Published May 23, 2017 | Version v1
Dataset Open

MARSIS surface clutter simulations over Lucus Planun, Mars

  • 1. INAF
  • 2. Jacobs University Bremen
  • 3. EPFL
  • 4. University of South Australia
  • 5. University of Arizona
  • 6. L. Scientifico Righi

Description

Mars Express MARSIS radargram simulations over Lucus Planum (Mars)

This archive contains simulations of radar surface scattering for the MARSIS low-frequency radar over the area of Lucus Planum.

Ground Penetrating Radar (GPR) is a well-established geophysical technique employed for more than five decades to investigate the terrestrial subsurface. It is based on the transmission of radar pulses at frequencies in the MF, HF and VHF portions of the electromagnetic spectrum into the surface, to detect reflected signals from subsurface structures (see e.g. Bogorodsky et al. 1985). Orbiting GPR have been successfully employed in planetary exploration (Phillips et al. 1973, Picardi et al. 2004, Seu et al. 2007, Ono et al. 2009), and are often called subsurface radar sounders. By detecting dielectric discontinuities associated with compositional and/or structural discontinuities, radar sounders are the only remote sensing instruments allowing the study of the subsurface of a planet from orbit.

MARSIS is a synthetic-aperture, orbital sounding radar carried by the European Space Agency spacecraft Mars Express (Picardi et al. 2005). MARSIS is optimized for deep penetration, having detected echoes down to a depth of 3.7 km over the South Polar Layered Deposits (Plaut el al. 2007). MARSIS transmits through a dipole, which has negligible directivity, with the consequence that the radar pulse illuminates the entire surface beneath the spacecraft and not only the near-nadir portion from which subsurface echoes are expected. The electromagnetic wave can then be scattered by any roughness of the surface.

If the surface of the body being sounded is not smooth at the wavelength scale, i.e. if the r.m.s. of topographic heights is greater than a fraction of the wavelength, then part of the incident radiation will be scattered in directions different from the specular one. This means that areas of the surface that are not directly beneath the radar can scatter part of the incident radiation back towards it, and thus produce surface echoes that will reach the radar after the echo coming from nadir, which can mask, or be mistaken for, subsurface echoes. This surface backscattering from off-nadir directions is called "clutter".

To validate the detection of subsurface interfaces, numerical electromagnetic models of surface scattering, such as those by Nouvel et al. (2004), Russo et al. (2008) or Spagnuolo et al. (2011), have been used to produce simulations of surface echoes, which are then compared to real echoes detected by the radar. A code for the simulation of radar wave surface scattering has been developed, based on the work of Nouvel et al. (2004), using the MOLA topographic dataset (Smith et al. 2001) to represent the Martian surface as a collection of flat plates called facets. The radar echo is computed as the coherent sum of reflections from all facets illuminated by the radar. The computational burden of every simulation is very high but, thanks to a collaboration with CINECA, the code has been parallelized and ported for use in a Blue Gene/Q system. The code has been tested and its performance evaluated on the Fermi machine at CINECA.

The data included in this archive simulate MARSIS observations over the area of Lucus Planum, in the equatorial region of Mars, and have been used in the paper "Radar sounding of Lucus Planum, Mars, by MARSIS" by  Orosei, Rossi, Cantini, Caprarelli, Carter, Papiano, Cartacci, Cicchetti and Noschese, accepted for pubblication on Journal of Geophysical Research - Planets. A direct comparison of simulations with actual observations allows to unambiguously identify subsurface echoes in MARSIS radargrams. Echoes reaching the radar after nadir surface echoes will be identified as coming from the subsurface if they are not present in simulations. Conversely, any secondary echo that is present in both real and simulated data must be interpreted as coming from the surface.

The numerical code for the simulation of surface scattering was developed at the Consorzio Interuniversitario per il Calcolo Automatico dell'Italia Nord-Orientale (CINECA) in Bologna, Italy. Simulations were produced thanks to the Partnership for Advanced Computing in Europe (PRACE), awarding us access to the SuperMUC computer at the Leibniz-Rechenzentrum, Garching, Germany through project 2013091832. Test simulations were run Jacobs University CLAMV HPC cluster, and we are grateful to Achim Gelessus for his support.


