers on each map, each number can correspond to a phonetic transcription
but does not have to, because there are numbers without phonetic transcription. We
consider a mapping correct if the correct number is assigned to the correct phonetic
transcription. Every map differs in the number of mappings. Figure 5.5 illustrates
the mapping results of our approaches as a bar graph, with two bars for each map
representing the results of our two different approaches. The rule-based approach is
represented by bars with an orange border, while the deep learning bars have a blue
border. A bar is divided into three sections. The first section shows the number of
correctly found mappings and is displayed in green, the second section represents the
number of incorrectly found mappings and is displayed in red. The last section in gray
shows the number of not found mappings. The height of a bar represents the total
number of mappings on a map. Overall the DL approach finds a higher total number
of correctly found mappings. Furthermore, the number of incorrectly found mappings is
significantly lower. To analyze the test results in detail, we look at Table 5.2.

Figure 5.5.: Visualization of mapping results for each test Map

For each map, the map type, the approach type, the number of correctly and incor-
rectly found mappings and the total number of mappings are displayed. We distinguish
between two map types: sparse and dense. A map is considered as sparse when most
phonetic transcriptions are short in terms of text length and thus the distance between
each phonetic transcriptions is greater. Otherwise, the map is considered dense because
of the long phonetic transcriptions that make the map denser in the number of pixels.
Moreover, we also can see the values for precision, recall and F1 for better comparability.

In 14 of 20 tests a precision value of over 0.9 can be achieved, of which 10 tests belong
to the DL approach. Hence, the DL approach achieves very high precision in all tests,
which means that most of the predicted mappings are correct. Considering the recall of
the DL results, 7 out of 10 tests have a value above 0.7 compared to the RB approach

44

5.3. Mapping Results

Map Type Method # Found Mappings # Incorrect # Correct Precision # Total Mappings Recall F1

8 Dense RB 309 152 157 0.508 406 0.387 0.439
8 Dense DL 318 22 296 0.931 406 0.729 0.818
61 Sparse RB 377 57 320 0.849 405 0.790 0.818
61 Sparse DL 361 20 341 0.945 405 0.842 0.890
139 Sparse RB 373 67 306 0.820 407 0.752 0.785
139 Sparse DL 374 15 359 0.960 407 0.882 0.919
200 Dense RB 333 123 210 0.631 393 0.534 0.579
200 Dense DL 299 16 283 0.946 393 0.720 0.818
372 Dense RB 308 101 207 0.672 393 0.527 0.591
372 Dense DL 274 17 257 0.938 393 0.654 0.771
447 Sparse RB 347 45 302 0.870 398 0.759 0.811
447 Sparse DL 353 5 348 0.986 398 0.874 0.927
514 Sparse RB 346 50 296 0.855 385 0.769 0.810
514 Sparse DL 339 28 311 0.917 385 0.808 0.859
523 Sparse RB 357 75 282 0.790 381 0.740 0.764
523 Sparse DL 321 10 311 0.969 381 0.816 0.886
1259 Dense RB 318 98 220 0.692 381 0.577 0.629
1259 Dense DL 278 15 263 0.946 381 0.690 0.798
1302 Dense RB 373 158 215 0.576 406 0.530 0.552
1302 Dense DL 266 19 247 0.929 406 0.608 0.735

Table 5.2.: Test Results: Map Name, Type of Map, Approach Type (Rule-Based or
Depp Learning), Number of Found Mappings, Number of Incorrectly Found
Mappings, Number of Correctly Found Mapping, Precision, Number of All
Mappings, Recall, F1-Measure

where only 5 tests have a value above 0.7. This is also reflected in the F1 values, the
DL approach can reach an average of 0.84, while the RB approach only has an average
of 0.68. Overall, the DL approach achieves a better result for each map, both in terms
of precision and recall. In Table 5.3 we can see that the average precision of the DL
approach is nearly 0.95 and the average recall is 0.76, whereas the RB approach has an
average precision of 0.73 and a recall of 0.64. Thus, the DL approach can find an average
of 76% of all mappings on a map and therefore 12% more with an average 22% higher
precision than the RB approach.

