Published October 10, 2005 | Version v1
Journal article Open

In-vivo and non-invasive measurement of songbird head's optical properties

  • 1. lab. Curien. CNRS UJM UdL; Saint-Etienne; France
  • 2. NAMC; UMR CNRS; University Paris XI; UJM; Paris; St-Etienne; France

Contributors

Contact person:

  • 1. lab. Curien. CNRS UJM UdL; Saint-Etienne; France

Description

By assessing the cerebral blood volume and the hemoglobin oxygen saturation level, near-infrared spectroscopy (NIRS) probes brain oxygenation, which reflects cerebral activity. To develop a noninvasive method monitoring the brain of a songbird, we use an original NIRS device, i.e., a white laser coupled with an ultrafast spectrotemporal detector of optical signals without wavelength scanning. We perform in vivo measurements of the absorption coefficient and the reduced scattering coefficient of the caudal nidopallium area of the head of a songbird (the zebra finch).

Notes

License CC-BY-NC-ND. --------- French law about open access and open science: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000033202746&categorieLien=id ----------------------- LOI n° 2016-1321 du 7 octobre 2016 pour une République numérique - Article 30.

Files

2005_mottin_27-.pdf

Files (5.7 MB)

Name Size Download all
md5:596e22e800f878de2d0cd0928675dc96
1.6 MB Preview Download
md5:f78101812c947439781d987cb856c426
3.1 MB Download
md5:1e61972f2d942d5a2837503e2bba1168
966.4 kB Preview Download

