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 In deciding to invest in stocks traded in the capital market, investors need to predict which stocks 
provide the prospect of return and the risks to be faced. This paper aims to predict the return and 
risk of stock asymmetry using a time series model approach. Predicting stock returns and risk is 
based on the Autoregressive Integrated Moving Average-Glosten Jagannatan Runkle-
Generalized Autoregressive Conditional Heteroscedasticity (ARIMA-GJR-GARCH) model. In 
contrast, the largest risk potential measurement is performed using the Value-at-Risk (VaR) 
model. The data analyzed are the best ten stocks according to the criteria that apply on the IDX, 
the period between 17 December 2018 to 14 December 2021, which includes the names of stock 
BBCA, BBNI, BBRI, BMRI, ASII, ICBP, PGAS, PTBA, TLKM, and UNVR. The analysis 
results show that of the best ten stocks, based on the ratio between the predicted values of the 
average return and Value-at-Risk, those with relatively better performance are PTBA, TLKM, 
UNVR and BBCA stocks. Based on the results of this analysis, it can be used as a reference in 
making investment decisions for investors, specifically investing in the ten stocks analyzed. 
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1. Introduction 

 
Investment is an activity of placing funds that are carried out at this time to obtain benefits in the future. In the object of 
investment, assets are generally divided into real and financial assets. Real assets are related to infrastructure, and financial 
assets are related to stocks (Dwipa, 2016). Investors choose to invest in stocks in a company based on the desire to earn 
profits in the future, which can be seen from the number of stock returns. Investing in stocks is faced with risk because 
stock returns are volatile. Stock returns can change quickly, so the stock index value can also change; this movement is 
known as stock return volatility. High volatility indicates high risk, as well as low volatility results in low risk. Therefore, 
it needs to be overcome by using a mathematical model. 
 
Several researchers have used various time series models, one of which is the ARCH model introduced by Engle in 1982. 
According to Dwipa (2016), stock returns have three characteristics. The first is volatility grouping, meaning that very large 
changes occur at certain times and small changes at other periods. The second is fat tailedness which means that stock 
returns display a greater sharpness than the normal distribution. Third, there is a leverage effect, a condition where bad news 
and good news have an asymmetric effect on return volatility. The Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) model has a more flexible structure to accommodate the stock's volatility (Bollerslev, 1986). 
Tamilselvan and Vali (2016) used the GARCH model to research Muscat stocks on the security market by concluding that 
the GARCH (1,1) model is the best estimate for symmetrical data. There is no leverage effect on the data used. However, 
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the GARCH model cannot be used on data with a leverage effect. Ali (2013) used the EGARCH, GJR-GARCH, TGARCH, 
AVGARCH, NGARCH, IGARCH, and APARCH models to determine the functional relationship of the time series 
pathogenic indicators to activate reactions on the coast. However, the TGARCH model is marginally better than other 
models in capturing the response of the variable pathogen indicator. Mittnik, Paolella, and Rachev (2002) used the 
EGARCH, GJR-GARCH, TGARCH, AVGARCH, NGARCH, IGARCH, and APARCH models to determine the functional 
relationship of the time series of pathogenic indicators to activate reactions at the coast. However, the TGARCH model is 
slightly better than other models in capturing the pathogen variable indicator responses (Lee, 2007).  
 
Measurement of risk in this study is using Value-at-Risk (VaR). According to Bakhtiar et al. (2020), VaR is one of the most 
popular tools used by investors in measuring risk. VaR is used as a measuring tool to assess the worst losses in investing at 
a particular time and level of confidence. Several levels of risk measurement use VaR. Sukono et al. (2019) examine the 
ARIMA-GARCH model used to estimate and expect a shortfall of several stocks in the Indonesian capital market. Based 
on the analysis, selected stocks are obtained. Bank Mandiri stocks have the lowest risk level, and Mustika Ratu stocks have 
the highest level of risk, with the VaR of the stock generally smaller than the expected shortfall value. Bucevska (2013) 
conducted a relative test of the selected GARCH type model in terms of the ability to estimate volatility and extended 
empirical research on VaR estimation in financial markets. Nilsson (2017) finds the best APARCH model to estimate 
volatility, while to estimate VaR the best model is APARCH, GJR-GARCH, or EGARCH, depending on the VaR level used. 
 
From the research described, there are still some shortcomings in these models. Among others, Tamilselvan and Vali (2016) 
examined Muscat stocks using the GARCH model on symmetric data, but the GARCH model cannot be used if the data is 
asymmetrical. One solution for asymmetric data is the GJR-GARCH model. Sukono et al. (2019) determined VaR using the 
time series model but did not use the GJR-GARCH model. Based on this gap, this study uses the Autoregressive Moving 
Average-Glosten Jagannatan Runkle-Generalized Autoregressive Conditional Heteroscedasticity (ARIMA-GJR-GARCH) 
model to determine the VaR value on stock returns. The ARIMA model is an average model assuming constant volatility, 
while the GJR-GARCH model is a variance model with the data characteristics used having an asymmetric effect. The 
asymmetric effect changes the magnitude of the volatility when the stock returns. Calculating risk value using VaR requires 
a component, namely volatility, which can be estimated using time series analysis. Therefore, this study aims to predict the 
return and risk of stock asymmetry using a time series model approach. Researchers want to know the magnitude of the risk 
obtained in the ten stocks analyzed. So, it is hoped that the results of this study will be useful for investors in helping 
investment decisions, especially in the ten stocks analyzed in this study. 

 
2. Literature Review 
 
Capital market in Indonesia. Stocks are investment instruments that are in great demand by investors as a basis for saving 
finances. In investing, there are several important things: risk and rate of return (return). Return is the level of profit obtained 
by investors in investing. According to Campbell, Lo, and MacKinley (1998), the use of returns has two main reasons. First, 
for the average investor, financial markets can be considered highly competitive, so the investment size does not affect price 
changes. Second, in theory, the return series is easier to handle than the price series because it has more interesting statistical 
properties, such as stationarity. The Indonesia Stock Exchange defines the capital market as long-term financial instruments 
that can be traded, such as bonds, stocks, mutual funds, derivative instruments, and others. The capital market is a means of 
funding for companies and other institutions (e.g., the government) and as a means for investing activities. Thus, the capital 
market can facilitate various buying and selling activities and other activities (IDX, 2021). 

 
The best ten stock's criteria. The criteria for determining the ten best stocks on the IDX include being listed on the IDX for 
at least 3 months, including 10 stocks based on transaction value in the regular market, high liquidity and large market 
capitalization, as well as financial condition and growth prospects. 

 
Investment decision theory. The investment decision is to invest one or more assets to get profits in the future (Hartono and 
Wahyuni, 2017). These decision-makers can learn about different types of investments and encourage people to make 
investment decisions or try investing. Ummah et al. (2021) examined student investment decisions as an intermediary 
variable, with the results obtained that intentions or interests influence student investment decisions. Therefore, if someone 
is interested in investing, it will encourage them to make investment decisions. 