Approach Type Avg. Precision Avg. Recall Avg. F1 Avg. Running Time (CPU) Avg. Running Time (GPU)

RB 0.726 0.636 0.678 120 s -
DL 0.947 0.762 0.842 - 68 s

Table 5.3.: Test Summary: Average Mapping Results and Inference Time for the Rule-
Based (RB) and the Deep Learning Approach (DL)

We executed the RB approach on a CPU with 2 cores, while the DL approach is
executed on GPU. Due to the increased computing capacity of the GPU, the inference
time is reduced. The inference time is the time required to forward an input through
a neural network and generate the corresponding output. In our case to segment the
numbers and phonetic transcriptions. The RB approach can’t be run on GPU since it
is only implemented to run on CPU. The average running time for the RB approach is

45

5. Evaluation

120s. For a direct comparison, the DL approach was also executed with CPU, however,
the run time for the first map was 2664s, therefore we did not run the remaining maps
with CPU, because the running time is many times longer than on GPU. The much
longer execution time results from the increased inference time, which results from the
low computing capacity. We employed two neural networks, one for the segmentation of
numbers and one for phonetic transcriptions. The input image is divided into a number
and a text image. Each is decomposed into 130 patches so that a total of 260 inputs
have to be processed by our models sequentially, which causes the high computational
effort. On GPU the average running time for the DL approach is only 68s and is thus,
as expected, faster than the average running time of the RB approach on CPU.
To see the advantages of the DL approach over the RB, we consider the results of the
different map types. For both sparse and dense maps the average precision is above 0.93,
while the RB approach can only achieve an average precision of 0.84 for sparse and 0.62
for dense maps. Considering the average recall, the RB approach has a value of 0.76
for sparse and only value of 0.51 for dense maps. In contrast, the DL approach has an
average recall of 0.84 for sparse maps, which is 0.08 higher, and 0.68 recall for dense
maps, which is even 0.17 higher. The F1-values summarizes precision and recall, the DL
approach has an average F1-value of 0.90 for sparse maps, the RB approach has only
0.80. For dense maps, the DL approach can show a value of 0.71, while the RB only has
0.56. Therefore the DL approach achieves better results for both maps, especially for
dense maps.

Approach Type Map Type Avg. Precision Avg. Recall F1

RB Sparse 0.837 0.762 0.798
DL Sparse 0.955 0.844 0.896
RB Dense 0.616 0.511 0.558
DL Dense 0.938 0.680 0.713

Table 5.4.: Test Results for each Map Type: Dense and Sparse

The reasons for the better performance are the better localization of phonetic tran-
scriptions and position numbers as well as the better recognition of related characters
and numbers. Furthermore, noise cleaning is included in the number segmentation and
not according to a large set of rules that can contain a human error. The RB approach
causes the loss of digits in a number or the deletion of a number since it is mistakenly
considered as noise. The DL approach removes almost all noises on the map and does
not delete any number. Hence, there is a better basis for the mapping, since noise is
not considered as a number and every number is localized. In dense maps, a good lo-
calization of any phonetic transcription is important, otherwise closely related texts are
recognized as one related text. Since we use dilation in the RB approach, more phonetic
transcriptions are combined into one, resulting in a higher number of incorrectly found

46

5.3. Mapping Results

mappings. In general, the RB approach finds more mappings than the DL approach,
but due to the listed drawbacks, the average percentage of correctly found pairs is much
lower. The DL approach has a very high precision of correct mappings, but still cannot
find all mappings, due to the merging of multiple phonetic transcriptions.

Figure 5.6.: Overview of all tested upper and lower Maps

Next, we look at upper and lower maps to evaluate the generalization of our methods
for deviating maps, especially as our network is trained on training samples of complete
maps. Figure 5.6 shows the maps we used for our tests. As we can see, many position
numbers do not have a corresponding phonetic transcription, which reduces the number
of mappings. Table 5.5 presents the test results for every map in detail. We see again
that the DL approach finds nearly only correctly mappings, for every map, a precision
value of over 0.9 can be achieved. The average precision value for the RB approach is
only 0.74 (Table 5.6). Since the number of mappings is not as high as in a complete map,
the DL approach has a high average recall of 0.86 compared to 0.71 for the RB approach.
Overall, we can say that for both map types: lower and upper, the performance of the
DL approach is better than the RB approach.

