Published August 31, 2019 | Version v1
Journal article Open

Immobilization of Biotechnologically Important Candida rugosa Lipase onto Commercial Matrices

Description

AbstractThe continual search for alternative environmentally cleaner technologies in industrial processes has led to an increase in the use of enzymatic processes globally. However, due to their physical characteristics they require immobilization in order to remain effective. The objective of this study was to investigate the immobilization of the biotechnologically important and commercially available Candida rugosa lipase (CRL) by physical interfacial adsorption onto a number of matrices to act as biocatalysts. Five different types of support were tested: i) macroporous silica (synthetic inorganic), ii) polyhydroxybutyrate (natural organic), iii) polypropylene (synthetic organic), iv) polymethacrylate (synthetic organic), and v) polystyrene-divinylbenzene (synthetic organic). Results generated during this study showed that from the group of materials tested, polystyrene-divinylbenzene gave the best results with the highest amount of immobilized protein (8.10 ± 0.31 mg/g) and a good immobilization yield (90.35% ± 1.53%). The efficiency of protein immobilization was found to be highest when carried out at pH4.5, which is close to the isoelectric point of the enzyme.

Files

IJOER-AUG-2019-1.pdf

Files (664.2 kB)

Name Size Download all
md5:4c3c9492221b741b8e9738a723452219
664.2 kB Preview Download