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 This paper aims a novel and a useful multi-objective optimization approach named Non-
Dominated Sorting Ions Motion Algorithm (NSIMO) built on the search procedure of Ions 
Motion Algorithm (IMO). NSIMO uses selective crowding distance and non-dominated sorting 
method to obtain various non-domination levels and preserve diversity amongst the best set of 
solutions. The suggested technique is employed to various multi-objective benchmark functions 
having different characteristics like convex, concave, multimodal, and discontinuous Pareto 
fronts. The recommended method is analyzed on different engineering problems having distinct 
features. The results of the proposed approach are compared with other well-regarded and novel 
algorithms. Furthermore, we present that the projected method is easy to implement, capable of 
producing a nearly true Pareto front and algorithmically inexpensive.  
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1. Introduction 

Optimization process helps us find the best value or optimum solution. The optimization process looks 
for finding the minimum or maximum value for single or multiple objectives. Multi-objective 
optimization (MOO) refers to optimizing various objectives which are often conflicting in nature. Every 
day we see such problems in engineering, mathematics, economics, agriculture, politics, information 
technology, etc. Also sometimes, indeed, the optimum solution may not be available at all. In such 
cases, compromise and estimates are frequently required. Multi-objective optimization is much more 
complicated than single-objective optimization because of the existence of multiple optimum solutions. 
At large, all solutions are conflicting, and hence, a group of non-dominated solutions is required to be 
found out to approximate the true pareto front.  

Heuristic algorithms are derivative-free solution approaches. This is because heuristic approaches do 
not use gradient descent to determine the global optimal. Metaheuristic approaches treat the problem 
as a black box for given inputs and outputs. Problem variables are inputs, while objectives are outputs. 
Many competent metaheuristic approaches were proposed in the past to solve the multi-objective 
optimization problem. A heuristic approach starts problem optimization by creating an arbitrary group 
of initial solutions. Every candidate solution is evaluated, objective values are observed, and based on 
the outputs, the candidate solutions are modified/changed/combined/evolved. This process is sustained 
until the end criteria are met.  
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There are various difficulties associated while solving the problem using the heuristics. Even 
optimization problems have diverse characteristics. Some of the challenges are constraints, uncertainty, 
multiple and many objectives, dynamicity. Over a while, global optimum value changes in dynamic 
problems. Hence, the heuristic approach should be furnished with a suitable operator to keep track of 
such changes so that global optimum is not lost. Heuristic approaches should also be fault-tolerant to 
deal with uncertainty effectively. Constraints restrict the search space leading to viable and unviable 
solutions. The heuristic approach should be able to discard the unsustainable solution and ultimately 
discover the best optimum solution. Researchers have also proposed surrogate models to reduce 
computational efforts for computationally expensive functions. The idea of Pareto dominance operator 
is introduced to compare more than one objectives. The heuristic approach should be able to find all 
the best Pareto solutions. The proper mechanism should be incorporated with heuristic approaches to 
deal with multi-objective problems. Storage of non-dominated solutions is necessary through the 
optimization process. Another desired characteristics of multi-objective heuristic approach are to 
determine several solutions. In other words, the Pareto solutions should binge uniformly across all the 
objectives.  
 
Majority of the novel single-objective algorithms have been furnished with appropriate mechanisms to 
deal with multi-objective problems (MOP) also. Few of them are Non-sorting Genetic Algorithm (Deb 
et al., 2000), Strength Pareto Evolutionary Algorithm (SPEA-II) (Zitzler et al., 2001), Multi-objective 
Particle Swarm Optimization (MOPSO) (Coello & Lechuga, 2002), Dragonfly Algorithm (Mirjalili, 
2016), Multi-objective Jaya Algorithm (Rao et al., 2017), Multi-objective improved Teaching-Learning 
based Algorithm (MO-iTLBO) (Rao & Patel, 2014),  Multi-objective Bat Algorithm (MOBA) (Yang, 
2011), Multi-objective Ant Lion Optimizer (MOALO) (Mirjalili et al., 2017), Multi-objective Bee 
Algorithm (Akbari et al., 2012), Non-dominated sorting MFO (NSMFO) (Savsani & Tawhid, 2017), 
Multi-objective Grey Wolf Optimizer (MOGWO) (Mirjalili et al., 2016), Multi-objective Sine Cosine 
Algorithm (MOSCA) (Tawhid & Savsani, 2017), Multi-objective water evaporation algorithm 
(MOWCA) (Sadollah & Kim, 2015) and so forth.  
 