 
3. Materials and methods 
 
3.1 Materials 
 

The research object is return data obtained from daily data closing stock prices. The data used is secondary data between 
17 December 2018 to 14 December 2021, including the names of stock BBCA, BBNI, BBRI, BMRI, ASII, ICBP, PGAS, 
PTBA, TLKM, and UNVR. This stock price data are obtained from the website https://finance.yahoo.com/. The software 
used in this research is Eviews 10 and MS. Excel. 
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3.2    Methods 
 

3.2.1. Return 
 
According to Rupert (2011) and Kalfin et al. (2019), return is the return on the results obtained from investing. In general, 
the return formula is as equation (1). 𝑟௧ = ln ቆ 𝑆ሺ𝑡௜ሻ𝑆ሺ𝑡௜ିଵሻቇ (1) 

where 𝑟௧ is stock return at time 𝑡, 𝑆ሺ𝑡௜ሻ is the stock price in period 𝑡௜ and 𝑆(𝑡௜ିଵ) is the stock price at period 𝑡௜ିଵ. 

3.2.2. Stationarity 
 
The stationarity test is the underlying assumption in the statistical procedures used in time series analysis. According to 
Tsay (2005), the data stationarity test can use the Augmented Dickey-Fuller (ADF) test. The Augmented Dickey-Fuller 
(ADF) test is a stationary test on average, where the ADF test statistics are seen in Eq. (2). 𝐴𝐷𝐹 = 𝛿መ𝑆𝐸൫𝛿መ൯ (2) 

where 𝑆𝐸൫𝛿መ൯ is the standard error for 𝛿መ. The decision-making criteria are if the 𝐴𝐷𝐹 < 𝛼 then reject 𝐻଴ in other words, the 
data is stationary. If the ADF value > 𝛼 then accept 𝐻଴ in other words, the data is not stationary. 

 
3.2.3. ARMA Modeling 
 
The ARMA model aims to discuss the average model in the time series. The Autoregressive Moving Average (ARMA) 
model can be expressed in the following Eq. (3). 

𝑟௧ = 𝜔 + ෍𝜙௜𝑟௧ି௜௣
௜ୀଵ + 𝑎௧ −෍𝜃௝𝑎௧ି௝௤

௝ୀଵ  (3) 

where 𝑟௧ is the return value at time 𝑡, 𝑎௧ is a white noise process or error at time 𝑡 (Sukono et al., 2017). 
 
ARMA modeling process. In general, the ARMA modeling process is: (i) Model identification by determining p and q values 
with autocorrelation function (ACF) and partial autocorrelation function (PACF) from correlogram plots. (ii) Parameter 
estimation can use the method of least squares or maximum likelihood. (iii) Diagnostic test with white noise and non-
correlation test on residuals using Box-Pierce or Ljung-Box. If the model is suitable (iv), Forecasting can be used for 
recursive predictions. 

 
3.2.4. ARCH effect test 
 
The ARCH model used to estimate volatility was introduced by Engle (1982). This model is used when the error variance 
in the model follows the autoregressive (AR) form. To model the time series using the ARCH process (p). 
 

 𝑎௧ = 𝜎௧𝑣௧,       𝜎௧ଶ = 𝛼଴ + 𝛼ଵ𝑎௧ିଵଶ + ⋯+ 𝛼௠𝑎௧ି௠ଶ  (4) 
 

where 𝑣௧ is the order of independent and identically distributed (iid), 𝑎௧ is the residual return from the average model, 𝜎௧ଶ 
is the residual variance squared at time 𝑡, and 𝛼ଵ𝑎௧ିଵଶ  is the ARCH component. 

ARCH effect test. The most widely used test to detect the effect of ARCH is the Lagrange Multiplier (LM). Based on 
equation (4), the ARCH effect test (p) is based on the null hypothesis 𝐻଴:𝛼ଵ = 𝛼ଶ = ⋯ = 𝛼௣ = 0 it means that there is no 
ARCH effect and 𝐻ଵ:∃𝛼௜ ≠ 0, 𝑖 = 1,2, … , 𝑝 means that there is an ARCH effect. The test statistics used are as Eq. (5). 
 𝐿𝑀 = 𝑛𝑅ଶ (5) 
 

where 𝑛 is the number of data and 𝑅ଶ s the coefficient of determination in the previous regression model.  

3.2.5. GARCH Modeling 
 

Bollerslev (1986) developed the ARCH model into a GARCH model (𝑝, 𝑞) where 𝑞 is the order ARCH and 𝑝 is the order 
GARCH. In general, the GARCH model is as Eq. (6). 𝑎௧ = 𝜎௧𝑣௧, 𝜎௧ଶ = 𝜔 + ෍𝛼௜𝑎௧ି௜ଶ௣

௜ୀଵ + ෍𝛽௝𝜎௧ି௝ଶ௣
௝ୀଵ  (6) 
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where 𝜖௧ is the order of independent and identically distributed (iid), 𝜎௧ଶ is the residual variance at time−𝑡, 𝜔 is the constant 
component, 𝛼௜ is the i-th parameter of ARCH,  𝑎௧ି௜ଶ  is the square of the residual at a time to (𝑡 − 𝑖), 𝛽௝ is the-𝑗 parameter 
of GARCH, 𝜎௧ି௝ଶ  is the variance of the residual at a time to (𝑡 − 𝑗). Equation (3) shows that the conditional variance is a 
past shock as seen from the squared residual (𝑝) and the past residual variance (𝑞) (Olowe and Ayodeji, 2010). 
 

The volatility modeling process. The volatility modeling process is: (i) Estimated ARMA model with time series model. (ii) 
Use the residuals from the ARMA model to test the ARCH effect. (iii) If there is an ARCH effect, the estimation of the 
volatility model and the combined estimates form the ARMA model and the volatility model. (iv) Perform diagnostic tests 
to observe the suitability of the model. (v) If the model already fits, use it to predict based on recursive predictions. 

3.2.6. Asymmetry 
 

According to Bakhtiar et al. (2020), the asymmetric test is a property that shows an imbalance in certain conditions or 
objects. The asymmetric nature is called the leverage effect or high volatility in the time series. To determine the nature of 
asymmetry, namely by skewness and kurtosis. Skewness is a degree of imbalance in the distribution. The asymmetric test 
can be done by using the cross-correlation between the lag residual (𝜀௧) and the squared residual (𝜀௧ଶ).  
 

According to Brooks (2008), asymmetric testing can be tested by testing the sign bias in the regression equation as Eq. (7). 𝑢ො௧ଶ = 𝜙଴ + 𝜙ଵ𝑆௧ିଵି + 𝜙ଶ𝑆௧ିଵି 𝑢௧ିଵ + 𝜙ଷ𝑆௧ିଵା 𝑢௧ିଵ + 𝑣௧ (7) 

where 𝑆௧ିଵି  is a dummy indicator with a value of 1 if 𝑢ො௧ିଵ < 0 and 0 for others, 𝑣௧ is an error, 𝑆௧ିଵା = 1 − 𝑆௧ିଵି  which is a 
positive observation, 𝜙ଵ is a sign bias parameter (positive or negative effect), 𝜙ଶ and 𝜙ଷ are size of bias parameter.  

