Published July 21, 2013 | Version 16520
Journal article Open

Biodiversity of Micromycetes Isolated from Soils of Different Agricultures in Kazakhstan and Their Plant Growth Promoting Potential

Description

The comparative analysis of different taxonomic
groups of microorganisms isolated from dark chernozem soils under
different agricultures (alfalfa, melilot, sainfoin, soybean, rapeseed) at
Almaty region of Kazakhstan was conducted. It was shown that the
greatest number of micromycetes was typical to the soil planted with
alfalfa and canola. Species diversity of micromycetes markedly
decreases as it approaches the surface of the root, so that the species
composition in the rhizosphere is much more uniform than in the
virgin soil. Promising strains of microscopic fungi and yeast with
plant growth-promoting activity to agricultures were selected. Among
the selected fungi there are representatives of Penicillium bilaiae,
Trichoderma koningii, Fusarium equiseti, Aspergillus ustus. The
highest rates of growth and development of seedlings of plants
observed under the influence of yeasts Aureobasidium pullulans,
Rhodotorula mucilaginosa, Metschnikovia pulcherrima. Using
molecular - genetic techniques confirmation of the identification
results of selected micromycetes was conducted.

Files

16520.pdf

Files (233.7 kB)

Name Size Download all
md5:0ca3ebe25b5b29719dd1083bae93d044
233.7 kB Preview Download

Additional details

References

  • <p>
  • N. Weyens, D.van der Lelie, S.Taghavi, L.Newman, J.Vangronsveld, "Exploiting plantmicrobe partnerships to improve biomass production and remediation," Trends in Biotechnology, vol. 27, no.10, pp. 591–596, Apr. 2009.
  • P. N. Bhattacharyya, D.K. Jha, "Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture," World J. Microbiol. Biotechnol., vol. 28, pp. 1327-1350, 2012.
  • É. Laslo, É. György, G. Mara, É. Tamás, B. Ábrahámb, S. Lányi, "Screening of plant growth promoting rhizobacteria as potential microbial inoculants," Crop Protection, no. 40, рр.43-48, 2012.
  • I. V. Maksimov, R.R.Abizgil'dina, L.I. Pusenkova, "Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens," Appl. Biochem. Microbiol., vol. 47, pp. 333-345, 2011.
  • T. J. Avis, V. Gravel, H. Antoun, R. J. Tweddell, "Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity," Soil Biology and Biochemistry , vol. 40, pp. 1733–1740, 2008.
  • N. Ohkama-Ohtsu, J. Wasaki, "Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms," Plant Cell Physiol., vol. 51, no. 8, pp. 1255–1264, 2010.
  • I. C. Dodd, N. Y. Zinovkina, V. I. Safronova, A. A. Belimov, "Rhizobacterial mediation of plant hormone status," Ann. Appl. Biol., vol. 157, pp. 361–379, 2010.
  • A. Masunaka, M. Hyakumachi, S. Takenaka, "Plant growth-promoting fungus, Trichoderma koningi suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicas," Microbes Environ., vol. 26, no. 2, pp. 128–134, Feb. 2011.
  • M. G. B. Saldajeno, M. Hyakumachi, "The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae stimulate plant growth and reduce severity of anthracnose and damping-off diseases in cucumber (Cucumis sativus) seedlings," Annals of Applied Biology, vol. 159, no. 1, pp. 28–40, July 2011. [10] M. A. Salas-Marina, M. A. Silva-Flores , M.G. Cervantes-Badillo, M.T. Rosales-Saavedra, M. A.. Islas-Osuna, S.Casas-Flores, "The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana," J Microbiol Biotechnol., vol. 21, no. 7, pp. 686-696, July 2011. [11] V. Kannan, R. Sureendar, "Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion," Journal of Basic Microbiology, vol. 49, pp. 158–164, 2009. [12] D. G. Zvyagintsev, Methods of Soil Microbiology and Biochemistry. Moscow:Moscow State University, 1991, pp. 145-247 [13] K. N. Domsch, W.Gams, T.N. Anderson, Compendium of soil fungi. Eching: IHW Verlag, 1993, 860 p. [14] C. P. Kurtzman, J.W. Fell, The Yeasts: A Taonomic Study. Amsterdam: Elsiver Sci. Publ. B.V., 1998, 1055 p.; [15] J. A. Barnett, R. W. Payne, D. Yarrow, Yeasts: characteristics and identification. Cambridge: Cambridge Univer. Press, 2000, 1139 p [16] G. M. Zenova, A. L. Stepanov, A. A. Likhachev, N. A. Manucharova, Practical work on soil biology. Moscow: Moscow State University Press, 2002, 120р. [17] P. Gerhard, R. G. E. Murray, N.R. Wood, Methods for general and molecular bacteriology. Washington: DC, 1994, 791 р [18] T. G. Mirchink, Soil Mycology. Moscow: Moscow State University, 1988, pp.136-184. [19] D. G. Zvyagintsev, I. P. Babeva, G. M. Zenova, Soil Biology. Moscow: Moscow State University Press, 2005, pp.348-427.</p>