Published December 31, 2023 | Version v1
Journal article Open

APPLICATIONS OF REMOTE SENSING IN LITHOLOGICAL MAPPING OF EAST GABAL ATUD AREA, CENTRAL EASTERN DESERT, EGYPT

  • 1. Geology Department, Faculty of Science, Menoufia University, Egypt
  • 2. Department of Mineralogy and Geology, University of Debrecen, 4032 Debrecen, Hungary
  • 3. Department of Geology, Tanta University, 31527 Tanta, Egypt
  • 4. Petroleum & Mining Geology, Faculty of Science, Galala University, Egypt

Description

The east of Gabal Atud area is covered by a variety of Precambrian basement rocks including Atud Formation, Atud tectonized mélange, metavolcanics, and serpentinites-talc-carbonates. These rocks were later intruded by the island arc metagabbro- diorite complex which in turn is invaded by some dykes. Operational Land Imager (OLI) and Sentinel-2A were applied for the first time for lithological discrimination of the exposed rocks. Five image enhancement techniques are applied including optimum index factor, false color composites, band rationing, principal component analysis, and minimum noise fraction for the interpretation of OLI and Sentinel-2A datasets. The integrated image-processing techniques allow the effective lithological discrimination of the east of Gabal Atud area, Central Eastern Desert, Egypt. The acid metavolcanics have been effectively discriminated from basic metavolcanics and serpentinites through FCC S2 b12-b11-b1, OLI PCA b4 -b3-b2, S2 PCA b5-b2-b3, and OLI band ratio (b4/b2, b6/b7, b4/b6). The sandstone facies highlight the fantastic (folding and faulting) structures of the Atud Formation on OLI and S2 images including OLI PCA of b1-b2-b3, S2 PCA of (b2), and S2 PCA of b5-b2-b3. Conglomerate facies can be differentiated from diamictite facies using the band ratio of the S2 (b7/b12). Although, the serpentinites and diamictite have different lithological compositions, they show similar colors in some OLI and S2 images (e.g. OLI PCA b1-b2-b3, S2 PCA b2) but they can be discriminated using other OLI and S2 techniques as OLI PCA b4-b2-b1, S2 PCA b5-b2-b3, and band ratio applications (e.g. OLI b6/b7 and OLI (b6/b7, b5/b6, b4/b2)). 

Files

241-1-563-2-10-20231220.pdf

Files (14.4 MB)

Name Size Download all
md5:53421048c5cad78754bd8b31fdb01aab
14.4 MB Preview Download