Eq. (7) can be used to see the effect of asymmetry on the model by looking at the probability value of the dummy 
multiplication with the residual GARCH model. Reject 𝐻଴ if the probability value of the dummy multiplication with the 
GARCH model residual < 𝛼, then the residual is asymmetric. 

 
3.2.7. GJR-GARCH Modeling 
 
Glosten Jagannathan and Runkle (1993) introduced the asymmetric GARCH model, namely the GJR-GARCH model. The 
GJR-GARCH model and the GARCH model is that the GJR-GARCH model has parts representing asymmetric properties. 
The GJR-GARCH model is as equation (8) and (9). The advantage of the GJR-GARCH model is that it can measure 
volatility due to the different effects of bad news and good news. 𝑎௧ = 𝜎௧𝜖௧, 𝜎௧ଶ = 𝜔 + ෍𝛼௜𝑎௧ି௜ଶ௣

௜ୀଵ + ෍𝛽௝𝜎௧ି௝ଶ௣
௝ୀଵ + 𝛾௜𝐼௧ି௜𝑎௧ି௜ଶ  (8) 

and 𝐼௧ି௜ = ൜1,𝑎௧ି௜ < 00,𝑎௧ି௜ ≥ 0 (9) 

where 𝛼௜ is the parameter to 𝑖 of ARCH, 𝛽௝ is the parameter to 𝑗 of GARCH and 𝛾௜ is the parameter to 𝑖 of the leverage 
effect, 𝐼௧ି௜ is a dummy variable which means a functional index that is zero when 𝑎௧ି௜ positive and one when 𝑎௧ି௜ negative. 
If the parameter 𝛾௜ > 0 then the negative error does not work, which means that the effect of bad news will be greater than 
the effect of good news (Dritsaki, 2017). 
 

GJR-GARCH modeling process: (i) Estimation of GARCH model with time series model. (ii) Use the residuals from the 
GARCH model to test the ARCH effect. (iii) Conducting diagnostic tests to observe the suitability of the model. (iv) Test 
for asymmetric effects. (v) If there is an asymmetric effect, it can be used to predict based on recursive prediction. 

3.2.8. Value-at-Risk 
 
According to Dwipa (2016), VaR is the maximum potential loss in a certain period with a certain level of confidence in 
normal (market) conditions. VaR at the confidence level (1 − 𝛼) and time interval 𝑡 can be formulated as Eq. (10). 
 𝑉𝑎𝑅 = infሼ𝑟௧|𝐹௟(𝑟௧) ≥ 𝛼ሽ (10) 
 
where 𝐹௟ is the distribution function of return 𝑟௧. Then the VaR for the next period with a confidence level of 𝛼 can be 
formulated as Eq. (11). 
 𝑉𝑎𝑅 = 𝜇 + 𝜎௧𝐹ିଵ(𝛼) (11) 
 
where 𝜇 is the mean, 𝜎ଶ is the variance, and 𝜎 is the standard deviation (Sukono et al., 2018). 
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3.2.9. Backtesting  
 
Back-test is a method used to measure the estimated VaR performance. Suppose 𝑟௧ represents gain or loss at time 𝑡 and 𝑉𝑎𝑅௧ is a prediction of VaR at time 𝑡. In 1998 Lopez introduced a model of the size-adjusted frequency approach as Eq. 
(12). 𝐶௧ = ൜ 1 + (𝑟௧ − 𝑉𝑎𝑅௧)ଶ, 𝑟௧ > 𝑉𝑎𝑅௧0,                                 𝑟௧ ≤ 𝑉𝑎𝑅௧ (12) 
 

The statistic used to test the VaR risk performance uses the quadratic probability score (QPS). The QPS equation is as Eq. 
(13). 

𝑄𝑃𝑆 = ൬2𝑛൰෍(𝐶௧ − 𝑝)ଶ௡
௜ୀଵ  (13) 

where 𝑛 is the number of data, 𝑝 is the probability value. The QPS value is between the range [0, 2] where 0 is the minimum 
value that occurs when 𝑟௧ ≤ 𝑉𝑎𝑅௧ and 2 is the maximum value that occurs when 𝑟௧ > 𝑉𝑎𝑅௧. VaR performance is good 
when the small QPS is close to 0 (Sukono et al., 2019). 

4. Results and Discussion 

4.1. Results 

4.1.1. Descriptive Statistics of Stock Return 
 
Descriptive statistics explain the average, maximum and minimum values in rupiah. ICBP stocks obtained the highest 
average closing price with an average of IDR9,830,127.346.00. Then the maximum price of the ten highest stocks is ICBP 
stocks with IDR12,400,000,000.00. The highest minimum price was also obtained for ICBP stocks at IDR7,750,000,000.00. 
Descriptive statistics in detail can be seen in Table 1. 

 
Table 1  
Descriptive Statistics of Stock Data 

No Code Mean (IDR) Maximum Value (IDR) Minimum Value (IDR) 
1 BBCA 6,167,332,440 7,750,000,000 4,430,000,000 
2 BBNI 6,598,063,003 9,850,000,000 3,160,000,000 
3 BBRI 3,937,012,342 4,890,000,000 2,170,000,000 
4 BMRI 6,576,226,542 8,150,000,000 3,720,000,000 
5 ASII 6,032,138,070 8,475,000,000 3,280,000,000 
6 ICBP 9,830,127,346 12,400,000,000 7,750,000,000 
7 PGAS 1,586,939,597 2,650,000,000 605,000,000 
8 PTBA 2,643,986,577 4,470,000,000 1,485,000,000 
9 TLKM 3,566,899,329 4,470,000,000 2,560,000,000 
10 UNVR 7,547,533,512 10,005,000,000 3,820,000,000 

 
Furthermore, the calculation of stock returns uses equation (1). Because the stock return calculation uses Eq. (1), the 
movement of the stock return value is on average 0. So, it can be seen that the data is stationary. Next is the stationarity test 
of the data in section 4.1.2. 

4.1.2. Stationarity Test 
 
A stationary test is conducted by using Dickey-Fuller with a probability value of 5%. The formula used for this stationary 
test uses Eq. (2). Stationary testing in this study using Eviews 10 software, so that the stationarity test results are given in 
Table 2. 
 
