Published October 8, 2022 | Version v1
Taxonomic treatment Open

Tettigettalna Puissant 2010

  • 1. Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
  • 2. Departament de Ciències Ambientals, Universitat de Girona, Girona, Catalonia, Spain
  • 3. Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland & Natural History Museum of Bern, Bern, Switzerland

Description

4.1 | Phylogeny of Tettigettalna

With this study, we used an extended set of mitochondrial sequences and obtained the first nuclear data to investigate the evolution of the Mediterranean genus Tettigettalna. These small-sized and colour-cryptic cicadas occur at fairly low density, being very difficult to sample without the use of acoustic location. Hence, and because females are mute and seldom seen, the dataset is composed of males only. The inclusion of nuclear sequences is particularly relevant to corroborate patterns found with mitochondrial data and discard potential bias in male dispersal. As expected, nuclear EF-1α had much lower diversity than mitochondrial genes and lacked resolution in Tettigettalna, though without conflicting with mitochondrial phylogenies.

Regarding the order of lineage splitting among Tettigettalna, our study gives support to T. josei as sister to the remaining extant members of the genus, consistent with morphological and acoustic differentiation observed for this species (Mendes et al., 2014). Nonetheless, the other two phylogenetic scenarios in the species coalescent tree (i.e subclades T. josei – Core Tettigettalna and T. afroamissa – T. josei) have some degree of support (8%–9%). Species T. afroamissa and T. argentata are among the most genetically distant taxa in the phylogeny, even though they share a similar calling song pattern. Tettigettalna has no parallel with any other cicada genus occurring in Iberia, being the most species rich, with species defined mainly by song characterization (Puissant & Sueur, 2010). Such diversity of songs within Tettigettalna has evolved without significant morphological divergence, not even at genitalia morphology, often a key trait to distinguish between closely related species, as it may prevent successful mating of heterospecific couples (Knowles et al., 2016; Langerhans et al., 2016). A few song operational taxonomic units within Tettigettaln a remain polyphyletic with the new sequence data as in Nunes, Mendes, Marabuto, et al. (2014) and Costa et al. (2017), namely the widespread T. argentata with cryptic T. mariae and T. aneabi, which present partially overlapping distribution ranges (Nunes, Mendes, Quartau, et al., 2014). Insect songs are genetically inherited but the genes ruling them remain poorly known, in particular for cicadas (Fujisawa et al., 2018; Sueur, 2006; Xu & Shaw, 2019, 2021). Neutral genetic markers fail to differentiate among such close species, either because divergence among their songs is too recent for complete lineage sorting or episodes of introgression on secondary contact have eroded such divergence, or very likely both. Similar cases of polyphyly among cryptic species of Cicadettinni have been detected in Cicadetta of Italy and Greece (Hertach et al., 2015, 2016; Wade et al., 2015), and in Kikihia and Maoricicada of New Zealand (Buckley et al., 2006; Marshall et al., 2008), where molecular phylogeny failed to recover some acoustically defined taxa.

Only a few nuclear genes have been sequenced thus far to investigate phylogenetic relationships among cicadas worldwide, being EF-1α the most extensively used and informative (Arensburger, Buckley, et al., 2004; Banker et al., 2017; Buckley & Simon, 2007; Hill et al., 2021; Lee & Hill, 2010; Marshall et al., 2008, 2016, 2018; Owen et al., 2017; Price et al., 2019; Simon et al., 2019). Nuclear genes have been shown as insufficient to resolve the phylogeny of cryptic cicada species where hybridization is suspected, even when multiple genes were used (Banker et al., 2017; Buckley & Simon, 2007; Wade et al., 2015). A genomic approach and a fine-scale sampling at contact zones would be preferable to overcome single-gene shortcomings and will certainly help to disentangle introgression events and incomplete lineage sorting among T. argentata, T. mariae and T. aneabi.

Another incongruence between acoustics and genetics found within the T. helianthemi ssp. remains unexplained, as T. h. galantei Type II, though sharing the same calling song with T. h. galantei Type I, is remarkably different at mitochondrial data. T. h. galantei Type II has a parapatric distribution with Type I (they were not overlapping) with no obvious breaks in habitat features to justify such level of genetic divergence. Amplification of nuclear mitochondrial DNA sequences (NUMTs) could be a reason for this pattern of divergence i.e, mutations at the primer biding sites that would bias amplification towards nuclear copies of COI at this particular taxon (Song et al., 2008). This seems unlikely since the same phylogenetic pattern was recovered for all three independently amplified fragments of mitochondrial DNA (COI-LEP, COI-CTL and ATP). Further studies with phylogenomic data should bring some light to the roots to this mismatch.

