Published September 30, 2021 | Version v1
Dataset Open

Model output for "Impact of intensifying nitrogen limitation of ocean net primary production is fingerprinted by nitrogen isotopes"

  • 1. Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
  • 2. Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN), IPSL, Sorbonne Université, IRD, CNRS, MNHN, Paris, France
  • 3. Laboratoire de Météorologie Dynamique (LMD), IPSL, Ecole Normale Supérieure - Université PSL, Sorbonne Université, Ecole Polytechnique, CNRS, Paris, France

Description

Description.

The data included in this repository is output of simulations performed with the NEMO-PISCESv2 global ocean-biogeochemical model. Simulations involved forcing the NEMO-PISCESv2 with global warming associated with historical and future emissions, as well as the historical and future trends in atmospheric nitrogen deposition. Future climate change was according to the Representative Concentration Pathway 8.5 scenario (Dufresne et al., 2013; Riahi et al., 2011), which sees rapid warming during the 21st century. Historical and future atmospheric nitrogen deposition fields were created via linear interpolation of fields produced by Hauglustaine et al. (2014) at years 1850, 2000, 2030, 2050 and 2100. To represent the amplification of deposition since 1950 (Galloway 2014), 60 % of the increase between 1850 and 2000 occurred from 1950 onwards.

In this study, we quantified the effect anthropogenic climate change and anthropogenic increases in atmospheric nitrogen deposition on the marine nitrogen cycle. The response of the marine nitrogen cycle to these combined stressors is highly uncertain, and we therefore employed this complex model with a strong representation of nitrogen cycling in an attempt to constrain the global behaviour of this important cycle. In addition, through the addition of nitrogen isotopes to the ocean-biogeochemical model, we also explored and described how the isotopes responded to these anthropogenic forcings, and if the isotopes uniquely fingerprinted the response for potential monitoring/detection purposes.

Our abstract reads:

“The open ocean nitrogen cycle is being altered by increases in anthropogenic atmospheric nitrogen deposition and climate change. How the nitrogen cycle responds will determine long-term trends in net primary production (NPP) in the nitrogen-limited low latitude ocean, but is poorly constrained by uncertainty in how the source-sink balance will evolve. Here we show that intensifying nitrogen limitation of phytoplankton, associated with near-term reductions in NPP, causes detectable declines in nitrogen isotopes (δ15N) and constitutes the primary perturbation of the 21st century nitrogen cycle. Model experiments show that ~75% of the low latitude twilight zone develops anomalously low δ15N by 2060, predominantly due to the effects of climate change that alter ocean circulation, with implications for the nitrogen sources-sink balance. Our results highlight that δ15N changes in the low latitude twilight zone may provide a useful constraint on emerging changes to nitrogen limitation and NPP over the 21st century.”

 

Coordinates

Spatial resolution is global (90°S-90°N, 180°W-180°E, surface ocean to 5000 metres depth) and temporal resolution runs from years 1801 to 2100.

 

Citation.

Buchanan PJ, Aumont O, Bopp L, Mahaffey C, and Tagliabue A (2021): An isotopic fingerprint of increasingly nitrogen-limited phytoplankton in a changing oceanic nitrogen cycle. Nature Communications.

 

Files provided.

The data files provided are those that are required to create the figures for this study and/or perform key analyses (i.e. the time of emergence calculations). In the following, each figure or analysis has an associated python script and we list the data files needed to run that script.

Python scripts can be found the lead authors GitHub at https://github.com/pearseb/PISCESiso_Ncycle_analysis.  