Additional details

References

  • Abdelkader, M.A., Watanabe, Y., Shebl, A., El-Dokouny, H.A., Dawoud, M., Csámer, Á. (2022). Effective delineation of rare metal-bearing granites from remote sensing data using machine learning methods: A case study from the Umm Naggat Area, Central Eastern Desert, Egypt. Ore Geol. Rev. 150, 105184. https://doi. org/10.1016/J.OREGEOREV.2022.105184.
  • Abdelsalam, M.G., Stern, R.J. (2000). Mapping gossans in arid regions with Landsat TM and SIR-C images, the Beddaho Alteration Zone in northern Eritrea. J Afr Earth Sci., 30(4): 903-916.
  • Abd El-Wahed, M.A., Kamh, S., Ashmawy, M., Shebl, A. (2019). Transgressive structures in the Ghadir Shear Belt, Eastern Desert, Egypt: evidence for partitioning of oblique convergence in the Arabian-Nubian Shield during Gondwana Agglutination. Acta Geologica Sinica-English Edition, 93(6): 1614-1646. https://doi. org/10.1111/1755-6724.13882.
  • Abu El-Ela, F.F. (1990). Do the Atud conglomerates belong to the island arc metasediments? Bulletin Faculty Science Assiut University, Egypt, 19(1-F): 123-155.
  • Abrams, M. J., Brown, D., Lepley, L., Sadowski, R. (1983). Remote sensing for porphyry copper deposits in southern Arizona. Economic Geology, 78(4): 591-604.
  • Akaad, M.K., Essawy, M.A. (1964a). Geology and structure of the area east of Gabal Atud, Eastern Desert, of Egypt. Bulletin Science Technology Assiut University, Egypt, 7: 63-83.
  • Akaad, M.K., Essawy, M.A. (1964b). The metagabbro- diorite complex northeast of Gabal Atud, Eastern Desert, and the term of "epidiorite'. Bulletin Science Technology Assiut University, Egypt, 7: 83-108.
  • Akaad, M.K., Essawy, M.A. (1965a). Petrography, origin, and sedimentation of the Atud Formation and its bearing on the early part of the geological history of the basement complex of the Eastern Desert of Egypt. Bulletin Science Technology Assiut University. Egypt, 8: 55-74.
  • Ali, K.A., Kröner, A., Hegner, E., Wong, J., Li, S.-Q., Gahlan, H.A., El Ela, F.F. (2015). U-Pb zircon geochronology and Hf-Nd isotopic systematics of Wadi Beitan granitoid gneisses, South Eastern Desert, Egypt. Gondwana Res., 27: 811- 824.
  • Ali-Bik, M.W., Taman, Z., El Kalioubi, B., Abdel Wahab, W. (2012). Serpentinite-hosted talc-magnesite deposits of Wadi Barramiya area, Eastern Desert, Egypt: characteristics, petrogenesis, and evolution. J Afr Earth Sci., 64: 77-89.
  • Amin, M.S., Sabet, A.H., Mansour, A.O.S. (1953). Geology of Atud District. Geol. Surv. Egypt, 71 p.
  • Assiri, A.M. (2016). Remote sensing applications for carbonatite assessment and mapping using VNIR and SWIR bands at Aluyaynah, UAE. Ph.D. Thesis, Michigan State University, 184 p.
  • Badawi, M., Abd El-atif, M., Shebl, A., Makroum, F., Shalaby, A., Németh, N. (2022). Mapping structurally controlled alterations sparked by hydrothermal activity in the Fatira-Abu Zawal Area, Eastern Desert, Egypt. Acta Geologica Sinica (English Edition), 97(2): 662- 680.
  • Barsi, J.A., Lee, K., Kvaran, G., Markham, B.L., & Pedelty, J.A. (2014). The spectral response of the Landsat-8 operational land imager. Remote Sensing, 6(10): 10232-10251. https://doi.org/10.3390/ rs61010232.
  • Bates, R.L., Jackson, J.A. (1987). Glossary of geology. United States: N. p., Web.
  • Berkland, J.O., Raymond, L.A., Kramer, J.C., Moores, E.M., O'Day, M. (1972). What is Franciscan? American Association of Petroleum Geologists Bulletin, 56: 2295-2302.
  • Berman, M., Phatak, A., Traylen, A. (2012). Some invariance properties of the minimum noise fraction transform. Chemometrics and Intelligent Laboratory Systems, 117: 189-199. https://doi. org/10.1016/j.chemolab.2012.02.005.
  • Chavez, J.P. (1984). Image Processing techniques for Thermatic Mapper data. Proceedings, ASPRS-ACSM Technical Papers. 2: 728-42.
  • Chavez, P.S., Berlin, GL., Sowers, LB. (1982). Statistical method for selecting Landsat MSS. Thesis, Ph.D. Univ.California, San Diago. J Appl Photogr Eng., 8(1): 23-30.