The No Free Lunch (Wolpert & Macready, 1997) theorem (NFL) motivates to offer novel algorithms 
or advance the present ones since it rationally demonstrates that there is no optimization procedure 
which solves all problems at its best.  This concept applies equally to single as well as multi-objective 
optimization approaches. In an exertion to solve the multi-objective optimization problem, this article 
suggests a multi-objective variant of the newly proposed Ions Motion Algorithm (IMO). Though the 
existing approaches can solve a diversity of problems, conferring to the No Free Lunch theory, current 
procedures may not be capable of addressing an entire range of optimization problems. This theory 
motivated us to offer the multi-objective IMO with the optimism to solve same or novel problems with 
improved efficiency.  
 
The remaining paper is organized as follows:  Section 2 discusses the existing literature.  Section 3 
presents the concepts of NSIMO. Section 4 discusses the current single-objective Ions Motion 
Algorithm (IMO) and its proposed non-sorted version. Section 5 presents deliberates and examines the 
results of the benchmark functions and engineering design problems. Section 6 shows a brief 
discussion, and finally, Section 7 accomplishes the work and offers future direction. 
 
2. Review of Literature  

In the single-objective optimization, there is a global optimum unique solution. This fact is owing to 
the only objective in single-objective optimization problems and the presence of the most excellent 
unique solution. Evaluation of solutions is simple when seeing one goal and can be completed by the 
relational operators: ≥, >, ≤, <, or =. Such problems permit optimization issues to suitably relate the 
aspirant solutions and ultimately determine the finest one. While in multi-objective issues, though, 
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solutions should be equated with multiple criteria. Multi-objective minimization problem can be 
expressed as follows: 
 
Optimize (Minimize/maximize): 

 1 2( ) ( ), ( ),..., ( )nF x f x f x f x
   

 (1) 

subject to:  

( ) 0     1, 2,3,....,ia x i m   (2) 

( ) 0    1,2,3,....,ib x i p   (3) 

   1, 2,3,...,ib i ibL x U i q    (4) 

Here, q  presents some variables, 1 2( ), ( ),..., ( )nf x f x f x
  

 introduces some objective functions, m and p  

shows some inequality and equality constraints. ibL and ibU , give lower and upper limits of the variable. 

The kind of such problems foils us from equating results using the relational operators as there are 
multiple criteria to evaluate solutions. In a single objective optimization problem, we can indeed say 
which solution is better using a relational operator, but with various objectives, we need some other 
operator(s). The primary operator to equate two solutions bearing in mind multiple goals is called 
Pareto optimal dominance and is described as:  

The definition I: Pareto Dominance:  

Assuming two vectors 1 2 1 2( , ,..., ) and ( , ,..., )k ka a a a b b b b 
 

 

Vector a  dominates b  ( a b ) if and only if:  

   1 1 1 11,2,..., : ( ) ( ) 1,2,..., : ( ) ( )i k f a f b i k f a f b          
   

  (5) 

By inspecting Eq. (5) it may be concluded that a solution is improved than another solution if it has 
equal and nonetheless, one improved value in the objectives. Under such a situation, it is said that a 
solution dominates another solution. If this situation does not stand good for two solutions, then they 
are called Pareto optimal or non-dominated solutions. The solutions to the multi-objective problem are 
Pareto optimal solutions. Hence, the Pareto optimality is defined as follows.  

Definition II: Pareto efficiency   

Assuming ' ',a A a  is Pareto optimal solution if and only if:  

  b A b a
  

  (6) 

Pareto optimality or Pareto efficiency is a state of distribution of solutions from which it is not possible 
to budge to achieve any one single or preference criterion improved without forming nonetheless one 
specific or preference criterion worse off. Such a solution set is known as the Pareto optimal set. The 
prognosis of the Pareto optimal solutions in the objective search space is called Pareto optimal front.  

The definition III: Pareto optimal set  

The Pareto optimal set comprises a set of Pareto optimal solutions.  