 

Put δ15NNO3 observations on model grid (process-d15Nno3_observations_on_model_grid.py):

  • “RafterTuerena_watercolumn_d15N_no3.txt”

Model assessment (process-model_assessment.py):

  • “ETOPO_spinup_d15Nno3.nc”
  • “ETOPO_ORCA2.0_Basins_float.nc”
  • “ETOPO_ORCA2.0.full_grid.nc”
  • “RafterTuerena_watercolumn_d15N_no3_gridded.npz”

Time of emergence calculations (process-compute_toe.py):

  • “ETOPO_picontrol_1y_no3_ez_utz_ltz.nc”
  • “ETOPO_picontrol_1y_nst_ez_utz_ltz.nc”
  • “ETOPO_picontrol_1y_d15n_no3_ez_utz_ltz.nc”
  • “ETOPO_picontrol_1y_d15n_pom_ez_utz_ltz.nc”
  • “ETOPO_picontrol_ndep_1y_no3_ez_utz_ltz.nc”
  • “ETOPO_picontrol_ndep_1y_nst_ez_utz_ltz.nc”
  • “ETOPO_picontrol_ndep_1y_d15n_no3_ez_utz_ltz.nc”
  • “ETOPO_picontrol_ndep_1y_d15n_pom_ez_utz_ltz.nc”
  • “ETOPO_future_1y_no3_ez_utz_ltz.nc”
  • “ETOPO_future_1y_nst_ez_utz_ltz.nc”
  • “ETOPO_future_1y_d15n_no3_ez_utz_ltz.nc”
  • “ETOPO_future_1y_d15n_pom_ez_utz_ltz.nc”
  • “ETOPO_future_ndep_1y_no3_ez_utz_ltz.nc”
  • “ETOPO_future_ndep_1y_nst_ez_utz_ltz.nc”
  • “ETOPO_future_ndep_1y_d15n_no3_ez_utz_ltz.nc”
  • “ETOPO_future_ndep_1y_d15n_pom_ez_utz_ltz.nc”
  • “ETOPO_picontrol_1y_temp_ez_utz_ltz.nc”
  • “ETOPO_future_1y_temp_ez_utz_ltz.nc”
  • “ETOPO_picontrol_1y_npp.nc”
  • “ETOPO_picontrol_ndep_1y_npp.nc”
  • “ETOPO_future_1y_npp.nc”
  • “ETOPO_future_ndep_1y_npp.nc”
  • “ETOPO_picontrol_1y_nfix.nc”
  • “ETOPO_picontrol_ndep_1y_nfix.nc”
  • “ETOPO_future_1y_nfix.nc”
  • “ETOPO_future_ndep_1y_nfix.nc”

Figure 1 (fig-main1.py):

  • “ncycle_changes.nc”
  • “sources_and_sinks.nc”

Figure 2 (fig-main2.py):

  • “figure2D_ndep_d15nno3_signal_usingPAR.nc”
  • “figure2D_ndep_d15npom_signal_usingPAR.nc”
  • “figure2D_cc_d15nno3_signal_usingPAR.nc”
  • “figure2D_cc_d15npom_signal_usingPAR.nc”
  • “figure2D_picdep_d15nno3_signal_usingPAR.nc”
  • “figure2D_picdep_d15npom_signal_usingPAR.nc”
  • “ETOPO_ToE_futndep_depthzones.nc”
  • “ETOPO_ToE_fut_depthzones.nc”
  • “ETOPO_ToE_picndep_depthzones.nc”
  • “ToE_futndep_curves.txt”
  • “ToE_fut_curves.txt”
  • “ToE_picndep_curves.txt”

Figure 3 (fig-main3.py):

  • “figure2D_cc_d15npom_signal_usingPAR.nc”
  • “ETOPO_fluxanalysis_results.nc”
  • “figure2D_cc_din_e15n.nc”

Figure 4 (fig-main4.py):

  • “ETOPO_direct_indirect_effects.nc”

Supp Figure 1 (fig-supp1.py):

  • “figure_d15Nmaps.nc”

Supp Figure 2 (process-model_assessment.py):

  • Produced by process-model_assessment.py (see data above)

Supp Figure 3 (fig-supp3.py):

  • “d15nstats.txt”