  • Corumluoglu, O., Vural, A., Asri, I. (2015). Determination of Kula basalts (geosite) in Turkey using remote sensing techniques. Arab. J. Geosci., 8: 10105-10117.
  • Crosta, A.P., De Souza Filho, C.R., Azevedo, F., Brodie, C. (2003). Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Internat. J. Remote Sens., 24: 4233-4240.
  • Dawoud, M., Abdel Ghani, I.M., Elsaid, M., Badr, Y.S. (2017). The integration of ASTER imagery and airborne gamma-ray spectrometry in lithological discrimination of Ras Barud - Um Tagher area, North Eastern Desert, Egypt. Int J. Innov. Sci., Eng. & Tech., 4(9), 9-23.
  • Dawoud, M., Saleh, G.M., Kamar, M.S., Badr, Y.S., Mahmoud, M. Kh. (2022). Utilization of Landsat-8 OLI Data in the lithological discrimination and mapping of W. El Gemal – W. Sikait area, South Eastern Desert, Egypt. Int J. Innov. Sci., Eng. & Tech., 9(8): 278-309.
  • Dilek, Y., Festa, A., Ogawa, Y., Pini, G.A. (2012). Chaos and geodynamics: mélanges, mélange-forming processes, and their significance in the geological record. Tectonophysics, 568-569: 1-6. http:// dx.doi.org/10.1016/j.tecto.2012.08. 002.
  • Drury, S.A. (2001). Image interpretation in geology. Nelson Thornes Blackwell Science, Cheltenham Malden, 290 p.
  • Drusch, M., del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., Bargellini, P. (2012). Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120: 25-36. https://doi.org/10.1016/J. RSE.2011.11.026.
  • El-Desoky, H.M., Shebl, A., Abdel-Rahman, A.M., Fahmy, W., El-Awny, H., El-Sherif, A.M., El-Rahmany, M.M., Csámer, Á. (2022). Multiscale mineralogical investigations for mineral potentiality mapping of Ras El-Kharit-Wadi Khashir district, Southern Eastern Desert, Egypt. Egypt. J. Remote Sens. Sp. Sci. 25: 941-960. https://doi. org/10.1016/J.EJRS.2022.09.00.1.
  • El-Lithy, M.A. (In Preparation). The Atud diamictite rocks in the Eastern Desert of Egypt: Implications for the paleogeological processes and paleoclimatology. Ph.D. Thesis, Menoufiya University, Egypt.
  • El-Magd, I.A., Mohy, H., Basta, F. (2015). Application of remote sensing for gold exploration in the Fawakhir area, Central Eastern Desert of Egypt. Arab. J. Geosci., 8: 3523–3536. https://doi.org/10.1007/ s12517-014-1429-4.
  • El-Ramly, M.F., Akaad, M.K. (1960). The basement complex in the Central Eastern Desert of Egypt. Geological Survey, Cairo, Egypt, Paper 8, 35p.
  • Emam, A., Hamimi, Z., El-Fakharani, A., Abdel-Rahman, E., Barreiro, J.G., Abo-Soliman, M.Y. (2018). Utilization of ASTER and OLI data for lithological mapping of Nugrus-Hafafit area, South Eastern Desert of Egypt. Arabian Journal of Geosciences, 11(23). https:// doi.org/10.1007/s12517-018-4106-1.
  • Erickson, R. (2011). Petrology of a Franciscan olistostrome with a massive sandstone matrix: The King Ridge Road mélange at Cazadero, California. Geological Society of America Special Papers, 480: 171-188.
  • Essawy, M.A. (1964). Geology of the area east of Gabal Atud, Eastern Desert. M. Sc. Thesis, Assiut Univ.
  • Essawy, M.A. (1976). Geochemistry of inhomogeneous rocks from Wadi Mubarak-Gabal Atud, metagabbro- diorite complex, Eastern Desert, Egypt. The Journal of the University of Kuwait, Science, 3: 217.
  • Eyles, N., Januszczak, N. (2004). 'Zipper-rift': a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth-Science Reviews, 65(1-2): 1-73. https://doi. org/10.1016/S0012-8252(03)00080-1.
  • Festa, A., Pini, G.A., Ogata, K., Dilek, Y. (2019). Diagnostic features and field- criteria in recognition of tectonic, sedimentary, and diapiric mélanges in orogenic belts and exhumed subduction-accretion complexes. Gondwana Research, 74: 7-30. https://doi. org/10.1016/J.GR.2019.01.003.
  • Flint, R.F., Sanders, J.E., Rodgers, J. (1960). Diamictite, a substitute term symmictite. Geol Soc Am Bull., 71: 1809-1810.
  • Gaber, S.S., Hassan, S.M., Sadek, M.F. (2015). Prospecting for new gold-bearing alteration zones at El-Hoteib area, South Eastern Desert, Egypt, using remote sensing data analysis. Ore Geol. Rev., 71: 1-13.