Map Type Method # Found Mappings # Incorrect # Correct Precision # Total Mappings Recall F1

Upper Maps

582 Dense RB 191 57 134 0.702 218 0.615 0.655
582 Dense DL 182 16 166 0.912 218 0.761 0.830
1475 Sparse RB 222 52 170 0.766 205 0.829 0.796
1475 Sparse DL 201 4 197 0.980 205 0.961 0.970

Lower Maps

940 Sparse RB 156 23 133 0.853 163 0.816 0.834
940 Sparse DL 147 9 138 0.939 163 0.847 0.890
1382 Dense RB 173 61 112 0.647 191 0.586 0.615
1382 Dense DL 179 13 166 0.927 191 0.869 0.897

Table 5.5.: Lower and Upper Test Results: Map Name, Type of Map, Approach Type
(Rule-Based or Depp Learning), Number of Found Mappings, Number of In-
correctly Found Mappings, Number of Correctly Found Mapping, Precision,
Number of All Mappings, Recall, F1-Measure

47

5. Evaluation

Approach Type Avg. Precision Avg. Recall Avg. F1

Upper Maps

RB 0.734 0.722 0.726
DL 0.946 0.861 0.900

Lower Maps

RB 0.750 0.701 0.725
DL 0.933 0.858 0.894

Table 5.6.: Lower and Upper Test Summary: Average Mapping and Runtime Results
for the Rule-Based (RB) and the Deep Learning Approach (DL)

48

6. Conclusion

This work presented a methodology for the mapping of phonetic transcriptions to their
corresponding position number on a historical phonetic map. The methodology is split
into two phases. The first phase completes the preprocessing of a map, including the
removing of noise and the localization of numbers and texts. For this, we proposed two
different approaches.
The first approach is based on the concept of symbolic AI. We created a large set of
explicit rules, using the analysis of number and text properties. With this set, we can
differentiate between noise and valuable information and therefore remove it. Further-
more, numbers and phonetic transcriptions are marked and localized with classic CV
methods.
The second approach is based on the concept of image segmentation with deep learning.
Text and number localization is seen as a binary segmentation problem, if it is recognized
as one of them it is assigned to the foreground and therefore marked white otherwise it
corresponds to the background, which is marked black. We trained two models, one for
segmenting phonetic transcriptions and one for segmenting numbers. The segmentation
automatically removes the noise as it is neither recognized as a number nor as text and
hence as background. As foundation for our neural networks, U-Net [RFB15] is used.
We use classical CV methods to localize the marked numbers and texts on the segmented
images.
Based on the localized objects the mapping is performed. Since the information on the
map was recorded by a person, it does not follow any logic that can be captured with
the help of automated algorithms, hence the Gestalt laws apply. Therefore, the training
of a neural network to predict corresponding numbers and phonetic transcriptions is not
feasible. We define three mapping rules derived from our subjective visual understand-
ing. The first one considers abbreviations on a map, where a phonetic transcription is
depicted as a cross. The second one takes the position of the phonetic transcription into
account, most of them are written left to their corresponding numbers. The last rule
finds the nearest position number for every character in a phonetic transcription and
selects the number that occurs most frequently as the position number. Every mapped
pair is stored as an image.
We evaluate both approaches by analyzing the predicted mappings in 10 randomly se-
lected maps. To evaluate, we use precision, recall and F1-score. When considering the
test results, we see that all maps differ in their density of information. There are dense
maps as well as sparse maps. Depending on this, the performance varies. For sparse
maps, the mapping results are better than for dense maps, since the phonetic transcrip-
tions are more clearly separated from each other and thus the localization is better.
While for dense maps phonetic transcriptions are often not recognized as individuals

49

6. Conclusion

but as one big phonetic transcriptions. This leads to worse recall values, as not every
transcription is recognized and therefore can not be mapped to a number.
Overall the deep learning (DL) approach achieves better mapping results in every map
than the rule-based (RB) approach. The average F1-score of the DL approach is 0.86
whereas the RB approach only has an average score of 0.69. Furthermore, the average
precision is very high with 0.947, so almost all found pairs are mapped correctly. The
RB approach achieves an average precision of 0.726. When looking at the recall values,
we can see that not all mappings are found. The DL approach has an average recall
score of 0.762, while the RB approach has 0.636.
With this thesis and the achieved scores, we show the successful application of deep
learning techniques for a problem in the area of humanities. An automated process
has been developed to support the digitization of language atlases in the VerbaAlpina
project.

6.1. Outlook

Our proposed methodology can be used as a first approach for the mapping of phonetic
transcriptions to their corresponding position number on a historical phonetic map.
There are still many possible refinements to our approach and future work since the
evaluation showed that not every mapping on a map is found correctly. In this section,
we present some improvement strategies.