Supp Figure 4 (fig-supp4.py):

  • “ndep_Tg_yr.nc”

Supp Figure 5 (fig-supp5.py):y

  • “ncycle_changes_climatechangeonly.nc”

Supp Figure 6 (fig-supp6.py):

  • “ncycle_changes_ndeponly.nc”

Supp Figure 7 (fig-supp7.py):

  • “figure_depthzones.nc”

Supp Figure 8 (fig-supp8.py):

  • “figure2D_ndep_d15nno3_signal_usingPAR.nc”
  • “figure2D_ndep_d15npom_signal_usingPAR.nc”
  • “figure2D_cc_d15nno3_signal_usingPAR.nc”
  • “figure2D_cc_d15npom_signal_usingPAR.nc”
  • “figure2D_picdep_d15nno3_signal_usingPAR.nc”
  • “figure2D_picdep_d15npom_signal_usingPAR.nc”
  • “BGCP_ETOPO_merged_alt.nc”
  • “ETOPO_ToE_futndep_depthzones.nc”
  • “ETOPO_ToE_fut_depthzones.nc”
  • “ETOPO_ToE_picndep_depthzones.nc”
  • “BGCP_ETOPO_merged_alt.nc”
  • “ToE_fut_curves.txt”
  • “ToE_futndep_curves.txt”
  • “ToE_picndep_curves.txt”

Supp Figure 9 (fig-supp9.py):

  • “figure2D_ndep_no3_utz.nc”

Supp Figures 10 and 11 (process-0D_model_phyto_frac.py):

  • Produced by process-0D_model_phyto_frac.py and no data required.

Supp Figure 12 (process-compute_toe.py):

  • Produced by process-compute_toe.py (see data above)

 

References.

Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont, O., et al. (2013). Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dynamics (Vol. 40). https://doi.org/10.1007/s00382-012-1636-1

Galloway, J. N. (2014). The Global Nitrogen Cycle. In Treatise on Geochemistry (2nd ed., Vol. 10, pp. 475–498). Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00812-3

Hauglustaine, D. A., Balkanski, Y., & Schulz, M. (2014). A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate. Atmospheric Chemistry and Physics, 14(20), 11031–11063. https://doi.org/10.5194/acp-14-11031-2014

Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., et al. (2011). RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109(1–2), 33–57. https://doi.org/10.1007/s10584-011-0149-y

Files

d15nstats.txt

Files (10.7 GB)