Table 2  
Stock return stationary test 

No Name ADF Value Critical Value Probability Stationary  
1. BBCA -28.26384 -2.8652 

 

0.0000 Stationer 
2. BBNI -25.57169 -2.8652 0.0000 Stationer 
3. BBRI -20.95871 -2.8652 0.0000 Stationer 
4.  BMRI -26.58175 -2.8652 0.0000 Stationer 
5. ASII -28.67779 -2.8652 0.0000 Stationer 
6. ICBP -28.91462 -2.8652 0.0000 Stationer 
7. PGAS -25.62396 -2.8652 0.0000 Stationer 
8. PTBA -28.19626 -2.8652 0.0000 Stationer 
9. TLKM -23.31614 -2.8652 0.0000 Stationer 
10. UNVR -14.48223 -2.8652 0.0000 Stationer 
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Based on the stationary test in Table 2, the probability value obtained is less than the probability value used, which is 5%, 
meaning that the stock return data for BBCA, BBNI, BBRI, BMRI, ASII, ICBBP, PGAS, PTBA, TLKM, and UNVR are 
stationary. Then proceed with the ARIMA model and diagnostic testing. 

4.1.3. ARIMA modeling and Diagnostic Test 
 
The stock return data, which has been stationary, is continued by identifying the ARIMA model. The ARIMA model can be 
identified by looking at the ACF and PACF on the correlogram plot. Based on Table 1, for the data on the ten stocks, the 
differencing process was not carried out because the ten stocks were stationary at the level. So, the differencing process 
used is 0 and the modeling process uses Eq. (3). The model equation is obtained based on the output of Eviews 10 as shown 
in Table 3 and the model obtained can be seen in Table 4.  

 
Table 3  
ARIMA Model Estimation 

No Name Parameter Parameter Estimation t-statistic P-value 
1. BBCA AR (1) -0.514166 -26.21417 0.0000 
  MA (3) 0.117129 5.097995 0.0000 

2. BBNI AR (1) 0.064438 3.036586 0.0025 
  MA (1) -0.999472 -45.34951 0.0000 

3. BBRI AR (1) -0.417325 -16.34477 0.0000 
  MA (3) 0.081640 2.453917 0.0144 

4. BMRI AR (2) 0.338607 2.124245 0.0340 
  MA (2) -0.474612 -2.973079 0.0030 

5. ASII AR (1) -0.053180 -2.230933 0.0260 
  AR (2) -0.060206 -2.192661 0.0286 
  MA (1) -0.999636 -32.09550 0.0000 

6. ICBP AR (4) -0.740712 -5.270208 0.0000 
  MA (4) 0.657000 4.105697 0.0000 

7. PGAS AR (1) -0.944571 -69.00926 0.0000 
  MA (2) -0.929149 -68.69278 0.0000 

8. PTBA AR (4) 0.156793 6.586803 0.0000 
  MA (3) 0.090062 3.636374 0.0003 

9. TLKM AR (1) -1.066740 -42.21242 0.0000 
  AR (2) -1.058787 -40.64755 0.0000 
  AR (3) -0.063695 -2.493440 0.0129 
  MA (3) -0.984652 -75.62536 0.0000 

10. UNVR AR (1) -0.248710 -2.559542 0.0107 
  AR (2) -0.782618 -9.999477 0.0000 
  MA (1) -0.839945 -7.690707 0.0000 
  MA (2) 0.551698 3.811751 0.0001 
  MA (3) -0.709946 -8.403299 0.0000 

 

Table 3 shows parameter estimates, t-statistical values, and p-values. The results of p-value obtained is less than the 
probability value of 5%, so a model can be made according to the parameters in the output results of Table 3.  

Table 4  
ARIMA Modeling 

No Name ARIMA Model Model Equation 
1. BBCA ARIMA (1,0,3) 𝒓𝒕 = −𝟎,𝟓𝟏𝟒𝟏𝟔𝟔𝒓𝐭ି𝟏 + 𝟎,𝟏𝟏𝟕𝟏𝟐𝟗𝒂𝐭ି𝟑 + 𝒂𝒕  
2. BBNI ARIMA (1,0,1) 𝒓𝒕 = −𝟎,𝟎𝟔𝟒𝟒𝟑𝟖𝒓𝐭ି𝟏 − 𝟎,𝟗𝟗𝟗𝟒𝟕𝟐𝒂𝐭ି𝟐 + 𝒂𝒕 
3. BBRI ARIMA (1,0,3) 𝒓𝒕 = −𝟎,𝟒𝟏𝟕𝟑𝟐𝟓𝒓𝐭ି𝟏 + 𝟎,𝟎𝟖𝟏𝟔𝟒𝟎𝒂𝐭ି𝟑 + 𝒂𝒕 
4. BMRI ARIMA (2,0,2) 𝒓𝒕 = 𝟎,𝟑𝟑𝟖𝟔𝟎𝟕𝒓𝐭ି𝟐 − 𝟎,𝟒𝟕𝟒𝟔𝟏𝟐𝒂𝐭ି𝟐 + 𝒂𝒕   
5. ASII ARIMA (2,0,1) 𝒓𝒕 = −𝟎,𝟎𝟓𝟑𝟏𝟖𝟎𝒓𝐭ି𝟏 − 𝟎.𝟎𝟔𝟎𝟐𝟎𝟔𝒛𝐭ି𝟐 −           𝟎.𝟗𝟗𝟗𝟔𝟑𝟔𝒂𝐭ି𝟏 + 𝒂𝒕  
6. ICBP ARIMA (4,0,4) 𝒓𝒕 = −𝟎.𝟕𝟒𝟎𝟕𝟏𝟐𝒓𝐭ି𝟒 + 𝟎.𝟔𝟓𝟕𝟎𝟎𝟎𝒂𝐭ି𝟒 + 𝒂𝒕  
7. PGAS ARIMA (1,0,2) 𝒓𝒕 = −𝟎.𝟗𝟒𝟒𝟓𝟕𝟏𝒓𝐭ି𝟏 − 𝟎.𝟗𝟐𝟗𝟏𝟒𝟗𝒂𝐭ି𝟐 + 𝒂𝒕  
8. PTBA ARIMA (4,0,3) 𝒓𝒕 = 𝟎.𝟏𝟓𝟔𝟕𝟗𝟑𝒓𝐭ି𝟒 + 𝟎.𝟎𝟗𝟎𝟎𝟔𝟐𝒂𝐭ି𝟑 + 𝒂𝒕    
9. TLKM 𝐴RIMA (3,0,3) 𝒓𝒕 = −𝟏.𝟎𝟔𝟔𝟕𝟒𝟎𝒓𝐭ି𝟏 − 𝟏.𝟎𝟓𝟖𝟕𝟖𝟕𝒛𝐭ି𝟐 − 𝟎.𝟎𝟔𝟑𝟔𝟗𝟓𝒓𝐭ି𝟑 − 𝟎.𝟗𝟖𝟒𝟔𝟓𝟐𝒂𝐭ି𝟑 + 𝒂𝒕     
10.  UNVR ARIMA (2,0,3) 𝒓𝒕 = −𝟎.𝟐𝟒𝟖𝟕𝟏𝟎𝒓𝐭ି𝟏 − 𝟎.𝟕𝟖𝟐𝟔𝟏𝟖𝒛𝐭ି𝟐 − 𝟎.𝟖𝟑𝟗𝟗𝟒𝟓𝒂𝐭ି𝟏 + 𝟎.𝟓𝟓𝟏𝟔𝟗𝟖𝒂𝐭ି𝟐 + 𝟎.𝟕𝟎𝟗𝟗𝟒𝟔𝒂𝐭ି𝟑 + 𝒂𝒕 
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After obtaining the ARIMA model as shown in Table 4, then the significance test of the model is in Table 4. The significance 
results can be used using the p-value shown in Table 3 because decision-making is seen from the p-value. If p-value > 𝛼 
then 𝐻଴ is don't reject and 𝐻ଵ is rejected, if p-value < 𝛼 then 𝐻଴ is rejected and 𝐻ଵ is don't reject. The t-test results were 
obtained in the models in Table 3 with a probability value of < 0.05, meaning that the lag obtained in each model has a 
significant effect on stock return data. After that, a diagnostic test was carried out on the model in Table 4 to see that the 
model obtained was good to use. The diagnostic test carried out is the white noise test; this test is used to see whether the 
model is good or not. White noise testing is good if the model obtained has a probability value of more than 𝛼 = 0.05. 
Diagnostic test results and normality can be seen in Table 5. 