 : ,  PS a b A b a 
   

  (7) 

The definition IV: Pareto optimal front  

This set comprises objective values for the solutions in the Pareto solutions set:  
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   1,2,3,..., , : ( )ii n PF f a a PS   
 

 (8) 

Quick and easy comparison of solutions of multi-objective optimization can be made with above four 
equations. The group of variables, constraints, and objectives create a search landscape. Considering 
difficulties associated with the representation of search space for problems with more than goals, 
researchers consider two search space: goal and parameter space. Similarly, to single-objective 
optimization, the range of variables regulate the limits of the search space in each dimension while 
restraints divulge them. The overall outlines of all population-based multi-objective algorithms 
(MOAs) are nearly matching (Mirjalili et al., 2017). They begin the optimization procedure with several 
random candidate solutions. Such random solutions are equated utilizing the Pareto dominance 
operator. The algorithm attempts to enhance non-dominated solutions in the subsequent iteration(s). 
Different search approaches distinct one algorithm from another to augment the non-dominated 
solutions. Two perspectives are essential for enhancing the non-dominated solutions using stochastic 
algorithms: coverage (distribution) and convergence (accuracy) (Kaußler & Schmeck, 2001). The 
convergence denotes the procedure of refining the exactness of the non-dominated solutions. The 
eventual aim is to bargain estimations very near to the actual Pareto optimum solutions. Coverage 
presents that MOAs should attempt to increase the uniform distribution of the non-dominated solutions 
over the complete range of true Pareto front. For appropriate decision making, a wide range of solutions 
is desirable, and hence, higher coverage is a critical feature in posteriori methods. The main challenge 
in the stochastic multi-objective approach is the conflict between the coverage and the convergence. If 
an approach only focuses on enhancing the correctness of non-dominated solutions, then the resulting 
coverage will be weak. Or a little importance to the coverage adversely affects the efficiency of the 
non-dominated solutions. Majority of the existing approaches continually balance coverage and 
convergence to identify an exact estimate of the true solutions with a uniform spread of solutions across 
all objectives. The coverage can be improved by employing an archive and leader selection-based 
method, non-dominated sorting and niching as proposed in (Nafpliotis & Goldberg, 1994; Horn & 
Nafpliotis, 1993; Mahfoud, 1995).  

3. Ions Motion Algorithm 

This section first introduces the single-objective IMO algorithm. The next section presents the multi-
objective form of single objective IMO.  
 
 3.1 Ions Motion Algorithm  

In 1834, Michael Faraday coined the Greek term “ion.” Typically, the charged particles are known as 
ions and can be separated into two categories: cations: ions with positive charge and anions: ions with 
a negative charge. Fig. 1 presents a conceptual model of force between cations and anions. The primary 
stimulus of Ions Motion Algorithm is a force of attraction and repulsion between unlike and like 
charges, respectively. Javidy et al. (Javidy et al., 2015) proposed the population-based IMO approach 
stimulated from these characteristics of ions in nature.  

 
Fig.  1. Conceptual model of the force of attraction and repulsion 
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In IMO algorithm, anions and cations form the candidate solutions for a given optimization problem. 
The force of attraction/repulsion move the ions (i.e., candidate solutions) around the search space. The 
ions are assessed based on the fitness value of the objective function. Anions tend to move towards best 
cations, while cations tend to move towards best anions. This movement depends upon the force of 
attraction/repulsion between them. Such an approach guarantees improvement over iterations but does 
not guarantee the required exploration and exploitation of search space. Two different phases of ions, 
i.e., liquid, and crystal phase, are assumed to ensure necessary exploitation and exploration of search 
space.  
 
3.1.1 Liquid phase 

Liquid phase provides more freedom to the movement of ions, and hence, in the liquid stage, the ions 
can pass quickly.  Also, the force of attraction is much more than the force of repulsion. Thus, the force 
of repulsion can be neglected to explore the search space. The distance between two ions is the only 
key factor considered to compute the force of attraction. So the resulting mathematical model can be 
proposed as: 
 

,

, 0.1

1

1 i j

i j
Pd

Pf
e



 

(9) 
 

,

, 0.1

1

1 i j

i j
Qd

Qf
e



 

(10) 

 

where, , ,i j i j jPd P Qbest   and , ,i j i j jQd Q Pbest  , i  and j  presents ion index and dimension 

respectively,  ,i jPd is the distance between ith  anion from the best cation in jth  dimension,  ,i jQd  

calculates the distance between ith  the cation from the best anion in jth  dimension. As presented in 
Eq. (9) and Eq. (10), force is inversely proportional to distances among ions. Larger the distance, lesser 
is the force of attraction. In other words, the force of attraction becomes less when the distance grows 
higher from the best ion with the opposite charge.  

