PERIÓDICO TCHÊ QUÍMICA

ARTIGO ORIGINAL

O COMPOSTO QUATERNÁRIO DE CALCOGENIDA Ag₂FeGeSe₄: UMA REVISÃO DE SUA ESTRUTURA CRISTAL E PROPRIEDADES MAGNÉTICAS

THE QUATERNARY CHALCOGENIDE COMPOUND Ag₂FeGeSe₄: A REVISION OF THEIR CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES

EL COMPUESTO CALCOGENURO CUATERNARIO Ag₂FeGeSe₄: UNA REVISIÓN DE SU ESTRUCTURA CRISTALINA Y PROPIEDADES MAGNÉTICAS

DELGADO, Gerzon E.^{1*}; DELGADO-NIÑO, Pilar², QUINTERO, Eugenio³

¹ Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela

² Departamento de Ingeniería Ambiental, Facultad de Ingeniería, Universidad Libre, Bogotá, Colombia

³Centro de Estudios de Semiconductores, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela

> * Correspondence author e-mail: gerzon@ula.ve

Received 8 April 2021; received in revised form 18 May 2021; accepted 22 June 2021

RESUMO

Introdução: Quaternary compounds bellowing to the I2-II-IV-VI4 system are of considerable technological interest due to their possible use in the preparation of solar cell and thermoelectric materials devices. In recent years considerable attention has been focused on the detailed study of quaternary chalcogenide compounds related to the chalcopyrite compounds, particularly AgInSe₂ which has emerged as a leading material for the preparation of photovoltaic devices due to their potential applications in solar cell technology. Objetivos: This work focuses on the synthesis, chemical analysis, thermal study, magnetism measurement and crystal structural characterization of the quaternary semiconductor Aq₂FeGeSe₄, an important member of the family I₂-II-IV-VI₄. Métodos: This material was synthesized by the melt and anneal technique, the chemical analysis was carried out by scanning electron microscopy (SEM), thermal study was performed by differential thermal analysis (DTA) measurements, magnetic susceptibility (χ) as a function of temperature and magnetization as a function of the magnetic field were performed, and crystal structure analysis was made employing the Rietveld method with powder X-ray diffraction data. Resultados e Discussão: The preparation confirms the formation of the quaternary compound with stoichiometric 2:1:1:4 according to the chemical analysis. This quaternary compound melt at 1015 K, and show an antiferromagnetic behavior with Neel temperature T_N of 240 K. The Debye temperature (θ_D) estimated for this compound was 194 K. The quaternary chalcogenide compound Ag₂FeGeSe₄ crystallizes in the orthorhombic space group *Pmn2*₁, Z = 4, with unit cell parameters: a = 7.6478(1) Å, b = 6.5071(1) Å, c = 6.4260(1) Å, and V = 319.79(1) Å³, in a wurtzite-stannite arrangement with a Cu₂CdGeS₄-type structure, which is characterized by a three-dimensional arrangement of slightly distorted AgSe₄, FeSe₄, and GeSe₄ tetrahedra connected by corners. In this structure, each Se atom is coordinated by four cations located at the corners of a slightly distorted tetrahedron, and each cation is tetrahedrally bonded to four anions. Conclusão: The melt and anneal method remains effective for preparing compounds chalcogenides as the quaternary Ag₂FeGeSe₄, a new member of I₂-II-IV-VI₄ family of semiconductors which crystallizes in the non-centrosymmetric space group $Pmn2_1$ with diamond-like structure. The crystal structure information of this compound allows explaining their magnetic properties which in combination with its semiconductor properties make this material a potential aspirant for different applications, mainly in solar cells.

Palavras-chave: Semicondutores, difração de raios-X em pó, estrutura cristalina, método de Rietveld, magnetismo.

ABSTRACT

Background: Quaternary compounds bellowing to the I₂-II-IV-VI₄ system are of considerable technological interest due to their possible use in the preparation of solar cell and thermoelectric materials devices. In recent years, considerable attention has been focused on the detailed study of quaternary chalcogenide compounds related to the chalcopyrite compounds, particularly AgInSe₂, which has emerged as a leading material for the

preparation of photovoltaic devices due to their potential applications in solar cell technology. Aims: This work focuses on synthesis, chemical analysis, thermal study, magnetism measurement, and crystal structural characterization of the guaternary semiconductor Ag₂FeGeSe₄, an essential member of the family I₂-II-IV-VI₄. Methods: This material was synthesized by the melt and anneal technique. The chemical analysis was carried out by scanning electron microscopy (SEM) and differential thermal analysis (DTA). Magnetic susceptibility (γ) as a function of temperature and magnetization as a function of the magnetic field were also performed, and crystal structure analysis was made employing the Rietveld method with powder X-ray diffraction data. Results and Discussion: The preparation confirms the formation of the quaternary compound with stoichiometric 2:1:1:4 according to the chemical analysis. This quaternary compound melt at 1015 K, and show an antiferromagnetic behavior with Neel temperature T_N of 240 K. The Debye temperature (θ_D) estimated for this compound was 194 K. The guaternary chalcogenide compound Ag₂FeGeSe₄ crystallizes in the orthorhombic space group *Pmn2*₁, Z = 4, with unit cell parameters: a = 7.6478(1) Å, b = 6.5071(1) Å, c = 6.4260(1) Å, and V = 319.79(1) Å³, in a wurtzite-stannite arrangement with a Cu₂CdGeS₄-type structure, which is characterized by a three-dimensional arrangement of slightly distorted AgSe₄, FeSe₄, and GeSe₄ tetrahedra connected by corners. In this structure, each Se atom is coordinated by four cations located at the corners of a slightly distorted tetrahedron, and each cation is tetrahedrally bonded to four anions. Conclusions: The melt and anneal method remains effective for preparing compounds chalcogenides as the quaternary Ag₂FeGeSe₄, a new member of I₂-II-IV-VI₄ family of semiconductors, which crystallizes in the non-centrosymmetric space group Pmn2₁ with diamond-like structure. The crystal structure information of this compound allows explaining their magnetic properties, which in combination with its semiconductor properties make this material a potential aspirant for different applications, mainly in solar cells.