REFERENCES

Bogorodsky, V., Bentley, C., Gudmandsen, P. 1985. Radioglaciology. Reidel, Dordrecht. ISBN 90-277-1893-8

Nouvel, J.-F., Herique, A., Kofman, W., Safaeinili, A. 2004. Radar signal simulation: Surface modeling with the Facet Method. Radio Science 39, 1013.

Ono, T., Kumamoto, A., Nakagawa, H., Yamaguchi, Y., Oshigami, S., Yamaji, A., Kobayashi, T., Kasahara, Y., Oya, H. 2009. Lunar Radar Sounder Observations of Subsurface Layers Under the Nearside Maria of the Moon. Science 323, 909.

Phillips, R.J., and 14 colleagues 1973. Apollo Lunar Sounder Experiment. NASA Spec. Pub. 330, (22) 1-26.

Picardi, G., and 12 colleagues 2004. MARSIS: Mars Advanced Radar for Subsurface and Ionosphere Sounding, In: Mars Express: the scientific payload. ESA Publications Division, 51-69.

Picardi, G., and 33 colleagues 2005. Radar Soundings of the Subsurface of Mars. Science 310, 1925-1928.

Plaut, J. J., and 23 colleagues 2007. Subsurface Radar Sounding of the South Polar Layered Deposits of Mars. Science 316, 92.

Russo, F., Cutigni, M., Orosei, R., Taddei, C., Seu, R., Biccari, D., Giacomoni, E., Fuga, O., Flamini, E. 2008. An incoherent simulator for the SHARAD experiment. Radar Conference, 2008. RADAR '08. IEEE 26-30 May 2008, 1.

Seu, R., and 11 colleagues 2007. SHARAD sounding radar on the Mars Reconnaissance Orbiter. Journal of Geophysical Research (Planets) 112, 5.

Smith, D. E., and 23 colleagues 2001. Mars Orbiter Laser Altimeter (MOLA): Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23,689-23,722.

Spagnuolo, M. G., Grings, F., Perna, P., Franco, M., Karszenbaum, H., Ramos, V. A. 2011. Multilayer simulations for accurate geological interpretations of SHARAD radargrams. Planetary and Space Science 59, 1222.

Files

E_01857_SS3_TRK_CMP_M_SIM.png

Files (55.2 MB)