 
According to Eq. (9) and Eq. (10), the value of force varies between 0.5 to 1. ,i jPf  and ,i jQf  are the 

resultant attraction force of anions and cations respectively. After force calculation, the position of 
positive and negative ions is updated as per the following equations:  
 

 , , , ,i j i j i j j i jP P Pf Qbest P    (11) 

 , , , ,i j i j i j j i jQ Q Qf Pbest Q    (12) 

 

,i jPf  and ,i jQf are the resulting attraction forces between opposite ions while jQbest and jPbest

present best cations and anions respectively. The attraction force between ions guarantees exploration. 
Referring to Eq. (9)-(12), we can conclude that in the liquid phase, there is no involvement of the 
random component. Fig.  2 presents an abstract model of the movement of ions in the liquid stage. With 
an increasing number of iterations, more and more ions start interacting, converging towards best ion 
with opposite charge and hence, exploration gradually decreases. This phenomenon is precisely like 
the conversion from liquid to crystal state observed in nature. The search agents, i.e., ions also enter 
crystal state, finally converging towards the best solution in search space.  
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Fig.  2. Ions movement towards the best ions in the liquid phase 

3.1.2 Crystal phase 

In this stage, the ions congregate to the optimal solution, and convergence has already taken place. 
Since the search space has unknown form, occasionally convergence gets trapped into local minima. A 
separate mechanism is proposed at the crystal stage to avoid trapping of solutions in local minima. The 
cations and anions in the crystal phase are organized to maximize their force of attraction. When an 
outside force is applied to the same charges in the crystal phase, the resultant repulsion force cracks the 
crystal apart. Mathematically, the mechanism to overcome local optimum trapping can be demonstrated 
as below: 
 

if (QbestFit  ≥ QworstFit/2 and PbestFit  ≥  PworstFit/2) 
  if rand () ˃ 0.5 

  1 1i iP P Qbest       

 else  
    1i iP P Qbest    

               end if 
  if rand () ˃ 0.5 

                              2 1i iQ Q Pbest                                      

                       else  
   2i iQ Q Pbest    

          end if  
                      if rand () ˂ 0.5 

                 Re-initialize Pi and Qi 
             end if 

end if  

 
 
 
 
 
 
 
 
 
(13) 

 
 
where, 1 and 2  are random numbers between  1,1  and  rand is a random number between  0,1 . 

Q bestF it  and Q w orstFit  present fitness of the best and worst cations. PbestF it  and PworstFit  are 
the fitness of best and worst anions. The best fitness of anions and cations should be better than or equal 
to the average competence of the worst anions and cations. If this situation is met, ions are arbitrarily 
navigated in search space to circumvent stagnation adjacent to local minima. Again, ions enter the 
liquid state until termination criteria are met.  
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It should be noticed here that Eq. (13), four instead of two conditions are proposed to achieve different 
behavior of the proposed algorithm. These four conditions are presented below.  

1. Both first if-else statements are met:  
 1 1i iP P Qbest     

 2 1i iQ Q Pbest     

2. Only the first if-else statement is met:  
 1 1i iP P Qbest     

 2i iQ Q Pbest    

 
3. Only the second if-else statement is met:  

 1i iP P Qbest    

 2 1i iQ Q Pbest     

 
4. Both conditions are not met:  

 1i iP P Qbest    

 2i iQ Q Pbest    
 

In contrast, merging the first two if-else statements will result in only two conceivable combinations:  

5. Collective if-else sentences are fulfilled: 
 1 1i iP P Qbest     

 2 1i iQ Q Pbest     

 
6. Combined if-else sentences are not fulfilled: 

 1i iP P Qbest    

 2i iQ Q Pbest    

Thus, splitting two conditions into four provide different behavior for the IMO, which helps to avoid 
local optimal entrapment. Fig.  3 presents the standard steps of the Ions Motion Algorithm. The IMO 
starts with a random group of solutions. The arbitrary collection of solutions during initialization are 
generated using ( )i i ir ub lb lb   where r  is a random number uniformly distributed between  0 ,1 . 

iub  and ilb  represent upper and lower bound respectively of i th variable. At this phase, ions are equally 

separated into a set of anions and cations, respectively. The fitness of each anion and cation is 
calculated, and according to fitness, best and worst anions/cations are selected and saved. The attraction 
forces and positions are updated using Eq. (9) - (12) . During each iteration, if the condition of the 
crystal phase is met, the ions go into the crystal phase. Till the satisfaction of termination criteria, ions 
keep going between solid and liquid phases. In the end, the best ion is reported as the best approximation 
of the global solution. 