 
Table 5  
Diagnostic Test and Normality 

No Name ARIMA Model Diagnostic Test Normal Residual 
1. BBCA ARIMA (1,0,3) White noise Normal 
2. BBNI ARIMA (1,0,1) White noise Normal 
3. BBRI ARIMA (1,0,3) White noise Normal 
4.  BMRI ARIMA (2,0,2) White noise Normal 
5. ASII ARIMA (2,0,1) White noise Normal 
6. ICBP ARIMA (4,0,4) White noise Normal 
7. PGAS ARIMA (1,0,2) White noise Normal 
8. PTBA ARIMA (4,0,3) White noise Normal 
9. TLKM ARIMA (3,0,3) White noise Normal 

10. UNVR ARIMA (2,0,3) White noise Normal 
 

The diagnostic test obtained in Table 5 is that the ten models have white noise, and the residuals are normally based on the 
output of Eviews 10, so it can be said that the model fits. These results indicate that there is no correlation between residuals. 
From the ten models, it can be continued to the next stage, namely the heteroscedasticity test. 

4.1.4. Heteroscedasticity Test 
 
A heteroscedasticity test was conducted to see whether the model has a constant or non-constant residual. This test can use 
Eq. (5) with the hypothesis that if the p-value < 𝛼 then there is an ARCH effect and if the p-value is > 𝛼, then there is no 
ARCH effect and cannot be continued for further model testing. The results of heteroscedasticity carried out on ten stocks 
are shown in Table 6. 
 

Table 6  
Heteroscedasticity test on the average model 

No Name P-Value Test results 
1. BBCA 0.0004 There is an ARCH effect 
2. BBNI 0.0000 There is an ARCH effect 
3. BBRI 0.0000 There is an ARCH effect 
4.  BMRI 0.0000 There is an ARCH effect 
5. ASII 0.0000 There is an ARCH effect 
6. ICBP 0.0000 There is an ARCH effect 
7. PGAS 0.0000 There is an ARCH effect 
8. PTBA 0.0000 There is an ARCH effect 
9. TLKM 0.0000 There is an ARCH effect 

10. UNVR 0.0160 There is an ARCH effect 
 
Table 6 shows that the ten models obtained with p-value < 𝛼 are 5%. It means that the residual variance of each model is 
not homogeneous, so GARCH modeling is carried out using the ARIMA model approach. 

4.1.5. GARCH Modeling and Diagnostic Test 
 

GARCH modeling was carried out on ten stock data containing heteroscedasticity properties. The next process is GARCH 
estimation by looking at the ACF and PACF plots, and the modeling process is carried out using equation (6). The model 
equation can be seen from the output results of Eviews 10, which are listed in Table 7 and the GARCH modeling can be 
seen in Table 8.  

Table 7 is a parameter estimation table for the GARCH model. Based on the output obtained in Table 7, the p-value of each 
model is less than 5%. Then, the parameters obtained are used to create a model. The p-value is used to see whether each 
parameter used is significant or not. From Table 7, a GARCH model can be made from Table 8. 
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Table 7  
GARCH Model Estimation 

No Name Parameter Parameter Estimation z-statistic P-value 
1. BBCA 𝝎 3.55× 𝟏𝟎ି𝟓 5.998938 0.0000 
  𝜶𝟏 0.297815 7.024272 0.0000 
  𝜷𝟏 0.643384 17.50368 0.0000 

2. BBNI 𝝎 1.08× 𝟏𝟎ି𝟓 3.101068 0.0019 
  𝜶𝟏 0.101445 6.481046 0.0000 
  𝜷𝟏 0.883664 57.42953 0.0000 

3. BBRI 𝝎 1.31× 𝟏𝟎ି𝟓 4.455161 0.0019 
  𝜶𝟏 0.101445 6.545144 0.0000 
  𝜷𝟏 0.883664 44.08548 0.0000 

4.  BMRI 𝝎 4.01× 𝟏𝟎ି𝟓 4.947399 0.0000 
  𝜶𝟏 0.148979 5.985380 0.0000 
  𝜷𝟏 0.821305 38.59841 0.0000 

5. ASII 𝝎 1.13× 𝟏𝟎ି𝟓 2.819046 0.0048 
  𝜶𝟏 0.052065 5.352401 0.0000 
  𝜷𝟏 0.924575 62.09474 0.0000 

6. ICBP 𝝎 0.000219 11.85928 0.0000 
  𝜶𝟏 0.571363 8.353831 0.0000 
  𝜷𝟏 0.151660 3.689371 0.0002 

7. PGAS 𝝎 4.28× 𝟏𝟎ି𝟓 3.955612 0.0001 
  𝜶𝟏 0.091825 5.217514 0.0000 
  𝜷𝟏 0.863369 38.377773 0.0000 

8. PTBA 𝝎 0.000140 5.244338 0.0000 
  𝜶𝟏 0.238700 6.105710 0.0000 
  𝜷𝟏 0.664758 15.32815 0.0000 

9. TLKM 𝝎 1.08× 𝟏𝟎ି𝟓 3.707499 0.0002 
  𝜶𝟏 0.061793 6.464341 0.0000 
  𝜷𝟏 0.911388 71.91348 0.0000 

10. UNVR 𝝎 1.40× 𝟏𝟎ି𝟓 4.895856 0.0000 
  𝜶𝟏 0.155901 9.706558 0.0000 
  𝜷𝟏 0.814572 50.41685 0.0000 

 