Recall Improvement On average 25% of all mappings are not found by our deep
learning approach. To find all mappings, the localization of the phonetic transcriptions
has to be enhanced. There are different approaches to this. Due to the time constraints
of this work, we were unable to find the optimal hyperparameters for our employed
models. The better the hyperparameters are selected, the better the model can segment
the different phonetic transcriptions. There exists a wide variety of hyperparameter
tuning methods, for example Grid Search or Random Search [BB12]. Both depend on
a set of possible configurations for the hyperparameters to be optimized. This includes
the learning rate, batch-size or the number of hidden units, to name just a few. Grid
Search considers any possible combination in this set and is, therefore, an exhaustive
search, whereas Random Search randomly selects and tests combinations.
Another approach is to increase the amount of training data. With more data, the model
could be better trained for the segmentation task. Besides, the input size could be of
importance since we decompose the original input into patches of a specific size, related
texts can be separated and thus incorrectly localized.

Automated Detection of False Positive Mappings The mappings are currently
still evaluated manually. Automated evaluation is challenging since the Gestalt laws ap-
ply. An introduction of a confidence score for the mapping could support the detection
of false-positive mappings. The confidence score can depend on the selected mapping
rule, the distance to the position number and also the neighborhood of already found

50

6.1. Outlook

mappings. Based on a threshold value, the mappings could be classified into ”confiden-
tially mapped” and ”require checks”. That would reduce the number of possible false
positives that need to be checked manually.

Improvement and Extension of the Mapping Rules Since the Gestalt laws apply
to the mapping of position numbers and phonetic transcriptions, we define rules based
on our visual knowledge to find these mappings. The rules are not error-free and can be
improved, extended or even replaced with further research to achieve a higher matching
quality.

51

A. Appendix

Figure A.1.: Historical phonetic map

53

A. Appendix

Figure A.2.: Example of the Mapping Process of the Rule-Based Approach

54

Figure A.3.: Example of the Mapping Process of the Deep Learning Approach

55

List of Figures

1.1. Example of Image Segmentation [BKC17] 1

2.1. R-CNN Methodology by Girshick et al. [GDDM14] 5

2.2. Fast R-CNN Methodology by Girshick et. al. [Gir15] 6

2.3. Region Proposal Network (RPN) by Ren et al. [RHGS15] 7

2.4. YOLO Model by Redmon et al. [RDGF16] 7

2.5. Error Comparison of YOLO [RDGF16] with Fast R-CNN [Gir15] by Red-
mon et al. [RDGF16] . 8

2.6. Fully Convolutional Network by Long et al. [LSD15] 9

2.7. Tests of different FCN Models [LSD15] . 9

2.8. SegNet by Badrinarayanan et al. [BKC17] 10

2.9. Segmentation Comparison between FCN & ParseNet and Overview of the
ParseNet Module by Liu et. al. [LRB15] 11

2.10. Deep Mask by Pinheiro et al. [PCD15] . 11

2.11. Mask R-CNN by He et al. [HGDG17] . 12

3.1. Example of a historical phonetically Map displaying the term father . . . 13

3.2. Example of the dilation operator [BK08] 15

3.3. Example of the erosion operator [BK08] 15

3.4. Opening Operation: Elimination of the upward Outliers [BK08] 15

3.5. Closing Operation: Elimination of the downward Outliers [BK08] 16

3.6. Example of the Binary and Inverse Binary Thresholding [Tea19a] 16

3.7. Example of the Connected Component Computation [Sze10] 17

3.8. Application Example of the Canny Edge Detection [BK08] 18

3.9. Application Example of the Hough Line Transformation [BK08] 18

3.10. Example of the finding contours method [BK08] 19

3.11. Relationship between the terms Artificial Intelligence, Machine Learning
and Deep Learning [Cho18] . 20

3.12. Rule-Based Approach vs. Machine Learning Approach [Cho18] 21

3.13. Learning of Deep Representations with the help of a number classification
model [Cho18] . 21

3.14. Training’s process of a Neural Network [Cho18] 22

3.15. LeNet-5, a Convolutional Neural Network for digits recognition by Yann
LeCun [LBB+98] . 24

3.16. Development of Object Recognition: from Classification to Segmentation
[GGOEO+17] . 25

57

List of Figures

4.1. Methodology for the mapping of position numbers and phonetic transcrip-
tions . 27

4.2. Map Processing: Noise Removing and Number/Text Localization 28
4.3. Example of the Color Extraction . 29
4.4. Methodology for Removing Noise and Localizing Numbers and Phonetic