4. Non-Sorted Ions Motion Algorithm (NSIMO) 
 
In a paper on NSGA-II (Deb et al., 2002), elitist non-dominated sorting and diversity preserving 
crowding distance approach were introduced. The same procedure is integrated into the suggested 
algorithm for categorization of the population in different non-domination stages with calculated 
crowded distance. An elitist non-dominated sorting for finding distinct non-domination phases is 
defined first, and then crowding distance method to maintain the variety amongst the optimum set of 
solutions has been elucidated.  Fig.   presents population fronts established on their non-domination 
ranking. The green-colored solutions form the first front of non-dominated solutions as they are non-
dominated by any other solutions. The orange-colored solutions form the second front as the first front 
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dominates them. On similar lines, all the solutions are sorted built on their non-domination level. Fig.   
presents a schematic representation of the non-dominated sorting-based approach for the multi-
objective optimization algorithm. 
  

 
 

Fig.  3. Standard procedure of IMO 
4.1 Diversity maintenance  
 
The Crowding distance method is employed to maintain diversity among the acquired solutions. 
Initially, the population is grouped corresponding to the fitness of objective function. The boundary 
solutions are assigned an infinite crowding distance. In Fig. 5, solution a and b are attached infinite 
crowding distance. Except for boundary solutions, all other solutions are assigned crowding distance 
as:  
 

1 1

max min

i i
j ji

j
j j

f f
CD

f f

 



 

(14) 

 
min
jf  and max

jf  are minimum and maximum values of 𝑗𝑡ℎ objective function. Once, all the population 

members are assigned crowding distance; any two solutions can be compared for their extent of 
proximity with other solutions. A solution with a smaller value of CD, in some sense, is more 
surrounded by other solutions. For uniform spread out of Pareto optimal front, crowded comparison 
operator  n  is used in the different stage of the algorithm to guide the selection process. As 

mentioned earlier, every solution i  has two attributes:  
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Fig.  4. Diagram of non-dominated sorting 

 

 
 

Fig.  5. Schematic representation of non-dominated sorting based algorithm 

 
 Non-domination rank  
 Crowding distance  

 

For solutions having a different non-domination level, we prefer solutions with better (lower) rank. If 
both the solutions belong to the same front, the solution located in the less crowded region is selected.  
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Fig.  6. Diagram of crowding distance approach 

5. Simulation Results 
 
This section describes the performance of the suggested algorithm on 20 case studies considering eight 
unconstrained, six constrained, and six engineering design problems (Mirjalili et al., 2017). The 
performance of NSIMO is tested on benchmark functions having different Pareto optimal front, i.e., 
diverse characteristics. To further check the performance of the algorithm, more challenging real-time 
engineering design problems are also considered.  
  
For results confirmation, two recently developed non-sorted algorithms, such as MOSCA (Tawhid & 
Savsani, 2017) and NSMFO (Savsani & Tawhid, 2017), are used. The findings are gathered and 
discussed quantitatively and qualitatively in this section. Each algorithm is run 30 times. Note that we 
have used 500 iterations and 200 search agents. Best Pareto fronts obtained by the algorithms are 
compared for the qualitative findings. For the quantifiable results, we have used a variety of 
performance metrics: Generational Distance (GD) (Veldhuizen & Lamont, 1998), Inverted 
Generational Distance (IGD) (Sierra & Coello, 2005), metric of spread (Deb, 2001), and metric of 
spacing (Schott, 1995). 
 
5.1 Findings on unconstrained benchmark test problems  
 
Eight different unconstrained benchmark functions, i.e., KUR, FON, ZDT1, ZDT2, ZDT3, ZDT6, 
SCHN1, and SCHN2 are employed to assess the performance of the NSIMO. Table 1 and Fig.   gives 
a quantitative and qualitative assessment of results obtained by different algorithms. Results suggest 
that the NSIMO performs better or competitive as compared to the rest of the algorithms under 
consideration.  

The statistical results present that NSIMO algorithm performs better than NSSCA algorithm 
significantly on many unconstrained test functions. These results display the superiority of NSIMO 
showing higher accuracy and better robustness. For the rest of the benchmark functions, it performs 
competitively if not better. The NSIMO algorithm, however, presents incredibly competitive outcomes 
in parallel with the NSMFO algorithm and occasionally outperforms it.  

The shape of the best Pareto front achieved by the three procedures on different unconstrained 
benchmark functions is illustrated in Fig.  . Reviewing these figures, NSSCA presents poor 
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performance, notwithstanding its good coverage in a few cases. However, NSMFO and NSIMO both 
provide a perfect convergence toward all true Pareto fronts. Performance of NSIMO is better than the 
rest of the algorithms for ZDT6. This shows that NSIMO can outclass the rest of the algorithms in 
getting Pareto optimal front with non-convex, non-uniform regions.  