Additional details

References

  • P. Marler and A. J. Doupe, Singing in the brain, Proc. Natl. Acad. Sci. USA 97, 2965–2967 (2000).
  • C. Vignal, N. Mathevon, and S. Mottin, Audience drives male songbird response to partner s voice, Nature 430, 448–451 (2004).DOI 10.1038/nature02645
  • G. F. Ball and T. Q. Gentner, They are playing our song: gene expression and birdsong perception, Neurone 21, 271–274 (1998). DOI 10.1016/S0896-6273(00)80535-8
  • C. V. Mello, Mapping vocal communication pathways in birds with inducible gene expression, J. Comp. Physiol. A 188, 943–959 (2002). DOI 10.1007/s00359-002-0347-1
  • S. J. Chew, D. S. Vicario, and F. Nottebohm, A large-capacity memory system that recognizes the calls and songs of individual birds, Proc. Natl. Acad. Sci. USA 93, 1950–1955 (1996).
  • R. Stripling, S. Volman, and D. F. Clayton, Response modulation in the zebra finch neostriatum: relationship to nuclear gene regulation, J. Neurosci. 17, 3883–3893 (1997).
  • A. Van der Linden, M. Verhoye, V. Van Meir, I. Tindemans, M. Eens, P. Aabsil, and J. Balthazart, In vivo manganese-enhanced magnetic resonance imaging reveals connections and functional properties of the songbird vocal control system, Neuroscience 112, 467–474 (2002). DOI 10.1016/S0306-4522(02)00070-2
  • N. Plesnila, C. Putz, M. Rinecker, J. Wiezorrek, L. Schleinkofer, A. E. Goetz, and W. M. Kuebler, Measurement of absolute values of hemoglobin oxygenation in the brain of small rodents by near infrared reflection spectrophotometry, J. Neurosci. Methods 114, 107–117 (2002). DOI 10.1016/S0165-0270(01)00487-3
  • J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and G. Yodh, Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia, J. Cereb. Blood Flow Metab. 23, 911–924 (2003). DOI 10.1097/01.WCB.0000076703.71231.BB
  • F. F. Jöbsis, Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters, Science 198, 1264–1267 (1977). DOI 10.1126/science.929199
  • A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher, Three-dimensional optical tomographic brain imaging in small animals. 1. Hypercapnia; 2. Unilateral carotid, J. Biomed. Opt. 9, 1046–1073 (2004). DOI 10.1117/1.1784471
  • H. Obrig and A. Villringer, Beyond the visible—imaging the human brain with light, J. Cereb. Blood Flow Metab. 23, 1–18 (2003). DOI 10.1097/00004647-200301000-00001
  • B. Beauvoit, S. M. Evans, T. W. Jenkins, E. E. Miller, and B. Chance, Correlation between the light scattering and the mitochondrial content of normal tissues and transplantable rodent tumors, Anal. Biochem. 226, 167–174 (1995). DOI 10.1006/abio.1995.1205
  • R. Drezek, A. Dunn, and R. Richards-Kortum, A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges, Opt. Express 6, 147–157 (2000).DOI 10.1364/OE.6.000147
  • V. V. Tuchin, Light scattering study of tissues, Sov. Phys. Usp. 40, 495–515 (1997). DOI 10.1070/PU1997v040n05ABEH000236
  • S. Andersson-Engels, R. Berg, A. Persson, and S. Svanberg, Multispectral tissue characterization with time-resolved detection of diffusely scattered white light, Opt. Lett. 18, 1697–1699 (1993). DOI 10.1364/OL.18.001697
  • P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli, and R. Cubeddu, Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm, J. Biomed. Opt. 9, 464–473 (2004). DOI 10.1117/1.1695561
  • J. H. Choi, M. Wolf, V. Y. Toronov, U. Wolf, C. Polzonetti, D. M. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. W. Mantulin, and E. Gratton, Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach, J. Biomed. Opt. 9, 221–229 (2004). DOI 10.1117/1.1628242
  • D. T. Delpy, M. Cope, P. Van der Zee, S. Arridge, S. Wray, and J. Wyatt, Estimation of optical pathlength through tissue from direct time of flight measurement, Phys. Med. Biol. 33, 1433–1442 (1988). DOI 10.1088/0031-9155/33/12/008
  • B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain, Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
  • S. E. Nicklin, I. A. A. Hassan, Y. A. Wickramasinghe, and S. A. Spencer, The light still shines, but not that brightly? The current status of perinatal near infrared spectroscopy, Arch. Dis. Child. 88, 263–268 (2003). DOI 10.1136/fn.88.4.F263
  • S. Ramstein, S. Mottin, and P. Laporte, In vivo spectroscopy with femtosecond white light continuum, in Optical Biopsy IV, R. R. Alfano, ed., Proc. SPIE 4613, 188–197 (2002). DOI 10.1117/12.465245