Transcriptions according to Rules . 30
4.5. Example for the Dilation of the Number 118 31
4.6. U-Net Architecture by Ronneberger et al. [RFB15] 32
4.7. Training Samples Of Texts and Numbers 33
4.8. Example of Neural Network Segmentation Results for a few Inputs 33
4.9. Deep Learning Methodology for Noise Removal and Localization of Num-

bers and Phonetic Transcriptions . 35
4.10. Mapping Of Numbers And Texts And Saving Of Results 36
4.11. Special Case: Phonetic Transcription is denoted as a Cross X 36
4.12. Bounding Box containing a Cross and a Position Number 37
4.13. Bounding Box containing Phonetic Transcription And Position Number . 37
4.14. Mapping of each Character to the nearest Position Number 37

5.1. Types of historical phonetic maps . 39
5.2. Overview of the Training Loss for Text and Number Model 40
5.3. Architecture of our employed Model . 42
5.4. Overview of all tested complete Maps . 43
5.5. Visualization of mapping results for each test Map 44
5.6. Overview of all tested upper and lower Maps 47

A.1. Historical phonetic map . 53
A.2. Example of the Mapping Process of the Rule-Based Approach 54
A.3. Example of the Mapping Process of the Deep Learning Approach 55

58

Bibliography

[BB12] Bergstra, James ; Bengio, Yoshua: Random search for hyper-
parameter optimization. In: Journal of Machine Learning Research 13
(2012), Nr. Feb, S. 281–305

[BK08] Bradski, Gary ; Kaehler, Adrian: Learning OpenCV: Computer vision
with the OpenCV library. ” O’Reilly Media, Inc.”, 2008

[BKC17] Badrinarayanan, Vijay ; Kendall, Alex ; Cipolla, Roberto: Segnet:
A deep convolutional encoder-decoder architecture for image segmenta-
tion. In: IEEE transactions on pattern analysis and machine intelligence
39 (2017), Nr. 12, S. 2481–2495

[Can87] Canny, John: A computational approach to edge detection. In: Readings
in computer vision. Elsevier, 1987, S. 184–203

[Cho18] Chollet, Francois: Deep learning with Python. (2018)

[GBC16] Goodfellow, Ian ; Bengio, Yoshua ; Courville, Aaron: Deep learn-
ing. MIT press, 2016

[GDDM14] Girshick, Ross ; Donahue, Jeff ; Darrell, Trevor ; Malik, Jitendra:
Rich feature hierarchies for accurate object detection and semantic seg-
mentation. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, 2014, S. 580–587

[GGOEO+17] Garcia-Garcia, Alberto ; Orts-Escolano, Sergio ; Oprea, Sergiu ;
Villena-Martinez, Victor ; Garcia-Rodriguez, Jose: A review on
deep learning techniques applied to semantic segmentation. In: arXiv
preprint arXiv:1704.06857 (2017)

[Gir15] Girshick, Ross: Fast r-cnn. In: Proceedings of the IEEE international
conference on computer vision, 2015, S. 1440–1448

[HGDG17] He, Kaiming ; Gkioxari, Georgia ; Dollár, Piotr ; Girshick, Ross:
Mask r-cnn. In: Proceedings of the IEEE international conference on
computer vision, 2017, S. 2961–2969

[Hou62] Hough, Paul V.: Method and means for recognizing complex patterns.
Dezember 18 1962. – US Patent 3,069,654

59

Bibliography

[HSZ87] Haralick, Robert M. ; Sternberg, Stanley R. ; Zhuang, Xinhua:
Image analysis using mathematical morphology. In: IEEE transactions
on pattern analysis and machine intelligence (1987), Nr. 4, S. 532–550

[JJS28] Jaberg, Karl ; Jud, Jakob ; Scheuermeier, Paul: Sprach-und Sachat-
las Italiens und der Südschweiz. Bd. 1. Ringier, 1928

[KB14] Kingma, Diederik P. ; Ba, Jimmy: Adam: A method for stochastic
optimization. In: arXiv preprint arXiv:1412.6980 (2014)

[KL14] Krefeld, Thomas ; Lücke, Stephan: VerbaAlpina. Der alpine Kultur-
raum im Spiegel seiner Mehrsprachigkeit. http://dx.doi.org/10.5282/
verba-alpina, 2014. – Accessed: 29.06.2019