Table 8  
GARCH Model 

No Name GARCH Model Model Equation 
1. BBCA GARCH (1,1) 𝜎௧ଶ = 3.55 × 10ିହ + 0.297815𝑎௧ିଵଶ + 0.643384𝑎௧ିଵଶ + 𝑢௧  
2. BBNI GARCH (1,1) 𝜎௧ଶ = 1.08 × 10ିହ + 0.101445𝑎௧ିଵଶ + 0.883664𝑎௧ିଵଶ + 𝑢௧  
3. BBRI GARCH (1,1) 𝜎௧ଶ = 1.31 × 10ିହ + 0.113634𝑎௧ିଵଶ + 0.862452𝑎௧ିଵଶ + 𝑢௧  
4. BMRI GARCH (1,1) 𝜎௧ଶ = 4.01 × 10ିହ + 0.148979𝑎௧ିଵଶ + 0.821305𝑎௧ିଵଶ + 𝑢௧  
5. ASII GARCH (1,1) 𝜎௧ଶ = 1.13 × 10ିହ + 0.148979𝑎௧ିଵଶ + 0.924575𝜎௧ିଵଶ + 𝑢௧  
6. ICBP GARCH (1,1) 𝜎௧ଶ = 0.000219 + 0.571363𝑎௧ିଵଶ + 0.151660𝜎௧ିଵଶ + 𝑢௧  
7. PGAS GARCH (1,1) 𝜎௧ଶ = 4.28 × 10ିହ + 0.091825𝑎௧ିଵଶ + 0.863369𝜎௧ିଵଶ + 𝑢௧  
8. PTBA GARCH (1,1) 𝜎௧ଶ = 0.000140 + 0.238700𝑎௧ିଵଶ + 0.664758𝜎௧ିଵଶ + 𝑢௧  
9. TLKM GARCH (1,1) 𝜎௧ଶ = 1.08 × 10ିହ + 0.061793𝑎௧ିଵଶ + 0.911388𝜎௧ିଵଶ + 𝑢௧  

10.  UNVR GARCH (1,1) 𝜎௧ଶ = 1.40 × 10ିହ + 0.155901𝑎௧ିଵଶ + 0.814572𝜎௧ିଵଶ + 𝑢௧  
Table 7 displays the ten tested models for significance using the t-test and diagnostic test. Decision-making is seen from the 
p-value contained in Table 7. If p-value > 𝛼 then 𝐻଴ is don't reject and 𝐻ଵ is rejected, if p-value < 𝛼 then 𝐻଴ is rejected and 𝐻ଵ is don't reject. The p-value results obtained are probability values < 0.05, meaning that the lag obtained in each model 
significantly affects stock return. Table 8 is the GARCH model formed based on the parameter estimates obtained. After 
that, a diagnostic test was carried out on the model shown in Table 9. 
 
Table 9  
Diagnostic Test and Normality 

No Name GARCH Model Diagnostic Test Normal Residual 
1. BBCA GARCH (1,1) White noise Normal 
2. BBNI GARCH (1,1) White noise Normal 
3. BBRI GARCH (1,1) White noise Normal 
4.  BMRI GARCH (1,1) White noise Normal 
5. ASII GARCH (1,1) White noise Normal 
6. ICBP GARCH (1,1) White noise Normal 
7. PGAS GARCH (1,1) White noise Normal 
8. PTBA GARCH (1,1) White noise Normal 
9. TLKM GARCH (1,1) White noise Normal 

10. UNVR GARCH (1,1) White noise Normal 
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The diagnostic test results on the GARCH (1,1) model for each stock show that the model has white noise. There is no 
correlation between the residuals and the model is said to be suitable, so the GARCH (1,1) model for all stocks used can be 
continued to the next stage, namely the ARCH effect test. 

4.1.6. ARCH Effect Test 
 

The ARCH effect test is the same as the heteroscedasticity test to see whether the model has a constant or non-constant 
residual. This test shows that if the p-value > 𝛼 then the GARCH (1,1) model has no ARCH effect. Based on the results 
obtained using the Eviews 10 software, the GARCH (1,1) model for ten stocks has a value greater than (5%) and can be 
seen in Table 10. 

 
Table 10  
Heteroscedasticity test on the volatility model 

No Name P-Value Test results 
1. BBCA 0.9535 No ARCH Effect 
2. BBNI 0.4848 No ARCH Effect 
3. BBRI 0.7723 No ARCH Effect 
4.  BMRI 0.6576 No ARCH Effect 
5. ASII 0.9461 No ARCH Effect 
6. ICBP 0.8677 No ARCH Effect 
7. PGAS 0.4424 No ARCH Effect 
8. PTBA 0.5881 No ARCH Effect 
9. TLKM 0.9748 No ARCH Effect 

10. UNVR 0.7954 No ARCH Effect 
 
Table 10 shows that the p-value of the ten models is greater than 𝛼 (5%). There is no ARCH effect on all models, meaning 
that the residual variance of each model is homogeneous. It proves that the test can be continued to the next stage, namely 
the asymmetric GARCH method. 

4.1.7. Asymmetry Test 
 
This asymmetric test is also known as the cross-correlation test, which means the multiplication between the lag residual (𝑢௧) and the residual squared (𝑢௧ଶ). Multiplication is done to see whether the GARCH model in Table 7 has asymmetric 
properties or not. To check the cross-correlation using the first Eviews 10 software by looking at the multiplication value 
between the residuals and the squared residuals. The cross-correlation between the residuals and the squared residuals in 
the ten models is that there is no value equal to zero, so the data used is asymmetrical. It means that the condition of bad 
news and good news has an asymmetric effect on volatility. Second, the asymmetric test results using Eq. (7) produce values 
in Table 11. 

 
Table 11  
Asymmetry Test 

No Name GARCH Model The probability value of dummy multiplication with residual GARCH model 
1. BBCA GARCH (1,1) 0.0000 
2. BBNI GARCH (1,1) 0.0000 
3. BBRI GARCH (1,1) 0.0000 
4.  BMRI GARCH (1,1) 0.0000 
5. ASII GARCH (1,1) 0.0000 
6. ICBP GARCH (1,1) 0.0000 
7. PGAS GARCH (1,1) 0.0000 
8. PTBA GARCH (1,1) 0.0000 
9. TLKM GARCH (1,1) 0.0000 
10. UNVR GARCH (1,1) 0.0000 

 
Table 11 is the result of the dummy multiplication with the residual GARCH model. The rejection criterion is to reject 𝐻଴ 
if the probability value of the dummy multiplication with the GARCH model residual < 𝛼 then the residual is asymmetric. 
Based on Table 10 the probability value obtained is 0.0000 < 𝛼, the data used has an asymmetric effect. Furthermore, from 
the asymmetrical GARCH model, modeling of the GJR-GARCH is carried out as in point 4.1.8. 