5.2 Results on constrained test problems  
 
The next set of test function comprises constrained benchmark functions. We need to arm NSIMO with 
a constraint handling method to be able to solve constrained problems. Identifying an appropriate 
constraint handling method is beyond the scope of this effort, and we use a death penalty function 
(Mirjalili et al., 2017) to punish search agents that infringe any of the restraints at any level. For 
equating algorithms, we have applied four metrics in this research: GD, IGD, metric of spread, and 
metric of space. These performance indicators allow us to enumerate and equate algorithms regarding 
convergence and coverage.  
 
Table 1  
Results (IGD, Metric of Spread and GD) on Unconstrained Multi-Objective Problems 

Algorithm 

Functions ↓ 

PMs NSMFO 
MEAN±SD 

NSSCA 
MEAN±SD 

NSIMO 
MEAN±SD 

KUR GD 0.0001074±1.5063e-05 0.00010377±4.7693e-06 0.00011763±1.8943e-05 

Δ 0.44714±0.016241 0.66507±0.017925 0.43762±0.019637 

IGD 0.00012776±2.766e-05 0.00011033±4.3825e-06 0.00012798±4.4222e-05 

FON GD 8.8423e-05±3.8647e-06 8.5355e-05±2.9712e-06 8.7132e-05±1.5134e-06 

Δ 0.31999±0.022165 0.3955±0.0068 0.31494±0.018985 

IGD 0.00014599±5.9036e-06 0.00019748±9.581e-06 0.00014514±6.1866e-06 

ZDT-1 GD 0.00016787±1.4753e-05 0.00015976±1.7683e-05 0.00016875±1.4248e-05 

Δ 0.36628±0.01978 0.64984±0.022358 0.37601±0.019666 

IGD 0.00013269±8.5614e-06 0.00017428±1.0992e-05 0.0001368±7.7013e-06 

ZDT-2 GD 6.7703e-05±2.1246e-06 6.6127e-05±2.5689e-06 6.6268e-05±2.287e-06 

Δ 0.37941±0.017908 0.6569±0.023443 0.37587±0.02307 

IGD 0.00014449±1.2209e-05 0.00017878±1.4167e-05 0.00013973±8.3648e-06 

ZDT-3 GD 0.00025146±5.9607e-06 0.00024917±7.1797e-06 0.00024978±5.8043e-06 

Δ 0.55962±0.012548 0.70387±0.020547 0.56258±0.012206 

IGD 0.00016883±1.017e-05 0.00022276±1.6369e-05 0.00016749±7.7892e-06 

ZDT-6 GD 0.010417±0.016865 0.0090416±0.019254 0.005628±0.017609 

Δ 0.65378±0.47981 0.81997±0.29371 0.46549±0.31668 

IGD 0.0001273±8.0205e-06 0.00017561±1.4624e-05 0.00013057±1.0637e-05 

SCHN-1 GD 0.0001638±6.9129e-06 0.00016785±7.8278e-06 0.00016383±7.159e-06 

Δ 0.62451±0.034387 0.59813±0.02761 0.37422±0.017477 

IGD 0.00023106±1.1999e-05 0.00028302±1.5164e-05 0.00023399±1.1998e-05 

SCHN-2 GD 1.854e-05±5.6619e-07 1.8588e-05±7.3537e-07 1.8666e-05±5.4382e-07 

Δ 1.0071±0.013382 1.1039±0.017301 1.0056±0.011871 

IGD 6.2055e-05±8.415e-07 8.7834e-05±7.0331e-06 6.2688e-05±2.5361e-06 
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Fig.  7. Best Pareto optimal front of KUR, FON, ZDT1, ZDT2, ZDT3, ZDT4, SCHN1 and SCHN2 
obtained by the NSMFO, NSSCA, and NSIMO 

Table 2  
Results (IGD, Metric of Spread, GD, and Metric of Spacing) on Constrained Multi-Objective Problems 