  • Gad, S., Kusky, T.M. (2006). Lithological mapping in the Eastern Desert of Egypt, the Barramiya area, using Landsat Thematic Mapper (TM). J. Afr. Earth Sci., 44: 196-202.
  • Gasmi, A., Gomez, C., Zouari, H., Masse, A., Ducrot, D. (2016). PCA and SVM as geo-computational methods for geological mapping in the south of Tunisia, using ASTER remote sensing data set. Arabian Journal of Geosciences, 9(20): 753. https://doi.org/10.1007/ s12517-016-2791-1.
  • Gomez, C., Delacourt, C., Allemand, P., Ledru, P., Wackerle, R. (2005). Using ASTER remote sensing data set for geological mapping, in Namibia. Phys. Chem. Earth., 30: 97-108. doi:10.1016/j. pce.2004.08.042.
  • Green, A.A., Berman, M., Switzer, P., Craig, M.D. (1988). A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens., 26: 65-74.
  • Irons, J.R., Dwyer, J.L., Barsi, J.A. (2012). The next Landsat satellite: The Landsat data continuity mission. Remote sensing of environment, 122: 11-21.
  • Khan, S.D., Mahmood, K., Casey, J.F. (2007). Mapping of Muslim Bagh ophiolite complex (Pakistan) using new remote sensing, and field data. Journal of Asian Earth Sciences, 30: 333-343.
  • Kruse, F.A., Boardman, J.W., Huntington, J.F. (2003). Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Transactions on Geoscience and Remote Sensing, 41: 1388-1400.
  • Kusky, T.M., Ramadan, T.M. (2002). Structural controls on Neoproterozoic mineralization in the South Eastern Desert, Egypt: an integrated field, Landsat TM, and SIR-C/X SAR approach. J. Afr. Earth Sci., 35(1): 107-121.
  • Langford, R.L. (2015). Temporal merging of remote sensing data to enhance spectral regolith, lithological, and alteration patterns for regional mineral exploration. Ore Geol. Rev., 68: 14-29.
  • Li, X.H., Abd El-Rahman, Y., Abu Anbar, M., Li, J., Ling, X.X., Wu, L.G., Masoud, A.E. (2018). Old continental crust underlying juvenile oceanic arc: Evidence from Northern Arabian-Nubian Shield, Egypt. Geophysical Res. Letters, 45(7): 3001-3008. https://doi. org/10.1002/2018GL077121.
  • Liu, F., Wu, X., Sun, H., Guo, Y. (2007). Alteration information extraction by applying synthesis processing techniques to Landsat ETM+ data: A case study of Zhaoyuan Gold Mines, Shandong Province, China. J. China Univ. Geosci., 18(1): 72-76.
  • Liu, X., Zhang, B., Gao, L.R., Chen, D.M. (2009). A maximum noise fraction transforms with improved noise estimation for hyperspectral images. Science in China Series F: Information Sciences 2009, 52(9): 1578-1587. https://doi.org/10.1007/S11432-009-0156-Z.
  • Lixin, G., Weixin, X., Jihong, P. (2015). Segmented minimum noise fraction transformation for efficient feature extraction of hyperspectral images. Pattern Recognition, 48(10): 3216–3226. https://doi. org/10.1016/J.PATCOG.2015.04.013.
  • Loughlin, W.P. (1991). Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing, 57(9): 1163-1169.
  • Loveland, T.R., Irons, J.R. (2016). Landsat 8: the plans, the reality, and the legacy. Remote Sens. Environ. 185: 1-6.
  • Mars, J.C., Rowan, L.C. (2006). Regional mapping of phyllic-and argillicaltered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere, 2: 161-186.
  • Ninomiya, Y. (2003). A stabilized vegetation index and several mineralogic indices defined for ASTER VNIR and SWIR data. In: IGARSS 2003 IEEE International Geoscience and Remote Sensing Symposium Proceedings (IEEE Cat No03CH37477). IEEE, 1552-1554.
  • Pearson, K. (1901). Principal components analysis. London, Edinburgh, Dublin Philos. Mag. J. Sci., 6: 559.
  • Pournamdari, M., Hashim, M., Pour, A.B. (2014). Application of ASTER and Landsat TM data for geological mapping of Esfandagheh Ophiolite Complex, Southern Iran. Resource Geology, 64: 233-246.
  • Ramadan, T.M., Abdelsalam , M.G., Stern, R.J. (2001). Mapping gold-bearing massive sulfide deposits in the Neoproterozoic Allaqi Suture, Southeast Egypt with Landsat TM and SIR-C/X SAR images. Photogrammetric Engineering and Remote Sensing, 67(4): 491-497.