4.1.8. GJR-GARCH Modeling 
 
GJR-GARCH modeling can be done if you already know the asymmetrical nature of the GARCH model contained in Table 
8. The parameter estimation of the GJR-GARCH model is carried out using equation (8) with the help of Eviews 10 
software. The modeling results are presented in Table 12. 
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Table 12  
GJR-GARCH Model 

No Name GJR-GARCH (1,1) Model 
1. BBCA 𝜎௧ଶ = 8.53 ×  10ି଺ + 0.038909𝑎௧ିଵଶ + 0.159906𝑎௧ିଵଶ I୲ିଵ + 0.861201𝜎௧ିଵଶ + 𝜀௧ 
2. BBNI 𝝈𝒕𝟐 = 𝟕,𝟕𝟑 ×  𝟏𝟎ି𝟔 + 𝟎,𝟎𝟒𝟏𝟔𝟗𝟖𝒂𝒕ି𝟏𝟐 + 𝟎,𝟎𝟔𝟒𝟏𝟖𝟑𝒂𝒕ି𝟏𝟐 𝐈𝐭ି𝟏 + 𝟎,𝟗𝟏𝟔𝟗𝟕𝟓𝝈𝒕ି𝟏𝟐 + 𝜺𝒕    
3. BBRI 𝝈𝒕𝟐 = 𝟗,𝟒𝟖 ×  𝟏𝟎ି𝟔 + 𝟎,𝟎𝟒𝟏𝟑𝟕𝟓𝒂𝒕ି𝟏𝟐 + 𝟎,𝟏𝟐𝟔𝟕𝟖𝟐𝒂𝒕ି𝟏𝟐 𝐈𝐭ି𝟏 + 𝟎,𝟖𝟖𝟓𝟗𝟑𝟑𝝈𝒕ି𝟏𝟐 + 𝜺𝒕   
4. BMRI 𝝈𝒕𝟐 = 𝟐,𝟐𝟐 ×  𝟏𝟎ି𝟓 + 𝟎,𝟎𝟕𝟐𝟕𝟕𝟕𝒂𝒕ି𝟏𝟐 + 𝟎,𝟏𝟑𝟔𝟎𝟑𝟔𝒂𝒕ି𝟏𝟐 𝐈𝐭ି𝟏 + 𝟎,𝟖𝟐𝟔𝟏𝟖𝟔𝝈𝒕ି𝟏𝟐 + 𝜺𝒕   
5. ASII 𝝈𝒕𝟐 = 𝟖,𝟑𝟏 × 𝟏𝟎𝟔 + 𝟎,𝟎𝟔𝟓𝟕𝟎𝟎𝒂𝒕ି𝟏𝟐 𝐈𝐭ି𝟏 + 𝟎,𝟗𝟓𝟑𝟏𝟖𝟒𝝈𝒕ି𝟏𝟐 + 𝜺𝒕 
6. ICBP 𝝈𝒕𝟐 = 𝟗,𝟐𝟏 ×  𝟏𝟎ି𝟓 + 𝟎,𝟎𝟗𝟒𝟖𝟔𝟑𝒂𝒕ି𝟏𝟐 + 𝟎,𝟐𝟏𝟏𝟏𝟎𝟏𝒂𝒕ି𝟏𝟐 𝐈𝐭ି𝟏 + 𝟎,𝟒𝟖𝟖𝟗𝟔𝟕𝝈𝒕ି𝟏𝟐 + 𝜺𝒕   
7. PGAS 𝝈𝒕𝟐 = 𝟒,𝟑𝟏 ×  𝟏𝟎ି𝟓 + 𝟎,𝟎𝟔𝟑𝟏𝟎𝟎𝒂𝒕ି𝟏𝟐 + 𝟎,𝟎𝟔𝟑𝟑𝟓𝟎𝒂𝒕ି𝟏𝟐 𝐈𝐭ି𝟏 + 𝟎,𝟖𝟔𝟒𝟒𝟖𝟔𝝈𝒕ି𝟏𝟐 + 𝜺𝒕   
8. PTBA 𝝈𝒕𝟐 = 𝟑,𝟑𝟏 ×  𝟏𝟎ି𝟓 + 𝟎,𝟎𝟕𝟐𝟕𝟎𝟎𝒂𝒕ି𝟏𝟐 + 𝟎,𝟎𝟓𝟔𝟓𝟖𝟐𝒂𝒕ି𝟏𝟐 𝐈𝐭ି𝟏 + 𝟎,𝟖𝟓𝟐𝟕𝟏𝟏𝝈𝒕ି𝟏𝟐 + 𝜺𝒕   
9. TLKM 𝝈𝒕𝟐 = 𝟗,𝟖𝟒 ×  𝟏𝟎ି𝟔 + 𝟎,𝟎𝟑𝟔𝟑𝟎𝟐𝒂𝒕ି𝟏𝟐 + 𝟎,𝟎𝟕𝟎𝟎𝟓𝟖𝒂𝒕ି𝟏𝟐 𝐈𝐭ି𝟏 + 𝟎,𝟗𝟎𝟗𝟓𝟎𝟎𝝈𝒕ି𝟏𝟐 + 𝜺𝒕   

10. UNVR 𝝈𝒕𝟐 = 𝟏,𝟎𝟓 ×  𝟏𝟎ି𝟓 + 𝟎,𝟎𝟗𝟐𝟑𝟎𝟐𝒂𝒕ି𝟏𝟐 + 𝟎,𝟏𝟓𝟏𝟏𝟓𝟔𝒂𝒕ି𝟏𝟐 𝐈𝐭ି𝟏 + 𝟎,𝟕𝟎𝟕𝟏𝟗𝟖𝝈𝒕ି𝟏𝟐 + 𝜺𝒕   
Table 12 shows the asymmetric value obtained from each of these models is not equal to zero, which means that there is a 
shock so that the volatility of the return value for the leverage effect has a significant effect. The results of the four models 
have a greater influence on bad news received in return volatility than on good news. 

4.1.9. Value-at-Risk and Backtesting 
 
Before determining the Value-at-Risk value, the average value and volatility of stock returns for the next period are 
predicted. The Value-at-Risk value is determined based on the ARIMA model results for the calculated average of 𝜇̂௧ = 𝑟̂௧ 
and GJR-GARCH for the volatility (variance) calculated from 𝜎ො௧ଶ = 𝜎௧ଶ . The estimates of the mean and the volatility 
(variance) 𝜎ଶ are in Table 13. Before determining the Value-at-Risk value, the average value and volatility of stock returns 
for the next period are predicted. Using the average and volatility model of stock returns, the values of 𝜇̂௧ = 𝑟̂௧ and 𝜎ො௧ଶ = 𝜎௧ଶ 
are calculated. These results can be seen in Table 13. 
 

Table 13  
Mean, variance, VaR and QPS 

No Name 𝝁ෝ𝒕 𝝈ෝ𝒕𝟐 𝝈ෝ𝒕 𝑽𝒂𝑹𝒕 QPS 
1. BBCA 0.006608 0.001072 0.032741 0.047088 0.026745 
2. BBNI 0.000261 0.000523 0.022869 0.037244 0.10406 
3. BBRI 0.010326 0.01012 0.100598 0.154655 0.007416 
4. BMRI 0.002055 0.004064 0.063749 0.102494 0.012248 
5. ASII 0.000263 0.000549 0.023431 0.038398 0.087148 
6. ICBP 0.001464 0.001773 0.042107 0.06801 0.012248 
7. PGAS 0.000811 0.000241 0.015524 0.024804 0.292517 
8. PTBA 0.00958 0.000445 0.021095 0.025227 0.222450 
9. TLKM 0.003263 0.000118 0.010863 0.014661 0.357752 
10. UNVR 0.002266 0.000077 0.008781 0.012222 0.328758 

 

Based on the results obtained in Table 13 in the column 𝝁ෝ𝒕 it can be seen that the maximum average value is in BBRI stocks 
with a value of 0.010326 and the minimum is in BBNI stocks with a value of 0.000261. In column 𝜎ො௧ or standard deviation, 
it can be seen that the maximum standard deviation value is obtained in BBRI stocks with a value of 0.100598 and the 
minimum standard deviation is in BBNI stocks with a value of 0.022869. If the probability value is 5%, then the normal 
distribution value is 𝑧଴.଴ହ = −1.65 and the investment assumption is 𝑆଴ = 1 unit, then the Value-at-Risk value is obtained 
using Eq. (11) and the results are following Table 13 in the 𝑉𝑎𝑅௧ column. 