[KL18] Krefeld, Thomas ; Lücke, Stephan: Verba Alpina (Pro-
jektpräsentation), First GeRDI Community Workshop. https:

//www.verba-alpina.gwi.uni-muenchen.de/wp-content/uploads/

gerdi_presentation_community_workshop.pptx, 2018. – Accessed:
25.09.2019

[KSH12] Krizhevsky, Alex ; Sutskever, Ilya ; Hinton, Geoffrey E.: Imagenet
classification with deep convolutional neural networks. In: Advances in
neural information processing systems, 2012, S. 1097–1105

[Lag14] Laganière, Robert: OpenCV Computer Vision Application Program-
ming Cookbook Second Edition. Packt Publishing Ltd, 2014

[LBB+98] LeCun, Yann ; Bottou, Léon ; Bengio, Yoshua ; Haffner, Patrick
u. a.: Gradient-based learning applied to document recognition. In: Pro-
ceedings of the IEEE 86 (1998), Nr. 11, S. 2278–2324

[LBH15] LeCun, Yann ; Bengio, Yoshua ; Hinton, Geoffrey: Deep learning. In:
nature 521 (2015), Nr. 7553, S. 436

[LRB15] Liu, Wei ; Rabinovich, Andrew ; Berg, Alexander C.: Parsenet: Look-
ing wider to see better. In: arXiv preprint arXiv:1506.04579 (2015)

[LSD15] Long, Jonathan ; Shelhamer, Evan ; Darrell, Trevor: Fully con-
volutional networks for semantic segmentation. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, S.
3431–3440

[Lü19] Lücke, Stephan: Unter der Haube – Ein Blick in den Maschinenraum
von VerbaAlpina. https://www.verba-alpina.gwi.uni-muenchen.de/

?author=5, 2019. – Accessed: 26.09.2019

60

http://dx.doi.org/10.5282/verba-alpina
http://dx.doi.org/10.5282/verba-alpina
https://www.verba-alpina.gwi.uni-muenchen.de/wp-content/uploads/gerdi_presentation_community_workshop.pptx
https://www.verba-alpina.gwi.uni-muenchen.de/wp-content/uploads/gerdi_presentation_community_workshop.pptx
https://www.verba-alpina.gwi.uni-muenchen.de/wp-content/uploads/gerdi_presentation_community_workshop.pptx
https://www.verba-alpina.gwi.uni-muenchen.de/?author=5
https://www.verba-alpina.gwi.uni-muenchen.de/?author=5

Bibliography

[MKS+13] Mnih, Volodymyr ; Kavukcuoglu, Koray ; Silver, David ; Graves,
Alex ; Antonoglou, Ioannis ; Wierstra, Daan ; Riedmiller, Mar-
tin: Playing atari with deep reinforcement learning. In: arXiv preprint
arXiv:1312.5602 (2013)

[MN18] Minar, Matiur R. ; Naher, Jibon: Recent advances in deep learning:
An overview. In: arXiv preprint arXiv:1807.08169 (2018)

[MNA16] Milletari, Fausto ; Navab, Nassir ; Ahmadi, Seyed-Ahmad: V-net:
Fully convolutional neural networks for volumetric medical image segmen-
tation. In: 2016 Fourth International Conference on 3D Vision (3DV)
IEEE, 2016, S. 565–571

[ODZ+16] Oord, Aaron van d. ; Dieleman, Sander ; Zen, Heiga ; Simonyan,
Karen ; Vinyals, Oriol ; Graves, Alex ; Kalchbrenner, Nal ; Senior,
Andrew ; Kavukcuoglu, Koray: Wavenet: A generative model for raw
audio. In: arXiv preprint arXiv:1609.03499 (2016)

[PCD15] Pinheiro, Pedro O. ; Collobert, Ronan ; Dollár, Piotr: Learn-
ing to segment object candidates. In: Advances in Neural Information
Processing Systems, 2015, S. 1990–1998

[Pow11] Powers, David M.: Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation. (2011)

[RDGF16] Redmon, Joseph ; Divvala, Santosh ; Girshick, Ross ; Farhadi, Ali:
You only look once: Unified, real-time object detection. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, 2016,
S. 779–788

[RFB15] Ronneberger, Olaf ; Fischer, Philipp ; Brox, Thomas: U-net: Con-
volutional networks for biomedical image segmentation. In: International
Conference on Medical image computing and computer-assisted interven-
tion Springer, 2015, S. 234–241