  • Ranjbar, H., Honarmand, M., Moezifar, Z. (2004). Application of the Crosta technique for porphyry copper alteration mapping, using ETM+ data in the southern part of the Iranian volcanic sedimentary belt. J. Asian Earth Sci., 24: 237-243.
  • Richards, J.A. (2012). Remote Sensing Digital Image Analysis: An Introduction, 5th edn. Springer, Canberra, ACT, 494 p.
  • Rowan, L.C., Hook, S.J., Abrams, M. J., Mars, J. C. (2003). Mapping hydrothermally altered rocks at Cuprite, Nevada, using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a new satellite-imaging system. Econ. Geol., 98: 1019-1027.
  • Sabine, C. (1999). Remote sensing strategies for mineral exploration. Remote Sensing for the Earth Sciences – Manuel of Remote Sensing, 375-447.
  • Sabins, J., Floyd, F. (1986). Remote sensing: principles and interpretation. Chevron Oil Field Research Co.
  • Sadek, M.F., Ali-Bik, M.W., Hassan, S.M. (2015). Late Neoproterozoic basement rocks of Kadabora-Suwayqat area, Central Eastern Desert, Egypt: geochemical and remote sensing characterization. Arab. J. Geosci., 8(12): 10459-10479.
  • Schuster, D.C. (1980). The nature and origin of the late Precambrian Gwna mélange, North Wales, United Kingdom [Ph.D. thesis]: Champaign, University of Illinois at Urbana-Champaign, 383 p.
  • Shebl, A., Abdellatif, M., Hissen, M., Ibrahim Abdelaziz, M., Csámer, Á. (2021). Lithological mapping enhancement by integrating Sentinel 2 and gamma-ray data utilizing support vector machine: A case study from Egypt. Int. J. Appl. Earth Obs. Geoinf., 105, 102619. https://doi.org/10.1016/J.JAG.2021.102619.
  • Shebl, A., Csámer, Á. (2021a). Reappraisal of DEMs, Radar, and optical datasets in lineaments extraction with emphasis on the spatial context. Remote Sens. Appl. Soc. Environ., 24, 100617. https://doi. org/10.1016/J.RSASE.2021.100617.
  • Shebl, A., Csámer, Á. (2021b). Lithological, structural and hydrothermal alteration mapping utilizing remote sensing datasets: a case study around Um Salim area, Egypt. IOP Conf. Ser. Earth Environ. Sci., 942, 012032. https://doi.org/10.1088/1755- 1315/942/1/012032.
  • Soliman, M.A., Hegazy, H.A.M. (1989). The Atud Formation, Central Eastern Desert, Egypt – An example of Precambrian slope basin sequence related to a subduction complex. Abst. 27th Annual Meeting, Geol. Soc. Egypt.
  • Stern, R.J., Ali, K., Asimow, P.D., Azer, M.K., Leybourne, M.I., Mubarak, H.S., Ren, M., Romer, R.L., Whitehouse, M.J. (2020). The atud gabbro– diorite complex: Glimpse of the Cryogenian mixing, assimilation, storage and homogenization zone beneath the Eastern Desert of Egypt. J. Geol. Soc., 177(5): 965-980. https://doi.org/10.1144/ jgs2019-199.
  • Stern, R. J., Avigad, D., Miller, N. R., Beyth, M. (2006). Evidence for the Snowball Earth hypothesis in the Arabian-Nubian Shield and the East African Orogen. J. Africa. Earth Sci., 44(1): 1-20. https://doi. org/10.1016/j.jafrearsci.2005.10.003.
  • Sultan, M., Arvidson, R.E., Sturchio, N.C. (1986). Mapping of serpentinites in the Eastern Desert of Egypt by using Landsat thematic mapper data. Geology, 14(12): 995-999.
  • van der Meer, F.D., van der Werff, H.M.A., van Ruitenbeek, F.J.A., Hecker, C.A., Bakker, W.H., Noomen, M.F., van der Meijde, M., Carranza, E. J. M., de Smeth, J. B., Woldai, T. (2012). Multi- and hyperspectral geologic remote sensing: A review. In International Journal of Applied Earth Observation and Geoinformation, 14(1): 112-128. Elsevier B.V. https://doi.org/10.1016/j.jag.2011.08.002.
  • Xiong,Y., Khan, S.D., Mahmood, K., Sisson, V.B. (2011). Lithological mapping of Bela ophiolite with remote-sensing data. Int. J. Remote Sens., 32(16): 4641-4658.
  • Yamaguchi, Y., Naito, C. (2003). Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. Int. J. Remote sens., 24: 4311-4323.
  • Zhang, X., Pazner, M., Duke, N. (2007). Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). ISPRS J. Photogramm Remote Sens., 62(4): 271-282.
  • Zoheir, B., Emam, A. (2012). Integrating geologic and satellite imagery data for high-resolution mapping and gold exploration targets in the South Eastern Desert, Egypt. J. Afr. Earth Sci., 66: 22-34.