Keywords: Semiconductors, powder X-ray diffraction, crystal structure, Rietveld method, Magnetism.

RESUMEN

Antecedentes: Los compuestos cuaternarios pertenecientes al sistema I₂-II-IV-VI₄ son considerados de interés tecnológico debido a sus posibles usos en la preparación de celdas solares y dispositivos como materiales termoeléctricos. En años recientes, una considerable atención se ha enfocado en el estudio detallado de compuestos calcogenuros cuaternarios, particularmente AgInSe2, el cual ha emergido como un material líder en la preparación de dispositivos fotovoltaicos debido a sus potenciales usos en tecnología de celdas solares. Objetivos: Este trabajo se enfoca en la síntesis, análisis químico, estudio térmico, medidas de magnetismo y la caracterización estructural del semiconductor cuaternario Ag2FeGeSe4, un importante miembro de la familia I2-II-IV-VI4. Métodos: Este material se sintetizó utilizando la técnica de fusión y recocido. El análisis químico se llevó a cabo por microscopia electrónica de barrido (SEM) y por análisis térmico diferencial (DTA). Se realizaron medidas de susceptibilidad magnética (χ) como función de la temperatura y de la magnetización (M) como función del campo aplicado, y el análisis de la estructura cristalina se realizó empleando el método de Rietveld con datos de difracción de rayos-X en muestras policristalinas. Resultados y discusiones: La preparación confirmó la formación del compuesto cuaternario con estequiometria 2:1:1:4 de acuerdo con el análisis químico. Este compuesto cuaternario funde a1015 K, y muestra un comportamiento anti ferromagnético con una temperatura de Neel T_N de 240 K. La temperatura de Debye (θ_D) estimada para este compuesto es de 194 K.El compuesto calcogenuro cuaternario Ag₂FeGeSe₄ cristaliza en el grupo especial ortorrómbico $Pmn2_1$, Z = 4, con parámetros de celda unidad : a = 7.6478(1) Å, b = 6.5071(1) Å, c = 6.4260(1) Å, y V = 319.79(1) Å³, en un arreglo wurtzitaestanita con estructura tipo Cu₂CdGeS₄, la cual se caracteriza por un arreglo tridimensional de tetraedros AgSe₄, FeSe4, y GeSe4 ligeramente distorsionados conectados por las esquinas. En esta estructura, cada átomo de selenio esta coordinado a cuatro cationes localizados en las esquinas de un tetraedro ligeramente distorsionado, y cada catión, a su vez, esta enlazado tetraédricamente a cuatro aniones. Conclusions: El método de fusión y recocido sigue siendo efectivo en la preparación en compuestos calcogenuros como el cuaternario Ag₂FeGeSe₄, un nuevo miembro dela familia de semiconductores I2-II-IV-VI4, los cuales cristalizan in el grupo espacial nocentrosimétrico con una estructura tipo diamante. La información sobre la estructura cristalina de este compuesto permite explicar sus propiedades magnéticas las cuales en combinación con sus propiedades semiconductoras hacen de este material un potencial aspirante para diferentes aplicaciones, principalmente in celdas solares.

Palabras clave: Semiconductores, difracción de rayos-X en muestras policristalinas, estructura cristalina, método de Rietveld, magnetismo.

1. INTRODUCTION:

The family of quaternary diamond-like semiconductors: I_2 -II-IV-VI₄ with (I = Cu, Aq; II = Zn, Cd, Mn, Fe; IV = Ge, Sn; VI = S, Se) are formed from the tetrahedrally coordinated derivatives of the II-VI binaries (Parthé, 1995; Nikiforov, 1999) and can be defined as tetrahedral chalcogenides because their closest neighbors fourfold surround anions and cations. These materials have received increasing consideration for their promising physical properties and wide applications, mainly the Cu-based compounds which have been used as thermoelectric materials (Shi et al., 2009; Sevik and Cagin, 2010; Ibañez et al., 2012), solar-cell (Guo et al., 2009; Ahn et al., 2010; Todorov et al., 2010) and photocatalysts (Tsuji et al., 2010). Cu₂ZnSnS₄, for example, can be employed as photovoltaic devices because of its environmentally friendly thin-film solar-cell absorber, large absorption coefficient ($\sim 10^5$ cm⁻¹), and optimum direct bandgap energy (~1.5 eV) (Wei et al., 2012; Liu et al., 2013).