  • P. Laporte, S. Ramstein, and S. Mottin, Optical systems in ultrafast biophotonics, in Optical Design and Engineering, L. Mazuray, P. J. Rogers, and R. Wartmann, eds., Proc. SPIE 5249, 490–500 (2004). DOI 10.1117/12.514036
  • S. Mottin, P. Laporte, and R. Cespuglio, Inhibition of NADH oxidation by chloramphenicol in the freely moving rat measured by picosecond time-resolved emission spectroscopy, J. Neurochem. 84, 633–642 (2003). DOI 10.1046/j.1471-4159.2003.01508.x
  • S. Ramstein and S. Mottin, Spectroscopie résolue en temps par continuum femtoseconde. Applications en neurobiologie, J. Phys. IV 108, 127–130 (2003). DOI 10.1051/jp4:20030612
  • A. Reiner, D. J. Perkel, L. L. Bruce, A. B. Butler, A. Csillag, W. Kuenzel, L. Medina, G. Paxinos, T. Shimizu, J. M. Wild, G. F. Ball, S. Durand, O. Gunturkun, D. W. Lee, C. V. Mello, A. Powers, S. A. White, G. E. Hough, L. Kubikova, T. V. Smulders, K. Wada, J. Dugas-Ford, S. Husband, K. Yamamoto, J. Yu, C. Siang, and E. D. Jarvis, Revised nomenclature for avian telencephalon and some related brainstem nuclei, J. Comp. Neurol. 473, 377–414 (2004).
  • H. J. Karten and W. Hodos, Stereotaxic Atlas of the Brain of the Pigeon (Johns Hopkins U. Press, 1967).
  • T. M. Stokes, C. M. Leonard, and F. Nottebohm, The telencephalon, diencephalon, and mesencephalon of the canary, Serinus canaria, in stereotaxic coordinates, J. Comp. Neurol. 156, 337–374 (1976). DOI 10.1002/cne.901560305
  • G. Paxinos and C. Watson, Rat Brain in Stereotaxic Coordinates, 3rd ed. (Academic, 1997).
  • A. Kienle and M. S. Patterson, Improved solutions of the steady state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium, J. Opt. Soc. Am. A 14, 246–254 (1997). DOI 10.1364/JOSAA.14.000246
  • S. Mottin, Procédé et dispositif de spectrophotométrie impulsionnelle résolue en temps, sans balayage spectral et à large spectre, de milieux non limpides, patent W02004013617, Centre National de la Recherche Scientifique and Université Jean Monnet, Saint-Etienne (12 February 2004).
  • R. R. Alfano, Supercontinuum Laser Source (Springer-Verlag, 1989). DOI 10.1007/978-1-4757-2070-9
  • A. Brodeur and S. L. Chin, Ultrafast white-light continuum generation and self-focusing in transparent condensed media, J. Opt. Soc. Am. B 16, 637–650 (1999). DOI 10.1364/JOSAB.16.000637
  • N. Nishimura, C. B. Schaffer, B. Friendman, P. S. Tsai, P. D. Lyden, and D. Kleinfeld, Targeted disruption of deep-lying neocortical microvessels in rat using ultrashort laser pulses, in Commercial and Biomedical Applications of Ultrafast Lasers IV, J. Neev, C. B. Schaffer, and A. Ostendorf, eds., Proc. SPIE 5340, 179–187 (2004). DOI 10.1117/12.555404
  • M. Watanabe, M. Koishi, M. Fujiwara, T. Takeshita, and W. Cieslik, Development of a new fluorescence decay measurement system using two-dimensional single-photon counting, J. Photochem. Photobiol. A 80, 429–432 (1994). DOI 10.1016/1010-6030(93)01009-Q
  • S. R. Arridge, M. Cope, and D. T. Delpy, The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis, Phys. Med. Biol. 37, 1531–1560 (1992). DOI 10.1088/0031-9155/37/7/005
  • W. F. Cheong, S. A. Prahl, and A. J. Welch, Review of the optical properties of biological tissues, IEEE J. Quantum Electron. 26, 2166–2185
  • S. Avrillier, E. Tinet, J. M. Tualle, J. Prat, and D. Ettori, Propagation d impulsions ultracourtes dans les milieux diffusants. Application au diagnostic medical, in Systèmes Femtosecondes, P. Laporte, F. Salin, and S. Mottin, eds. (Publications de l Université de Saint-Etienne, Saint-Etienne, France, 2001), pp. 295–310. ; https://hal.archives-ouvertes.fr/INTEGRATIONS/page/systemes-femtosecondes
  • E. Okada and D. T. Delpy, Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal, Appl. Opt. 42, 2915–2922 (2003). DOI 10.1364/AO.42.002915
  • A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H.-J. Schwarzmaier, Optical properties of selective native and coagulated human brain tissues in vitro in the visible and near infrared spectral range, Phys. Med. Biol. 47, 2059–2073 (2002). DOI 10.1088/0031-9155/47/12/305
  • R. Stripling, A. A. Kruse, and D. F. Clayton, Development of song responses in the zebra finch caudomedial neostriatum: role of genomic and electrophysiological activities, J. Neurobiol. 48, 163–180 (2001). DOI 10.1002/neu.1049
  • C. Vignal, A. Joël, N. Mathevon, and M. Beauchaud, Background noise does not modify song-induced genic activation in the bird brain, Behav. Brain. Res. 153, 241–248 (2004). DOI 10.1016/j.bbr.2003.12.006