Algorithm 

Functions ↓ 

PMs NSMFO 
MEAN±SD 

NSSCA 
MEAN±SD 

NSIMO 
MEAN±SD 

SRN GD 6.5352e-05±1.522e-05 5.1191e-05±1.5714e-05 5.8776e-05±9.8695e-06 

IGD 4.6713e-05±1.881e-06 6.4209e-05±2.6541e-06 4.5476e-05±1.9791e-06 

Δ 0.33905±0.017063 0.68601±0.01411 0.32752±0.015569 

MoS 1.7525±0.27734 1.8534±0.26276 1.6097±0.33944 

CONSTR GD 0.00015872± 8.4222e-06 0.00016676± 1.3434e-05 0.0001568± 9.417e-06 

IGD 0.00013559± 1.2016e-05 0.00016462± 6.6251e-06 0.0001353± 9.3247e-06 

Δ 0.58274± 0.019573 0.83056± 0.019114 0.58807± 0.021356 

MoS 2.5963±0.16907 2.3987±0.25002 2.5092±0.23515 

OSY GD 0.0066976± 0.00085347 0.0044044±0.00045 0.0063532±0.0010256 

IGD 0.0065997± 0.00091147 0.0054844±0.00084982 0.0068945±0.0013187 

Δ 0.79921±0.0754 0.85176±0.024854 0.76545±0.06933 

MoS 42.2379±5.2723 41.6241±3.9097 41.5859±3.9256 

CF1 GD 0.0014345±1.4957e-05 0.0014326±3.5153e-05 0.0014272±1.809e-05 

IGD 0.00056284±6.5769e-05 0.00083561±0.00027776 0.00057587±6.4474e-05 

Δ 0.26101±0.017055 0.70089±0.031555 0.26582±0.019673 

MoS 0.0018384±0.00022823 0.00095134±0.00020729 0.0018453±0.00017062 

BEL GD 2.9344e-05±2.4679e-06 3.3158e-05±5.4287e-06 3.005e-05±3.1562e-06 

IGD 8.8872e-05±2.8416e-06 0.00012607±5.1487e-06 9.0167e-05±4.6455e-06 

Δ 0.3676±0.012431 0.71218±0.02448 0.36587±0.024505 

MoS 0.0011919±0.0016248 0.0036968±0.0035206 0.0016076±0.0019559 

BNH GD 0.00021099±6.0144e-06 0.0002143±5.8956e-06 0.00021325±1.1498e-05 

IGD 0.00023224±1.189e-05 0.00029761±2.208e-05 0.00022943±1.298e-05 

Δ 0.45494±0.021187 0.66419±0.028024 0.45656±0.027193 

MoS 31.8377±1.4852 30.8488±2.4398 31.1807±2.1131 

 

Table 2 demonstrates that the NSIMO outperforms the other two algorithms on most of the constrained 
test functions used. Results of GD and IGD presents competitive convergence. The results collected 
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shows that the NSIMO algorithm beats the NSMFO and NSSCA algorithm. The best Pareto optimal 
fronts in Fig.   also substantiates this claim since all the Pareto optimal solutions found by NSIMO are 
positioned on the front. The results for coverage performance metrics in Table 2 also prove that NSIMO 
shows better results in many instances. Though they all are very competitive with each other. Fig.   
demonstrates that some of the constrained test functions have very different Pareto fronts compared to 
unconstrained test functions, for example, BNH, CONSTR, and OSY. CONSTR has non-convex front 
along with a linear front. Results for NSIMO achieved to estimate both these parts efficiently. NSIMO 
almost wholly obtains SRN, BEL, and BNH. NSSCA performs improved than the rest of the two 
algorithms for OSY function. OSY function is quite like CONSTR function with multiple linear regions 
in between.   
 
5.3 Results on Engineering Design Problems  
 
The final group of benchmark functions is the most stimulating and comprises six real engineering 
design problems. These problems have varied constrained characteristics. Table 3 quantitatively 
compares different algorithms for a comparable group of performance metrics. Table 3 presents that 
NSIMO algorithm can very well solve the engineering design problems. The best Pareto optimal fronts 
in Fig. 9, however, offer different conduct from the other two test suites. Fig. 9  presents that the 
convergence of the NSIMO algorithm is not 100% near to the true Pareto front in the welded beam, 
speed reducer, and Isolated safety transformer design problems. This is owing to the multi-modal and 
highly constrained nature of the problem. Despite this, the convergence is rational, and the coverage is 
exceptional and practically even. 
 
Table 3  
Results on Constrained Real-World Engineering Multi-Objective Problems 

Algorithm 

Functions ↓ 

PMs NSMFO 
MEAN±SD 

NSSCA 
MEAN±SD 

NSIMO 
MEAN±SD 

Disk Brake GD 0.00021217±9.2288e-06 0.00021557±8.665e-06 0.00018101±3.4774e-05 

IGD 0.00019922±2.4627e-05 0.00018747±8.7678e-06 0.00027207±0.00016832 

Δ 0.67008±0.032321 0.76739±0.034974 0.6318±0.041105 

MoS 3.6165±0.34099 4.0017±0.21541 3.4855±0.32762 

Four Bar Truss GD 0.0024977± 0.0030875 0.00022869± 1.0134e-05 0.001247± 0.0016354 