When this family of semiconductor compounds is introduced, a paramagnetic cation as cation II, such as Mn^{+2} , Fe^{+2} , Co^{+2} , or Ni^{+2} , higher capacity as magneto-optical materials are produced (Shapira *et al.*, 1988). These types of materials are known as semimagnetic compounds.

This family of quaternary compounds complies with the rules of adamantane formation (Parthé, 1995). According to this rule, when substituting cations, the average number of valence electrons per atom (4) and the ratio of valence electrons to the number of anions (8) are maintained. The general composition diagram for these quaternary compounds and their related binary and ternary compounds can be represented as shown in Figure 1.

From the structural point of view, these materials crystallize in sphalerite derivatives with tetragonal symmetry in a Cu₂FeSnS₄-type structure (stannite, space group $I\overline{4} 2m$) or a Cu₂ZnSnS₄-type structure (kesterite, space group $1\overline{4}$) (Hall *et al.*, 1978), or wurtzite derivatives with orthorhombic symmetry in a Cu₂CdGeS₄-type structure (wurtzite-stannite, space group Pmn2₁) (Parthé et al., 1969) or with monoclinic symmetry (wurtzite-kesterite, space group Pn) (Joubert-Bettan et al., 1969). Figure 2 shows the unit cells of each of the structures mentioned above. The slight differences lie in the distribution of the cations in the tetrahedral sites. It has been shown that there is a close relationship between the

properties of the wurtzite-kesterite and kesterite structures as between wurtzite-stanite and stannite structures (Chen *et al.*, 2010).

Figure 1. General composition diagram showing the I_2 -II-IV-VI₄ compounds.

Several studies carried out in recent years on the structural characterization and physical I_2 -II-IV-V I_4 quaternarv properties of these semiconductor chalcogenides have been reported (Delgado et al., 2004: Quintero et al., 2007: Caldera et al., 2008; Moreno et al., 2009; Rincón et al., 2011; Dong et al., 2015; Wei and Nolas, 2015; Delgado et al., 2018). Nevertheless, the semimagnetic compounds of the Ag₂-II-IV-VI₄ family have received minor attention, although these Ag-based quaternary compounds also exhibit remarkable magnetic properties (Parasuk et al., 2002: Parasvuk et al., 2005: Davvdvuk et al., 2011; Brunetta et al., 2012a; Brunetta et al., 2012b; Quintero et al., 2001; Wooley et al., 2003; Marquina et al., 2017), with photocatalyst and photo-electrochemical applications as in the case of Ag₂ZnSnS₄ (Li et al., 2013; Yeh and Cheng, 2014).

Table 1 shows the structural information found in the literature about the Ag₂-II-IV-VI₄ quaternary compounds with II= Mn, Fe, Zn, Cd, IV= Si, Ge, Sn, and VI= S, Se, Te, where the more relevant crystallographic parameters as unit cell, volume and bond distances together with the crystalline system and the space group are shown. Is possible observe that most compounds with detailed structural studies are those containing sulfur as anion.

In particular, as regards the quaternary Ag₂FeGeSe₄, which could be of interest because it was reported that it shows antiferromagnetic behavior down to 60K and an appreciably larger ferromagnetic effect below this temperature

(Wooley *et al.*, 2003), and a low-temperature phase was identified in the equilibrium phase space of the system Ag-Fe-Ge-Se using thermodynamic calculations (Moroz *et al.*, 2021). However, its crystal structure has not been established.

In the literature and crystallographic databases, Powder Diffraction File (PDF-ICDD, 2019), Inorganic Crystal Structure Database (ICSD, 2018), and Springer Materials (SpringerMaterials, 2021) only appear to report the same information corresponding only with the cell parameters obtained from a Güinier X-ray photographic data study (Quintero et al., 1999), without structural details such as the space group and atomic positions of cations and anions in the crystal packing.

The structural characterization of this quaternary compound could be used to explain and understand its interesting magnetic properties reported, and for this reason, this work is focused on the synthesis and complete crystal structure analysis of the semimagnetic compound Ag₂FeGeSe₄ using powder X-ray diffraction data.

2. MATERIALS AND METHODS:

2.1. Synthesis

The sample was synthesized by the melt and annealed technique. Highly pure components (silver 99.98 %, iron 99.97 %, germanium 99.99 %, and selenium 99.99 from Goodfellow) of 1 g sample were sealed under vacuum ($\approx 10^{-5}$ Torr) in a small quartz ampoule which had previously been prevent interaction carbonized to of the components with the quartz. The components were heated up to 470 K and kept for about 1-2 h, and then the temperature was raised to 770 K using a rate of 40 K/h and held at this temperature for 14 hours. After, the sample was heated from 770 °C to 1070 K at a rate of 30 K/h and kept at this temperature for another 14 hours. Then it was raised to 1420 K at 60 K/h, and the components were melted together at this temperature. The furnace temperature was brought slowly (4 K/h) down to 870 K, and the sample was annealed at this temperature for 1 month. Then, the sample was slowly cooled to room temperature using a rate of about 2 K/h.