Name Size Download all
md5:9a85cd1f49a169577cf06e090159d4bb
53.7 kB Preview Download
md5:f911dd854b477041489668f2e4123d99
301.1 kB Preview Download
md5:63b2535a90dddde0e9f83e2f01976bdb
410.9 kB Preview Download
md5:9411f55edbc6f460ad189513045cd8ef
408.9 kB Preview Download
md5:eacc323898932a45a553613d6e45d982
426.9 kB Preview Download
md5:7dfaca04c0b3ffbf15957dcfeba2698a
477.9 kB Preview Download
md5:44cf4969bed983f2e790dfc8d7a21b68
666.2 kB Preview Download
md5:eb94e75620e5cf3737234957a0dac0e2
568.0 kB Preview Download
md5:b4f9681098ae7faed436ebfea5648b2e
462.2 kB Preview Download
md5:ea31b96d607858c359281f79cbc5b84e
562.1 kB Preview Download
md5:40b0f9e14c8132ea097704dd1f95f9f8
410.0 kB Preview Download
md5:ca08fe22adf2f82ff15f22498fd6d7f1
474.9 kB Preview Download
md5:19eb28d942e1bc19fb756951b771488f
564.0 kB Preview Download
md5:1711c0316cdef23b039b078346a95a6e
613.3 kB Preview Download
md5:72f1a41f48fc5cb4ec1a9442e5f76b69
558.7 kB Preview Download
md5:bbc4a51968f285fcc1548311420eb7f7
678.5 kB Preview Download
md5:f740e2321e9abcba6c0d1867195f3655
672.0 kB Preview Download
md5:6e017c9515abdb09aef4f05ea12fd296
559.2 kB Preview Download
md5:c20b48e16aa6f1ee944232030910cb30
671.9 kB Preview Download
md5:6de2bf04098d4e1b308aa82e7c1782c4
588.2 kB Preview Download
md5:8bb94a313c1dff72c5cc746b6e3fa9d3
628.0 kB Preview Download
md5:3a1b67629cc16e415dbddedec0317f22
614.5 kB Preview Download
md5:5b013e7a08b85d549d10cbe2e5dd9624
628.4 kB Preview Download
md5:e5352ef72dc4be2d3b296bb80bbc7842
545.4 kB Preview Download
md5:544d7d1ddb92b3e78b52075c75d2bd80
635.9 kB Preview Download
md5:0f0c243c2eab49a386e0a2a12016c5c8
549.2 kB Preview Download
md5:d350c74fe897c92d6ad7f2bd5c1c66b8
421.8 kB Preview Download
md5:2ee748e4813b649fc50c6bd9d550bb78
398.0 kB Preview Download
md5:04d9320d8dc330aeca14774fca76b3d7
386.2 kB Preview Download
md5:fd75cd21ed9180b6cea2cc6eda4f411f
492.5 kB Preview Download
md5:163c8d17cb42557c6f8470addae650f7
318.5 kB Preview Download
md5:98b83a50c8e5a0cfe9a6f076045433e5
477.8 kB Preview Download
md5:cc0277d405e18963c1780a22ebf0817d
381.2 kB Preview Download
md5:629e3960eab2d09871382b8133862f69
455.7 kB Preview Download
md5:08514e0099b42c5e347606ea78214d59
390.6 kB Preview Download
md5:655557e0369909249a9d9b57901820e8
527.8 kB Preview Download
md5:0162146d61ad8803dcbfe01d7c98bd7d
577.6 kB Preview Download
md5:695f6e39ad9f2fe9c53d5bb8ab60c005
587.3 kB Preview Download
md5:3698483ed268cc5bcf508a96ddb4ff1b
574.9 kB Preview Download
md5:b64a199fc02a0bd7674ab67cfd4a9379
617.8 kB Preview Download
md5:03c55375661a1877293fb251e6355459
633.1 kB Preview Download
md5:e85da8fb3aed1ec9d389720d346b1de1
625.8 kB Preview Download
md5:f0e7a9a058a610ff3d196929fdc20208
648.0 kB Preview Download
md5:48d7d14f3018391e536cf4332e47ad34
558.8 kB Preview Download
md5:b55f15b91976be5354073445c26c5960
628.1 kB Preview Download
md5:df9d6b777af2b1ac2fd1e84461635dd4
641.0 kB Preview Download
md5:e6717bb73d28c56440ca08d19044ba4d
621.6 kB Preview Download
md5:171f2db438f349336299b1d6d2068dfe
671.7 kB Preview Download
md5:858e863ff464dcf0df886e224fc66eff
411.6 kB Preview Download
md5:fa7919dcb748531bd198db88d615701d
579.2 kB Preview Download
md5:3da8da6ba394137eb7b51ddbfb0ff46b
552.2 kB Preview Download
md5:e5a84fb63394e49dda52c836ffc52f32
375.6 kB Preview Download