Notes

Published as part of Costa, Gonçalo J., Nunes, Vera L., Marabuto, Eduardo, Mendes, Raquel, Silva, Diogo N., Pons, Pere, Bas, Josep M., Hertach, Thomas, Paulo, Octávio S. & Simões, Paula C., 2022, The effect of the Messinian salinity crisis on the early diversification of the Tettigettalna cicadas, pp. 100-116 in Zoologica Scripta 52 (1) on pages 10-11, DOI: 10.1111/zsc.12571, http://zenodo.org/record/8274070

Files

Files (5.4 kB)

Name Size Download all
md5:b0b622e3859d9f7ddbe6605231c0ead8
5.4 kB Download

System files (42.6 kB)

Name Size Download all
md5:170953052d59a0f2c2756ecbef017e60
42.6 kB Download

Linked records

Additional details

References

  • Mendes, R., Nunes, V. L., Quartau, J. A., & Simoes, P. C. (2014). Patterns of acoustic and morphometric variation in species of genus Tettigettalna (Hemiptera: Cicadidae): Sympatric populations show unexpected differences. European Journal of Entomology, 111, 429 - 441. https: // doi. org / 10.14411 / eje. 2014.054
  • Puissant, S., & Sueur, J. (2010). A hotspot for Mediterranean cicadas (Insecta: Hemiptera: Cicadidae): New genera, species and songs from southern Spain. Systematics and Biodiversity, 8, 555 - 574. https: // doi. org / 10.1080 / 14772000.2010.532832
  • Knowles, L. L., Chappell, T. M., Marquez, E. J., & Cohn, T. J. (2016). Tests of the role of sexual selection in genitalic divergence with multiple hybrid clines. Journal of Orthoptera Research, 25, 75 - 82.
  • Langerhans, R. B., Anderson, C. M., & Heinen-Kay, J. L. (2016). Causes and consequences of genital evolution. Integrative and Comparative Biology, 56, 741 - 751. https: // doi. org / 10.1093 / icb / icw 101
  • Costa, G. J., Nunes, V. L., Marabuto, E., Mendes, R., Laurentino, T. G., Quartau, J. A., Paulo, O. S., & Simoes, P. (2017). Morphology, songs and genetics identify two new cicada species from Morocco: Tettigettalna afroamissa sp. nov. and Berberigetta dimelodica gen. nov. & sp. nov. (Hemiptera: Cicadettini). Zootaxa, 4237, 517. https: // doi. org / 10.11646 / zootaxa. 4237.3.4
  • Fujisawa, T., Koyama, T., Kakishima, S., Cooley, J. R., Simon, C., Yoshimura, J., & Sota, T. (2018). Triplicate parallel life cycle divergence despite gene flow in periodical cicadas. Communications Biology, 1, 26. https: // doi. org / 10.1038 / s 4200 3 - 018 - 0025 - 7
  • Sueur, J. (2006). Insect species and their songs. In S. Drosopoulos & M. F. Claridge (Eds.), Insect sounds and communication (pp. 331 - 349). CRC Press.
  • Xu, M., & Shaw, K. L. (2019). The genetics of mating song evolution underlying rapid speciation: Linking quantitative variation to candidate genes for behavioral isolation. Genetics, 211, 1089 - 1104. https: // doi. org / 10.1534 / genetics. 118.301706
  • Xu, M., & Shaw, K. L. (2021). Extensive linkage and genetic coupling of song and preference loci underlying rapid speciation in Laupala crickets. Journal of Heredity, 112, 204 - 213. https: // doi. org / 10.1093 / jhered / esab 001
  • Hertach, T., Trilar, T., Wade, E. J., Simon, C., & Nagel, P. (2015). Songs, genetics, and morphology: Revealing the taxonomic units in the European Cicadetta cerdaniensis cicada group, with a description of new taxa (Hemiptera: Cicadidae). Zoological Journal of the Linnean Society, 173, 320 - 351. https: // doi. org / 10.1111 / zoj. 12212
  • Hertach, T., Puissant, S., Gogala, M., Trilar, T., Hagmann, R., Baur, H., Kunz, G., Wade, E. J., Loader, S. P., Simon, C., & Nagel, P. (2016). Complex within a complex: Integrative taxonomy reveals hidden diversity in Cicadetta brevipennis (Hemiptera: Cicadidae) and unexpected relationships with a song divergent relative. PLoS One, 11, e 0165562. https: // doi. org / 10.1371 / journ al. pone. 0165562
  • Wade, E. J., Hertach, T., Gogala, M., Trilar, T., & Simon, C. (2015). Molecular species delimitation methods recover most song-delimited cicada species in the European Cicadetta montana complex. Journal of Evolutionary Biology, 28, 2318 - 2336. https: // doi. org / 10.1111 / jeb. 12756