2.2. Chemical analysis (EDS)

The stoichiometric relations of the sample were investigated by scanning electron microscopy (SEM) technique, using Hitachi S2500 equipment. The microchemical composition was found by an energy-dispersive X-ray spectrometer (EDS) coupled with а computer-based multichannel analyzer (MCA, Delta III analysis, and Quantex software, Kevex). For the EDS analysis, K_{α} lines were used. The accelerating voltage was 15 kV. The samples were tilted 35 degrees. A standardless EDS analysis was made with a relative error of \pm 5-10% and detection limits of the order of 0.3 wt %, where the k-ratios are based on theoretical standards. Table 2 shows the experimental results on the stoichiometry of the quaternary Ag₂FeGeSe₄, for which three different regions of the ingot were evaluated. These results indicate that the composition corresponds to the ratio 2: 1: 1:4.

2.3. Thermal analysis (DTA)

(DTA) Differential thermal analysis measurements were obtained, in the temperature range between 295 and 1150 K, using a Perkin-Elmer DTA-7 with aluminum and gold used as reference materials. The charge was of a powdered sample of approximately 100 mg weight. The error in determining these temperatures is about ±10K. The value of the melting point for the compound was obtained from the peaks on the DTA cooling curve. Melting temperature was determined from the baseline intercept of the tangent to the leading edge of the peak in the difference signal. The cooling DTA melting peak is shown in Figure 3. Ag₂FeGeSe₄ melt at 1015 K.

Ag₂FeGeSe₄.

2.4. Magnetization measurement

Measurements of magnetic susceptibility (χ) as a function of temperature (T) were made using a Quantum Design SQUID magnetometer with an external magnetic field of 1×10^{-2} T. Measurements were made in the range of 2 to 300

Periódico Tchê Química. ISSN 2179-0302. (2021); vol.18 (n°38) Downloaded from www.periodico.tchequimica.com K. The magnitude of χ vs T variations serves to determine the temperatures at which magnetic transitions occurred and to estimate the type of transition.

Figure 4 shows the magnetic susceptibility curves (χ vs T) in the temperature range 2K to 300 K., where are shown the heating curve (zero-field cooled) and cooling curve (field cooled). The form of the curves indicates that the transition is an antiferromagnetic type, with Neel temperature T_N of 240 K, and a weak ferromagnetic contribution, which has been observed previously in similar compounds (Quintero *et al.*, 2001).

Figure 4. Variation of magnetic susceptibility (χ) with temperature (T) for zero-field cooled (ZFC) and field cooled (FC) conditions. Vertical lines show transitions T_N and T_C .

Measurements of magnetization (M) as a function of applied field (B) were made at helium temperatures using the high field pulsed technique for fields up to 35 T, and using the SQUID steady-field system with fields up to 6 T. Figure 5 show the variations of M with B for the quaternary Ag₂FeGeSe₄. In this figure is possible observe the spin-flop behavior for measurements using pulsed field system, where an appreciable hysteresis is present with a B_f with a value of approximately 16 T.

These results indicate that Ag₂FeGeSe₄ has a Neel temperature of 240 K and shows mainly antiferromagnetic behavior with a very weak superimposed ferromagnetic component down to 60K. At 4.2 K, a transition occurs resulting in an appreciably larger ferromagnetic effect below the transition.

Figure 5. Magnetization measurement (M) vs applied magnetic field (B) of the chalcogenide Ag₂FeGeSe₄ at 4.2 K.

Additionally, the Debye temperature θ_{D} , was calculated by using the Lindemann's expression $\theta_{\rm D} \approx C (T_{\rm M}/W)^{\frac{1}{2}}(1/a_{\rm e})$ (Deus et al., 1981). Where, C is a constant ($C \approx 300$ for I₂-II-IV-VI₄ tetrahedral bonded quaternary compounds) (Dong et al., 2015), T_M is the melting temperature of the compound (1015 K), W is the molecular weight, and $a_{\rm e}$ is the effective lattice parameter $a_{\rm e}$ $= (V/Z)^{1/3}$ ($a_e = 5.7354$ Å) where V is the volume of the unit cell (in $Å^3$) and Z the number of molecules per cell (Z = 2). For Ag₂FeGeSe₄ the θ_D value obtained was \approx 194 K, which agree well with those reported, from 185 to 310 K (Quintero et al., 2014), for related semimagnetic semiconductor compounds.

2.5. Powder X-ray diffraction (PXRD)

A small quantity of the sample was ground in an agate mortar and pestle. The resulting fine powder, sieved to a grain size of fewer than 46 µm, was mounted on a flat zero-background holder. The X-ray diffraction data were measured, in θ/θ reflection mode. using a Siemens D5005 diffractometer equipped with an X-ray tube (CuKa radiation: λ = 1.5418 Å; 40kV, 30 mA) and a diffracted beam graphite monochromator. Data were collected at room temperature. The specimen was scanned in the 20 range of 10 to 80°, the scan step was 0.02°, and the time of counting in every step was 10 s. Quartz was used an external standard. The precise as determination of peak positions was carried out employing the Winplotr analytical software (Roisnel and Rodríguez-Carvajal, 2001).