[RHGS15] Ren, Shaoqing ; He, Kaiming ; Girshick, Ross ; Sun, Jian: Faster
r-cnn: Towards real-time object detection with region proposal networks.
In: Advances in neural information processing systems, 2015, S. 91–99

[SHM+16] Silver, David ; Huang, Aja ; Maddison, Chris J. ; Guez, Arthur
; Sifre, Laurent ; Van Den Driessche, George ; Schrittwieser,
Julian ; Antonoglou, Ioannis ; Panneershelvam, Veda ; Lanctot,
Marc u. a.: Mastering the game of Go with deep neural networks and
tree search. In: nature 529 (2016), Nr. 7587, S. 484

[SLV+17] Sudre, Carole H. ; Li, Wenqi ; Vercauteren, Tom ; Ourselin, Se-
bastien ; Cardoso, M J.: Generalised dice overlap as a deep learning loss

61

Bibliography

function for highly unbalanced segmentations. In: Deep learning in med-
ical image analysis and multimodal learning for clinical decision support.
Springer, 2017, S. 240–248

[SS04] Sezgin, Mehmet ; Sankur, Bülent: Survey over image thresholding
techniques and quantitative performance evaluation. In: Journal of Elec-
tronic imaging 13 (2004), Nr. 1, S. 146–166

[Sze10] Szeliski, Richard: Computer vision: algorithms and applications.
Springer Science & Business Media, 2010

[Tea19a] Team, OpenCV: Image Thresholding OpenCV. https://docs.opencv.
org/master/d7/d4d/tutorial_py_thresholding.html, 2019. – Ac-
cessed: 20.07.2019

[Tea19b] Team, OpenCV: Open Source Computer Vision Library (OpenCV).
https://opencv.org/, 2019. – Accessed: 24.06.2019

[Tis17] Tisato, Graziano: NavigAIS, AIS Digital Atlas and Navigation Soft-
ware. http://www3.pd.istc.cnr.it/navigais-web/, 2017. – Accessed:
25.09.2019

[Tod08] Todorovic, Dejan: Gestalt principles. In: Scholarpedia 3 (2008), Nr.
12, S. 5345

[Tri11] Tripathi, KP: A review on knowledge-based expert system: concept and
architecture. In: IJCA Special Issue on Artificial Intelligence Techniques-
Novel Approaches & Practical Applications 4 (2011), S. 19–23

[UVDSGS13] Uijlings, Jasper R. ; Van De Sande, Koen E. ; Gevers, Theo ; Smeul-
ders, Arnold W.: Selective search for object recognition. In: Interna-
tional journal of computer vision 104 (2013), Nr. 2, S. 154–171

[WGSM16] Wong, Sebastien C. ; Gatt, Adam ; Stamatescu, Victor ; McDon-
nell, Mark D.: Understanding data augmentation for classification:
when to warp? In: 2016 international conference on digital image com-
puting: techniques and applications (DICTA) IEEE, 2016, S. 1–6

[ZMCL16] Zhu, Hongyuan ; Meng, Fanman ; Cai, Jianfei ; Lu, Shijian: Beyond
pixels: A comprehensive survey from bottom-up to semantic image seg-
mentation and cosegmentation. In: Journal of Visual Communication
and Image Representation 34 (2016), S. 12–27

62

https://docs.opencv.org/master/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/master/d7/d4d/tutorial_py_thresholding.html
https://opencv.org/
http://www3.pd.istc.cnr.it/navigais-web/

	Introduction
	Motivation
	VerbaAlpina
	Objective
	Outline

	Related Work
	Object Localization
	Semantic Segmentation
	Instance Segmentation
	Classification of this Work

	Fundamentals
	Historical Phonetic Maps
	Computer Vision
	OpenCV
	Image Morphology
	Image Thresholding
	Connected Components
	Image Transformation
	Contour

	Deep Learning
	Definition
	Training
	Convolutional Neural Network
	Data Augmentation

	Image Segmentation
	Dice Loss

	Methodology
	Rule-Based Approach
	Deep Learning Approach
	Infrastructure
	U-Net Architecture
	Data Preprocessing
	Methodology

	Mapping of Position Numbers and Phonetic Transcriptions

	Evaluation
	Data
	Model Training
	Mapping Results

	Conclusion
	Outlook

	Appendix
	List of Figures
	Bibliography