  • Buckley, T. R., Cordeiro, M., Marshall, D. C., & Simon, C. (2006). Differentiating between hypotheses of lineage sorting and introgression in New Zealand alpine cicadas (Maoricicada Dugdale). Systematic Biology, 55, 411 - 425. https: // doi. org / 10.1080 / 10635 150600697283
  • Marshall, D. C., Slon, K., Cooley, J. R., Hill, K. B. R., & Simon, C. (2008). Steady Plio-Pleistocene diversification and a 2 - million-year sympatry threshold in a New Zealand cicada radiation. Molecular Phylogenetics and Evolution, 48, 1054 - 1066. https: // doi. org / 10.1016 / j. ympev. 2008.05.007
  • Banker, S. E., Elizabeth, J. W., & Simon, C. (2017). The confounding effects of hybridization on phylogenetic estimation in the New Zealand cicada genus Kikihia. Molecular Phylogenetics and Evolution, 116, 172 - 181. https: // doi. org / 10.1016 / j. ympev. 2017.08.009
  • Buckley, T. R., & Simon, C. (2007). Evolutionary radiation of the cicada genus Maoricicada Dugdale (Hemiptera: Cicadoidea) and the origins of the New Zealand alpine biota. Biological Journal of the Linnean Society, 91, 419 - 435. https: // doi. org / 10.1111 / j. 1095 - 8312.2007.00807. x
  • Hill, K. B. R., Marshall, D. C., Marathe, K., Moulds, M. S., Lee, Y. J., Mohagan, A. B., Sarkar, V., Price, B. W., Duffels, J. P., Schouten, M. A., de Boer, A. J., Kunte, K., & Simon, C. (2021). The molecular systematics and diversification of a taxonomically unstable group of Asian cicada tribes related to Cicadini Latreille, 1802 (Hemiptera: Cicadidae). Invertebrate Systematics, 35, 570 - 601. https: // doi. org / 10.1071 / IS 20079
  • Lee, Y. J., & Hill, K. B. R. (2010). Systematic revision of the genus Psithyristria Stal (Hemiptera: Cicadidae) with seven new species and a molecular phylogeny of the genus and higher taxa. Systematic Entomology, 35, 277 - 305. https: // doi. org / 10.1111 / j. 1365 - 3113.2009.00509. x
  • Marshall, D. C., Hill, K. B. R., Moulds, M., Vanderpool, D., Cooley, J. R., Mohagan, A. B., & Simon, C. (2016). Inflation of molecular clock rates and dates: Molecular phylogenetics, biogeography, and diversification of a global cicada radiation from Australasia (Hemiptera: Cicadidae: Cicadettini). Systematic Biology, 65, 16 - 34. https: // doi. org / 10.1093 / sysbio / syv 069
  • Marshall, D. C., Moulds, M., Hill, K. B. R., Price, B. W., Wade, E. J., Owen, C. L., Goemans, G., Marathe, K., Sarkar, V., Cooley, J. R., Sanborn, A. F., Kunte, K., Villet, M. H., & Simon, C. (2018). A molecular phylogeny of the cicadas (Hemiptera: Cicadidae) with a review of tribe and subfamily classification. Zootaxa, 4424, 1 - 64. https: // doi. org / 10.11646 / zootaxa. 4424.1.1 PMID: 30313477.
  • Owen, C. L., Marshall, D. C., Kathy, B. R. H., & Simon, C. (2017). How the aridification of Australia structured the biogeography and influenced the diversification of a large lineage of Australian cicadas. Systematic Biology, 66, 569 - 589. https: // doi. org / 10.1093 / sysbio / syw 078
  • Price, B. W., Marshall, D. C., Barker, N. P., Simon, C., & Villet, M. H. (2019). Out of Africa? A dated molecular phylogeny of the cicada tribe Platypleurini Schmidt (Hemiptera: Cicadidae), with a focus on African genera and the genus Platypleura Amyot & Audinet-Serville. Systematic Entomology, 44, 842 - 861. https: // doi. org / 10.1111 / syen. 12360
  • Simon, C., Gordon, E. R. L., Moulds, M. S., Cole, J. A., Haji, D., Lemmon, A. R., Lemmon, E. M., Kortyna, M., Nazario, K., Wade, E. J., Meister, R. C., Goemans, G., Chiswell, S. M., Pessacq, P., Veloso, C., Mccutcheon, J. P., & Lukasik, P. (2019). Off-target capture data, endosymbiont genes and morphology reveal a relict lineage that is sister to all other singing cicadas. Biological Journal of the Linnean Society, 128, 865 - 886. https: // doi. org / 10.1093 / biolinnean / blz 120
  • Song, H., Buhay, J. E., Whiting, M. F., & Crandall, K. A. (2008). Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences of the United States of America, 105, 13486 - 13491. https: // doi. org / 10.1073 / pnas. 0803076105