3. RESULTS AND DISCUSSION:

Figure 6 shows the resulting powder X-ray diffraction pattern for the Ag₂FeGeSe₄ compound. A single-phase is observed. The powder pattern was indexed using the Dicvol program (Boultif and Löuer, 2004). An orthorhombic cell of dimensions a = 7.650(1) Å, b = 6.508(1) Å, and c = 6.425(1) Å was obtained. These cell values are close to those previously reported in PDF: 052-0986 (PDF-ICDD, 2019). The systematic absence indicated a P-type cell. The crystallographic characteristics of Aq₂FeGeSe₄ such as the sample composition, cell parameters, and lattice-type indicate that this material crystallizes with a Cu₂CdGeS₄-type structure (Parthé et al., 1969) similarly with other related I₂-II-IV-VI₄ compounds. So, to refine the structural parameters of Ag₂FeGeSe₄, the space group $Pmn2_1$ (N^o 31) and the atomic position parameters of Cu₂CdGeS₄ were taken as the starting values.

The Rietveld refinement (Rietveld, 1969) was performed using the Fullprof program (Rodríguez-Carvajal, 1993; Rodríguez-Carvajal, 2021). The refinement parameters were scale factor, background, unit cell parameters, peak profile, atomic coordinates, and overall isotropic temperature factor. The unit cell parameters obtained in the indexing were used as starting data. The angular dependence was described using the Cagliotti formula (Cagliotti et al., 1958) and the peak shapes were described by the Thompson-Cox-Hastings pseudo-Voigt profile function (Thompson et al., 1987). The background was refined with a polynomial of six coefficients. An overall isotropic temperature factor was refined for described the thermal motion of the atoms. The final Rietveld refinement led to agreement factors of: $R_p = 7.7\%$, $R_{wp} = 8.4\%$, $R_{exp} = 6.6\%$, and S =1.3, for 4001 step intensities and 145 independent reflections. Table 3 summarizes the Rietveld refinement results. Figure 6 shows the observed calculated and different profile for the final cycle of the refinement. Atomic coordinates, occupancy factors, and isotropic temperature factors are given in Table 4. Figure 7 shows the unit cell diagram for Ag₂FeGeSe₄. Bond distances and angles are given in Table 5.

Ag₂FeGeSe₄ crystallize with orthorhombic symmetry, space group *Pmn2*₁, and unit cell parameters: a = 7.6478(1) Å, b = 6.5071(1) Å, c = 6.4260(1) Å, and V = 319.79(1) Å³, in a wurtzitestannite structure. This structure can be defined as closest-packed array, in hexagonal fashion, of selenide anions with Ag⁺, Fe²⁺, and Ge⁴⁺ occupying tetrahedral holes, and is characterized by a three-dimensional arrangement of slightly distorted AgSe₄, FeSe₄, and GeSe₄ tetrahedra connected by corners. Every Ag, Fe, or Ge atom is surrounded by four Se atoms, forming AgSe₄, FeSe₄, or GeSe₄ units; every selenium atom has four nearest-neighbor atoms: two Ag atoms, one Fe atom, and one Ge atom. This array is expected for adamantane compounds (Parthé, 1995).

The tetrahedrons containing the Ge atoms [mean Se...Se distance 3.470(9) Å] are slightly smaller than those containing the Fe atoms [means Se...Se distance 3.946(9) Å] and Ag atoms [mean Se...Se distance 3.996(9) Å] respectively. The bond distances are slightly shorter than the sum of the ionic radii of the atoms involved ($rAg^+ = 1.14 \text{ Å}$, $rFe^{2+} = 0.77 \text{ Å}$, $rGe^{4+} =$ 0.53 Å. $rSe^{2-} = 1.84$ Å) for structures tetrahedrally bonded (Shannon, 1976). Bond distances in Table 5 show an average Ag-Se bond length of 2.450(8) Å. This distance compare well to those found for the related ternary AgInSe₂ with 2.612(2) Å (Delgado et al., 2015) and for the quaternary Ag₂CdSnSe₄ with 2.572(2) Å (Parasyuk et al., 2002). The Fe-Se bond has an average length of 2.417(8) Å which compare well with those observed in compounds as CuFe(Al,Ga,In)Se₃ (Mora et al., 2007) and CuFe₂(Al,Ga,In)Se₄ (Delgado et al., 2008). The Ge-Se [mean value 2.126(8) Å] is also in good agreement with similar distances in Cu₂GeSe₃ (Rincón et al., 2008), Cu₂GeSe₄ (Chi et al., 2013; Delgado et al., 2015) Cu₂ZnGeSe₄ (Parayuk *et al.*, 2001) and Cu₂CdGeSe₄ (Gulay et al., 2002). All these structures were found in the Inorganic Crystal Structure Database (ICSD, 2018).

4. CONCLUSIONS:

The quaternary chalcogenide compound Ag₂FeGeSe₄ was synthesized by the melt and anneals technique from the pure elements and its crystal structure was characterized by X-ray diffraction analysis. Rietveld refinement from the powder X-ray data allowed us to determine the crystal structure of this compound.

This compound crystallizes in the wurtzitestannite structure, space group $Pmn2_1$, characterized by a three-dimensional arrangement of slightly distorted AgSe₄, FeSe₄, and GeSe₄ tetrahedra connected by corners, and correspond to one new member of the quaternary chalcogenide material belonging to the I₂-II-IV-VI₄ family of semiconductors.

This quaternary compound melt at 1015 K, and show an antiferromagnetic behavior with Neel temperature T_N of 240 K. The Debye temperature

 (θ_D) estimated for this compound was 194 K.