IGD 0.00021388± 8.1162e-06 0.00026617± 1.3e-05 0.0002165± 1.1761e-05 

Δ 0.70854± 0.26493 0.68294± 0.024525 0.60075± 0.21382 

MoS 182.5304± 11.4529 168.7437± 10.66 182.1619± 11.2816 

Isolated Transformer GD 0.00069302± 0.00014258 0.00083383±0.00050994 0.0012147±0.00079664 

IGD 0.0013891± 0.00049654 0.00037493±0.00023764 0.0021309±0.0008391 

Δ 0.57726±0.069078 0.76167±0.032098 0.64833±0.10209 

MoS 3.9591±0.6307 5.4163±0.50189 3.3525±0.67109 

Pressure Vessel GD 0.0002808±2.8963e-05 5.1166e-05±8.9434e-06 0.0011584±0.00087485 

IGD 9.5019e-05±7.2848e-06 8.7491e-05±3.9046e-06 0.0001398±3.0382e-05 

Δ 0.34083±0.025803 0.67829±0.021022 0.37779±0.02608 

Speed Reducer GD 0.00038333±0.00011586 0.00033068±9.4532e-05 0.00048365±0.0001909 

IGD 0.0025719±0.0035815 0.00036263±3.232e-05 0.0020127±0.001675 

Δ 0.54322±0.11131 0.76304±0.026699 0.54283±0.096924 

Welded Beam GD 0.0011713±0.00091419 0.0033673±0.0039845 0.0010877±0.00081558 

IGD 0.007178±0.0026728 0.0031542±0.0026112 0.0078412±0.0030566 

Δ 0.50927±0.062032 0.80993±0.0749 0.54345±0.060318 

MoS 10.3228±0.60164 10.4591±0.6809 10.1706±0.93415 

 
6. Discussion 

 
The quantitative and qualitative outcomes presented that the NSIMO algorithm aids from competitive 
convergence and coverage. Competitive convergence of NSIMO is congenital from the IMO algorithm. 
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The principal mechanism that assures convergence in IMO and NSIMO is owing to the proposed liquid 
phase where the ions tend to get attracted towards best anions and cations. It was also observed and 
demonstrated that competitive coverage is another gain of the NSIMO algorithm. The competitive 
coverage initiates from the exit from local optima by the repulsion forces in crystal phase and crowding 
selection mechanism. Non-dominated sorting approach and crowding distance mechanism guaranteed 
the selection of the best solution and desired spread during each iteration. These mechanisms emphasize 
improving the coverage and convergence of the Pareto optimal front achieved throughout the 
optimization process. 
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Fig.  8. Best Pareto optimal front of SRN, CONSTR, OSY, CF1, BEL, and BNH obtained by the 
NSMFO, NSSCA, and NSIMO 
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Fig.  9. Best Pareto optimal front of Real World Engineering Problems obtained by the NSMFO, 
NSSCA, and NSIMO 
 
7. Conclusion 
 
This work suggested the multi-objective variant of the newly introduced IMO algorithm named 
NSIMO. With preserving the critical search mechanism of IMO, NSIMO was intended with arming 
IMO with non-dominated sorting mechanism and crowding distance mechanism. The algorithm was 
examined on 20 case studies, including eight unconstrained, six constrained, and six engineering design 
benchmark problems. The measurable results were compared using four performance parameters: 
Generational Distance (GD), Inverse Generational Distance (IGD), Metric of Spread, and Metric of 
Spacing. Likewise, qualitative results were testified as for the best Pareto optimal obtained in 30 runs. 
For results validation, the projected algorithm is compared to the recently introduced algorithms: 
MOSCA and NSMFO. The results presented that the NSIMO can outperform/provide very competitive 
findings compared to the rest of the algorithms. It was found that NSIMO has high coverage and 
convergence as well. The test functions used are diverse and have varied Pareto optimal fronts. The 
outcomes exhibited that NSIMO could achieve Pareto optimal front almost of any form. Lastly, the 
findings of engineering design problems validated that NSIMO is proficient in solving stimulating 
problems with numerous constraints. Hence, we accomplish that the projected approach has virtues 
amongst the contemporary multi-objective algorithms and recommend it as a substitute for solving 
multi-objective optimization problems. For forthcoming works, it is recommended to apply NSIMO to 
other engineering design problems, development of archive-based IMO, and its comparison with 
NSIMO. Also, it is worth to examine and identify the best-constrained handling method for this 
approach. 
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