Name Size Download all
md5:fc011ca63c76edc2bdf91ea316d1f70b
521.6 kB Download
md5:1eb215619b65c16e1fbb1271253f92e3
529 Bytes Preview Download
md5:f7ac1ff2e65d3e96948da7811554318f
14.0 MB Download
md5:eab105ac55d3359ffcca9a97286280b9
2.1 MB Download
md5:816f28b095241eb4c9116e1ac83f88c7
1.6 MB Download
md5:595f10ab1dbd28ef15143ac3cec39494
388.8 MB Download
md5:bc9f5dc380942f2b5db475712c63f402
388.8 MB Download
md5:18f7602ffac665e5e1b038aae734cc54
130.1 MB Download
md5:ad229acf67d5c16e9a6792655e6f343a
388.8 MB Download
md5:ef48874bb40b4070ddf4ac8b4a2003f0
130.1 MB Download
md5:27d75e0a2eacd5d670b14befe37f9394
388.8 MB Download
md5:ee58ffd7dfe18603e8a39e7365bf4f2a
388.8 MB Download
md5:3ff6c41392f1c486c7bb10451ab229f2
388.8 MB Download
md5:b6766244fae93704da0b12a177370ce3
388.8 MB Download
md5:e8329bef64c83cb8935877d820ed43c2
388.8 MB Download
md5:9265078b265f426faf933ee977630e36
130.1 MB Download
md5:4b6a39c2826d4e2b4d8bafb27781cf08
388.8 MB Download
md5:cc45dc0cf7cd39ae4d089e58784b6115
130.1 MB Download
md5:1f889ab16ac0899bb91ef81c515e8672
388.8 MB Download
md5:cef63959e2c87a2c4b0a601212c81081
388.8 MB Download
md5:715139600a40d119dd1fa4c7fed40892
16.6 MB Download
md5:c73e257d92db1438309b2d6014bdb652
2.9 MB Download
md5:942c17956df8cc75caa5fa9f4dd8febb
466.6 MB Download
md5:6968baca5d5373ea7af43ece4e31e973
466.6 MB Download
md5:c9251a0ae90f731eef0325e88d1daee9
155.5 MB Download
md5:1e5bb8347eb19a3494148d4f166eb022
466.6 MB Download
md5:021e4b173a2ad59dfeac2630407ad1db
155.5 MB Download
md5:34775bba2da153f3bc2dd711afcd26cb
466.6 MB Download
md5:962ed0064a518579516b8556d24037c2
466.6 MB Download
md5:6efa7866fd3a0a37220f6884168af060
466.6 MB Download
md5:5c7f26def709c8355730ae7aade02f14
466.6 MB Download
md5:e1e195b7e5888a43e59186f221dba67c
466.6 MB Download
md5:649f613ab53ca0faa94f3e852645e9f6
155.5 MB Download
md5:fc3975e9b5558d5d26de123b857a2b4d
466.6 MB Download
md5:98d164b661e39acefcd2a08582321251
155.5 MB Download
md5:6d7bd1076cfaa6af2ddfcc119a417bcc
466.6 MB Download
md5:3758004c701cc9d54658af7be1a18733
466.6 MB Download
md5:da1c46ccd773eb239a40014c953c7f5e
16.1 MB Download
md5:a30a5d26514708f62551277a3e468b44
7.3 MB Download
md5:3152ab489e77eede58184a2630f9f1da
6.2 MB Download
md5:5efe8823d90453ed2273563d34489743
6.2 MB Download
md5:83c0527c34efb533202658f001c81d91
2.1 MB Download
md5:f7126c72c0585f62aecd89ebc3f5663c
2.1 MB Download
md5:449bf7a0a9eb6f68fa11bbc1df50dd11
2.1 MB Download
md5:153a50bdac5efbb70cc81d8a55d904c5
2.1 MB Download
md5:23191c10a12d6815e3b08b5b75c11070
2.1 MB Download
md5:d3393eee38fdc8681521b54cb0f0ff17
523.5 kB Download
md5:81071432502135d457e15854255527e8
2.1 MB Download
md5:1364214af5810b726437db274d752136
2.1 MB Download
md5:48fe88c767c55cd88dafb98f3f2d3860
1.0 MB Download
md5:56609bfc54bd5ff34a2d6839ea681813
4.7 MB Download
md5:f0eecddb5b0fef2662848a5b47624d48
3.6 MB Download
md5:1c9381da09f4018633624f1663aeaab4
3.6 MB Download
md5:576d30eafa88d7a1cf4bb70372f3b15c
3.6 MB Download
md5:08b37fa8810acd34a806d365b4e9c135
5.7 kB Download
md5:900a229e13b57a956e70bf454681bfd8
578.6 kB Preview Download
md5:ad01dafbebd063ec40a4a3d0254e6a26
434.1 kB Download
md5:0ab8bd8dc4af74c33b44b43f9e829636
16.1 MB Download
md5:7432fac72af814806aaf2d54e6af2918
30.2 kB Download
md5:921d61129ad88e380e621acaa40d120e
34.2 kB Download
md5:d7b1e13c6cb9a3397f05edf30feb623f
23.5 kB Preview Download
md5:a62eddcb3d90382ff960a626477519fc
23.9 kB Preview Download
md5:6422348528e2acfa95579b915cb2129b
23.9 kB Preview Download