The crystal structure information of this compound allows explaining their magnetic properties which in combination with its semiconductor properties make this material a potential aspirant for different applications, mainly in solar cells.

5. ACKNOWLEDGMENTS:

The authors want to thank CDCHT-ULA and FONACIT, Venezuela.

6. REFERENCES:

- Ahn, S., Jung, S., Gwak, J., Cho, A., Shin, K., Yoon, K., Park, D., Cheong, H., Yun, J.H. (2010). Determination of band gap energy of thin films: On the discrepancies of reported band gap values. *Applied Physics Letters*, 97(2): 0219051-3. https://doi.org/10.1063/1.3457172.
- 2. Boultif, A., Löuer, D. (2004). Powder pattern indexing with the dichotomy method. *Journal of Applied Crystallography,* 37(5): 724-731. http://dx.doi.org/10.1107/S002188980401 4876.
- Brunetta, C.D., Balamurugan, K., Rosmus, K.A., Aitken, J.A. (2012a). The crystal and electronic band structure of the diamondlike semiconductor Ag₂ZnSiS₄. *Journal of Alloys and Compounds, 516*(1-2): 65-72. https://doi.org/10.1016/j.jallcom.2011.11.1 33.
- Brunetta, C.D., Brant, J.A., Rosmus, K.A., Henline, K.M., Karey, E., MacNeil, J.H., Aitken, J.A. (2013). The impact of three new quaternary sulfides on the current predictive tools for structure and composition of diamond-like materials. *Journal of Alloys and Compounds*, *574*(8): 495-503. http://dx.doi.org/10.1016/i.jallcom.2013.05

http://dx.doi.org/10.1016/j.jallcom.2013.05 .141.

 Brunetta, C.D., Minsterman III, W.C., Lake, C.H., Aitken, J.A. (2012b). Cation ordering and physicochemical characterization of the quaternary diamond-like semiconductor Ag₂CdGeS₄. *Journal of Solid State Chemistry*, *187*(3): 177-185. http://dx.doi.org/10.1016/j.jssc.2011.12.03 2.

- Cagliotti, G., Paoletti, A., Ricci, F.P. (1958). Choice of collimators for a crystal spectrometer for neutron diffraction. *Nuclear Instruments, 3*(4): 223-228. http://dx.doi.org/10.1016/0369-643X(58)90029-X.
- Caldera, D., Quintero, M., Morocoima, M., Quintero, E., Grima, P., Marchan, M., Moreno, E., Bocaranda, P., Delgado, G.E., Mora, A.E., Briceño, J.M., Fernandez, J.L. (2008). Lattice parameters values and phase diagram for the Cu₂Zn_{1-z}FezGeSe₄ alloy system. *Journal of Alloys and Compounds, 457*(1-2): 221-224. https://doi.org/10.1016/j.jallcom.2007.03.0 33.
- Caye, R., Laurent, Y., Picot, P., Pierrot, R., Levy, C. (1968). La hocartite, Ag₂SnFeS₄, une nouvelle espece minerale. *Bulletin de la Societe Francaise de Mineralogie et de Cristallographie, 91*(4): 383-387. https://www.persee.fr/doc/bulmi_0037-9328_1968_num_91_4_6244.
- Chen, W., Waslsh, A., Luoe, Y., Yang, J.H., Gong, X.G., Wei, S.H. (2010). Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors. *Physical Review B: covering condensed matter and materials physics, 82*(19): 195203. https://doi.org/10.1103/PhysRevB.82.195 203.
- Choi, S.G., Donohue, A.L., Marcano, G., Rincón, C., Gedvilas, L.M., Li, J., Delgado, G.E. (2013). Optical properties of cubicphase Cu₂GeSe₄ single crystal. *Journal of Applied Physcis*, *114*(3): 033531. https://doi.org/10.1063/1.4816051.
- Davydyuk, G.E., Myronchuka, G.L., Kittyk, I.V., Danyl'chuk, S.P., Bozhko, V.V., Parasyuk, O.V. (2011). Ag₂CdSnS₄ single crystals as promising materials for optoelectronic. *Optical Materials*, *33*(8): 1302-1306. https://doi.org/10.1016/j.optmat.2011.03.0 03.
- 12. Delgado, G.E., Contreras, J.E., Marcano, G., Rincón, C., Nieves, L. (2015). Caracterización estructural del semiconductor ternario Cu2GeSe4. Revista LatinoAmericana de Metalurgia v Materiales. 35(1): 34-38. http://www.rlmmjournal.com/index.php/ path/article/download/120/118.

- Delgado, G.E., Mora, A.J., Grima-Gallardo, P., Quintero, M. (2008). Crystal structure of CuFe₂InSe₄ from X-ray powder diffraction. *Journal of Alloys and Compounds, 454*(1-2): 306-309. https://doi.org/10.1016/j.jallcom.2006.12.0 57.
- Delgado, G.E., Mora, A.J., Pineda, C., Ávila, R., Paredes, S. (2015). X-ray powder diffraction data and Rietveld refinement of the ternary semiconductor chalcogenides AgInSe₂ and AgInTe₂. *LatinAmerican Journal of Metallurgy and Materials, 35*(1): 110-117. http://www.rlmm.org/ojs/index.php/rlmm/ar
- Delgado, G.E., Quintero, E., Tovar, R., Quintero, M. (2004). X-ray powder diffraction study of the semiconducting alloy Cu₂Cd_{0.5}Mn_{0.5}GeSe₄. Crystal Research and Technology, 39(9): 807-810.

ticle/view/546.

https://doi.org/10.1002/crat.200310257.