Value-at-Risk value is measured using back-testing to see whether the Value-at-Risk performance is good or not. The back-
testing calculation using QPS starts from obtaining the 𝐶௧ value or loss indicator which is worth 0 and 1. Then the 𝐶௧ t 
results are used to calculate the QPS value referring to equation (13). Thus, the QPS results are obtained in Table 13 in the 
QPS column. It can be seen that the QPS value obtained on BBCA stocks is 0.026745, BBNI stocks are 0.10406, BBRI 
stocks are 0.007416, BMRI stocks are 0.012248, ASII stocks are 0.087148, ICBP stocks are 0.012248, PGAS stocks are 
0.292517, PTBA stocks are 0.222450, TLKM stocks are 0.357752, and UNVR's stocks are 0.328758. The maximum QPS 
is in TLKM stocks with a value of 0.357752 and the minimum QPS is in BBRI stocks with a value of 0.007416. The QPS 
results obtained for the ten stocks are not more than the range [0, 2] and tends to approach 0, which means that the ARIMA-
GJR-GARCH Value-at-Risk performance is good for use in the analyzed stock return data. 

4.2. Discussion  
 

High volatility results indicate high risk and low volatility, which results in low risk. Tamilselvan and Vali (2016) used the 
GARCH model to test Muscat stocks in the securities market by concluding that the GARCH (1,1) model is the best estimate 
for symmetric data with no leverage effect on the data used. The volatility obtained in this study is relatively high. In other 
words, the greater the volatility obtained, the greater the risk. The data used in this study are the best ten stock data based 
on the IDX. The ten stocks used are good stocks for long-term investments. This study uses the ARIMA-GJR-GARCH 



R. A. Hidayana et al.  / Decision Science Letters 11 (2022) 
 

245

model. The ARIMA model estimation is used to get the mean value and the GJR-GARCH model estimate is used to get the 
variance value. So the Value-at-Risk value obtained from each stock is shown in Table 13. It can be explained that the 
maximum risk obtained by investors with an initial investment of IDR100,000,000.00 and invest in ten stocks, for example, 
BBCA stocks, which are IDR4,708,800,000. The results of this study can be used to assist investors in making investment 
decisions by knowing the maximum risk obtained for each stock. 

Furthermore, based on the data presented in Table 13, if a comparison (calculated ratio) is made between the mean values 
of 𝝁ෝ𝒕 with risk values measured using variance 𝝈ෝ𝒕𝟐 each stock return, then the results can be presented in a histogram as 
shown in Fig. 1. 

 

  
Fig. 1. Histogram Ratio of Mean to Variance Fig. 2. Histogram Ratio of Mean to Value-at-

Risk 
Fig. 1 captures only four stocks of the ten best stocks on the IDX that have relatively good performance. The four stocks 
are UNVR with a predicted mean return of 0.002266 and a risk (variance) of 0.000077; TLKM mean return is 0.003263 
and variance is 0.000118; PTBA mean return is 0.00958 and variance is 0.000445; followed by BBCA stock with a mean 
return of 0.006608 and a variance of 0.001072. For investors who pay attention to risk measured by variance, these 
comparison values (ratio) can be used as a reference in making investment decisions.  

Next, also from the data presented in Table 13, if a comparison (ratio) is made between the mean values of 𝝁ෝ𝒕 to the values 
of Value-at-Risk 𝑽𝒂𝑹𝒕 each stock return, the ratio calculation results can be presented in the form of a histogram, as shown 
in Fig. 2. The figure shows that of the ten best stocks on the IDX that have relatively good performance, there are only four 
stocks. The four stocks are PTBA with a predicted mean return of 0.00958 and a Value-at-Risk of 0.025227; TLKM mean 
return is 0.003263 and Value-at-Risk is 0.014661; UNVR mean return is 0.002266 and Value-at-Risk is 0.012222; followed 
by BBCA stock with a mean return of 0.006608 and Value-at-Risk of 0.047088. For investors who pay attention to risk 
measured by Value-at-Risk with a confidence level of 5%, these comparison values (ratio) can be used to make investment 
decisions. 

5. Conclusion 

In this study, an estimation of the Value-at-Risk value has been carried out using a time series model. The data analyzed are 
BBCA, BBNI, BBRI, and BMRI stock return data. The models obtained from each stock are ARIMA(1,0,3)-GJR-
GARCH(1,1) BBCA stocks, ARIMA(1,0,1)-GJR-GARCH(1,1) BBNI stocks, ARIMA(1,0,3)-GJR-GARCH(1,1) BBRI 
stocks, ARIMA(2,0,2)-GJR-GARCH(1,1) BMRI stocks, ARIMA(2,0,1)-GJR -GARCH(0,1) ASII stocks, ARIMA(4,0,4)-
GJR-GARCH(1,1) ICBP stocks, ARIMA(1,0,2)-GJR-GARCH(1,1) PGAS stocks, ARIMA(4,0,3)-GJR-GARCH(1,1) 
PTBA stocks, ARIMA(3,0,3)-GJR-GARCH(1,1) TLKM stocks, and ARIMA(2,0,3)- GJR-GARCH(1,1) UNVR stocks. The 
Value-at-Risk values obtained from the four stocks are 0.047088 for BBCA, 0.037244 for BBNI, 0.154655 for BBRI, 
0.102494 for BMRI, 0.038398 for ASII, 0.06801 for ICBP, 0.024804 for PGAS, 0.025227 for PTBA, 0.014661 for TLKM, 
and 0.012222 for UNVR. The QPS, which is relatively small and in the range of values [0, 2], shows that risk measurement 
using Value-at-Risk on the analyzed stocks has good performance. This research can estimate the value of volatility with 
data that has an asymmetric effect using a time series model and can determine the value of Value-at-Risk with ARIMA-
GJR-GARCH model. Based on the ten stocks data used, there is an asymmetric effect on the data. It means that the data has 
a greater influence of bad news on the volatility of stock returns. Value-at-Risk results can be used to determine the estimated 
maximum risk of loss. This research is useful for investors in making investment decisions in the stock sector. Thus, this 
research can assist investors in choosing stocks that have a small investment loss risk. 
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