md5:3511710bc5b0a39e440e35d67fca8fce
472.0 kB Preview Download
md5:288b7fa50995c466f6a3a294e2dd6772
576.8 kB Preview Download
md5:8f4bc300c1a876255e2f163a76bd9821
480.4 kB Preview Download
md5:921850f19ae92127d438b907bcd7e1e6
600.8 kB Preview Download
md5:4fadf1d868588cdbae675cfdc48b3b50
584.8 kB Preview Download
md5:cbc3b7d4b6e36d37ef952320805f4e75
673.7 kB Preview Download
md5:37fdd2b6f3724295c2b5dafbc236eff5
620.2 kB Preview Download
md5:76e27121f562c33ab5f1ca442c790deb
602.7 kB Preview Download
md5:b5f5d2985ddbec11bf0fc80041fcdb6c
577.0 kB Preview Download
md5:d17a92cebf9a53ff23d9018b688b6d44
691.0 kB Preview Download
md5:c029b20f5178a598a0be417bd8d90169
685.5 kB Preview Download
md5:811767c5057ff31d87244feb59e13ee7
654.4 kB Preview Download
md5:8ad09f496b3ae04b5ba8e79b6c030ebc
702.0 kB Preview Download
md5:a3f87169e3e7d67c4a5c4ab4f2823696
694.5 kB Preview Download
md5:dac3579209640e640debe38d82eb5bf6
698.6 kB Preview Download
md5:434a24b0ee6e589ec5a5cf9dc921fb77
641.2 kB Preview Download
md5:3563800820e41fbcda922789ce416c72
675.5 kB Preview Download
md5:2aa8c55744c5a0476d0deb1a3fc3d88c
349.7 kB Preview Download
md5:8bb666768f4f615449d0b082e6ea1afb
644.0 kB Preview Download
md5:111e4a25aaaf45ae0d28b4b54de65b74
631.0 kB Preview Download
md5:7401a2f1c069733b499fd9e47d6afb7d
582.8 kB Preview Download
md5:7ceb40f56c2db32c60905da2922bae7b
616.1 kB Preview Download
md5:0784b9986f65ba50f1465fbe0704a331
505.3 kB Preview Download
md5:327e8e1fe73444e18f5d99791cf4af6b
389.0 kB Preview Download
md5:b21222b2e889489640f8a6e03ec30232
512.5 kB Preview Download
md5:38f43ef47c0b9c06b501b136d1467b39
440.2 kB Preview Download
md5:d653f10321912ca49e1c39932d639ded
380.2 kB Preview Download
md5:d359ba7dd32b7f99ab44e46ba100877d
540.0 kB Preview Download
md5:203a459c573efee24037377957507c10
546.0 kB Preview Download
md5:83fd44ee46a73d4be420f6dfa6ac5659
413.6 kB Preview Download
md5:fb27ccfc36b9113a25d45c75d18fd1d0
546.4 kB Preview Download
md5:c9d6f4e4b5b783112bae55b48d1f54ea
551.9 kB Preview Download
md5:a64c4db6f7887fdc6f9403fc63aa1f7a
440.1 kB Preview Download
md5:b948236c90a21c9366069228d678a96d
564.9 kB Preview Download
md5:9f7d48f2192d78f45e5c2d2bedcd7b88
603.6 kB Preview Download
md5:5b99d631c56a01be7403b671501cffb6
504.9 kB Preview Download
md5:b0e775ac653d0dc8eedb4616c8783201
614.4 kB Preview Download
md5:17c6c944c318bf16113355b25a064147
587.6 kB Preview Download
md5:c4cf78aec0917abf172f1247da2f679c
547.5 kB Preview Download
md5:6c73775deeefdd7094baaeb73d4280b8
623.8 kB Preview Download
md5:8a3eb6644f02456c991e1b72728611f5
627.2 kB Preview Download
md5:4b951a6242c2ce7e82b229392d999c32
693.2 kB Preview Download
md5:58feb23efeb4f999aacfe74a5e1277e7
660.2 kB Preview Download
md5:0b39ecb6d52996b12c6f4c5cd3683c85
677.6 kB Preview Download
md5:74cafc8374ce3b966bfdb725db5d48a9
389.9 kB Preview Download
md5:3bec5fabf20e6d0e8d2b32c8edec2c52
438.1 kB Preview Download
md5:c1a0fd02e9447e51c169a5ffc1c98544
581.4 kB Preview Download
md5:bd880825f0beabf62e566b07ce513ece
602.9 kB Preview Download
md5:fbd376f73b6fd572b39b229654d31483
448.8 kB Preview Download

Additional details

Funding

EARTHSERVER – European Scalable Earth Science Service Environment 283610
European Commission
EarthServer-2 – Agile Analytics on Big Data Cubes 654367
European Commission