- Delgado, G.E., Sierralta, N., Quintero, E., Quintero, M., Quintero, E., Moreno, E., Flores, J.A., Rincón, C. (2018). Synthesis, structural characterization and differential thermal analysis of the quaternary compound Ag₂MnSnS₄. *Revista Mexicana de Física*, *64*(3): 216-221. https://doi.org/10.31349/RevMexFis.64.21 6.
- 17. Deus, P., Schneider, H.A., Voland, U. (1981). Estimation of the Debye temperature of diamond-like semiconducting compounds by means of the Lindemann rule. *Crystal Research and Technology*, *16*(8): 941-948. https://doi.org/10.1002/crat.19810160814.
- Dong, Y., Wojtas, L., Martin, J., Nolas, G.S. (2015). Synthesis, crystal structure, and transport properties of quaternary tetrahedral chalcogenides. *Journal of Materials Chemistry C, 3*(40): 10436-10441. https://doi.org/10.1039/C5TC01606A.
- 19. Friedrich, D., Greil, S., Block, T., Heletta, L., Pöttgen, R., Pfitzner, A. (2018). **Synthesis** and characterization of Aq₂MnSnS₄, new diamond-like а semiconductor. Zeitschrift für anorganische und allgemeine Chemie, 644(24): 1707-1714. http://dx.doi.org/10.1002/zaac.201800142.

- Gulay, Y.E., Romanyuk, L.V., Parasyuk, L.D. (2002). Crystal structures of low- and high-temperature modifications of Cu₂CdGeSe₄. *Journal of Alloys and Compounds, 347*(1-2): 193-197. https://doi.org/10.1016/S0925-8388(02)00790-9.
- 21. Guo, Q., Hillhouse, W.W., Agrawal R. (2009). Synthesis of Cu₂ZnSnS₄ nanocrystal ink and its use for solar cells. *Journal of American Chemical Society,* 131(33): 11672-11673. https://doi.org/10.1021/ja904981r.
- 22. Hall, S.R., Szymanski, J.T., Stewart, J.M. (1978). Kesterite, Cu₂)(Zn,Fe)SnS₄), and stannite, Cu₂)(Fe,Zn)SnS₄), structurally similar but distinct minerals. *Canadican Mineralogist*, 16(2): 131-137. http://canmin.geoscienceworld.org/content /16/2/131.extract.
- 23. Ibañez, M., Cacavid, M., Zamani, R., García-Castelló, N., Izquierdo-Roca, V., Li, W., Fairbrother, A., Prades, J.D., Shavel, A., Arbiol, J., Pérez-Rodríguez, A., Morante. J.R., Cabot. Α. (2012). Composition control and thermoelectric properties of quaternary chalcogenide nanocrystals: The case of stannite Cu₂CdSnSe₄. Chemistry of Materials, 24(3): 562-570. https://doi.org/10.1021/cm2031812.
- 24. ICSD-*Inorganic Crystal Structure Database*. Gemlin Institute, Kalrsruhe, Germany, 2018.
- 25. International Centre for Diffraction Data. *PDF-ICDD-Powder Diffraction File (Set 1-71)*. Newtown Square, PA, USA, 2019.
- 26. Johan, Z., Picot, P. (1982). La pirquitasite, Ag₂ZnSnS₄, un nouveau membre du groupe de la stannite. Bulletin de la Societe Francaise de Mineralogie et de Cristallographie, 105(3): 229-235. https://www.persee.fr/doc/bulmi_0180-9210_1982_num_105_3_7610.
- 27. Joubert-Bettan, C.A., Lachenal, R., Bertaut, E.F., Parthé, E. (1969). The crvstal structures of Na₂ZnSiO₄. Na₂ZnGeO₄, and Na₂MgGeO₄. Journal of Solid State Chemistrv. 1(1): 1-5. https://doi.org/10.1016/0022-4596(69)90001-2.
- 28. Li, K., Chai, B., Peng, T., Mao, J., Zan, L. (2013). Synthesis of multicomponent sulfide Ag₂ZnSnS₄ as an efficient

photocatalyst for H_2 production under visible light irradiation. *RSC Advances,* 3(1): 253-258. https://doi.org/10.1039/C2RA21481D.

- 29. Liu, W., Guo, B., Mak, C., Li., A., Wu, X., Zhang, F. (2013). Facile synthesis of ultrafine Cu₂ZnSnS₄ nanocrystals by hydrothermal method for use in solar cells. *Thin Solid Films*, 535(5): 39-43. https://doi.org/10.1016/j.tsf.2012.11.073
- Marquina, J., Sierralta, N., Quintero, M., Rincón, C., Morocoima, M., Quintero, E. (2017). Study of the critical-fields and the thermal broadening in polycrystalline Ag₂FeGeSe₄ semiconducting compound. *Revista Mexicana de Física, 63*(5): 456-460. https://rmf.smf.mx/ois/rmf/article/view/366/

https://rmf.smf.mx/ojs/rmf/article/view/366/ 211.

- Mora, A.J., Delgado, G.E., Grima-Gallardo, P. (2007). Crystal structure of CuFeInSe₃ from X-ray powder diffraction data. *physica status solidi (a): applications and materials science, 204* (2): 547-554. https://doi.org/10.1002/pssa.200622395.
- 32. Moreno, E., Quintero, M., Morocoima, M., Quintero, E., Grima-Gallardo, P., Tovar, R., Bocaranda, P., Delgado, G.E., Contreras, J.E., Mora, A.E., Briceño, J.M., Avila, R., Fernandez, J.L., Henao, J.A., Macías, M.A. (2009). Lattice parameter values and phase transitions for the Cu₂Cd_{1-z}Mn_zSnSe₄ and Cu₂Cd_{1-z}Fe_zSnSe₄ alloys". *Journal of Alloys and Compounds, 486*(1-2): 212-218. https://doi.org/10.1016/j.jallcom.2009.07. 066.
- 33. Moroz, M., Tesfaye, F., Demchenko, P., Prokhorenko, M., Rudyk, B., Soliak, L., Lindberg, D., Reshetnak, O., Hupa, L. (2021). Thermodynamic examination of quaternary compounds Ag-Fe-(Ge,Sn)-Se systems by solid-state EMF method. *In Materials Processing Fundamentals, The Minerals, metals & Materials Series*; JohnWiley & Sons, Ltd. Hoboken, NJ, USA, pp. 271-290. https://doi.org/10.1007/978-3-030-65253_1_24.
- 34. Nikiforov, K.G. Magnetically ordered multinary semiconductors. (1999).
 Progress in Crystal Growth and Characterization of Materials, 39(1-4): 1-104. https://doi.org/10.1016/S0960-

8974(99)00016-9.

- Parasyuk, L.D., Gulay, Y.E., Romanyuk, L.V., Piskach, L.V. (2001). Phase diagram of the Cu₂GeSe₃-ZnSe system and crystal structure of the Cu₂ZnGeSe₄ c compound. *Journal of Alloys and Compounds, 329*(1): 202-207. https://doi.org/10.1016/S0925-8388(01)01606-1.
- Parasyuk, O.V., Fedorchuk, A.O., Kogut, Y.M., Piskach, L.V., Olekseyuk, I.D. (2010). The Ag₂S-ZnS-GeS₂ system: Phase diagram, glass-formation region and crystal structure of Ag₂ZnGeS₄. *Journal of Alloys and Compounds*, 500(1), 26-29. https://doi.org/10.1016/j.jallcom.2010.03.1 98.
- 37. Parasyuk, O.V., Gulay, L.D., Piskach, L.V., Olekseyuk, I.D. (2002). The Ag₂Se-CdSe-SnSe₂ system at 670 K and the crystal structure of the Ag₂CdSnSe₄ compound. *Journal of Alloys and Compounds, 335*(1-2): 176-180. https://doi.org/10.1016/S0925-8388(01)01845-X.
- Parasyuk, O.V., Olekseyuk, I.D., Piskach, L.V., Volkov, S.V., Pekhnyo, V.I. (2015b). Phase relations in the Ag₂S-CdS-SnS₂ system and the crystal structure of the compounds. *Journal of Alloys and Compounds*, 399(1-2): 173-177. http://dx.doi.org/10.1016/j.jallcom.2005.03 .023.
- Parasyuk, O.V., Piskach, L.V., Olekseyuk, I.D., Pekhnyo, V.I. (2005a). The quasiternary system Ag₂S-CdS-GeS₂ and the crystal structure of Ag₂CdGeS₄. *Journal of Alloys and Compounds, 397*(1-2): 95-98. https://doi.org/10.1016/j.jallcom.2004.12.0 43.
- 40. Parthé, E., in: Westbrook JH, Fleischer RL (Eds.), *Intermetallic compounds, principles and applications*. Jhon Wiley & Sons; Chichester, UK, 1995. Vol 1, Chap. 14.
- 41. Parthé, E., Yvon, K., Deitch, R.H. (1969). The crystal structure of Cu₂CdGeS₄ and other quaternary normal tetrahedral structure compounds. Acta Crystallographica Section B: Structural Science, Engineering Crystal and Materials. 25(6): 1164-1174. http://dx.doi.org/10.1107/S056774086900 3670.

42. Quintero, E., Tovar, R., Quintero, M., Delgado, G.E., Morocoima, M., Caldera, D., Ruiz. J., Mora, A.E., Briceño, J.M., Fernandez, J.L. (2007). Lattice parameter values and phase transitions for the Cu₂Cd_{1-z}Mn_zGeSe₄ and Cu₂Cd_{1-z}Fe_zGeSe₄ alloys. *Journal of Alloys and Compounds, 432*(1-2): 142-148. https://doi.org/10.1016/j.jallcom.2006.05.1

https://doi.org/10.1016/j.jallcom.2006.05.1 26.

- 43. Quintero, M., Barreto, A., Grima-Gallardo, P., Quintero, E., Sánchez Porras, G., Ruiz, J., Woolley, J.C., Lamarche, G., Lamarche, A.M. (1999). Crystallographic properties of I₂-Fe-IV-VI₄ magnetic semiconductor compounds. *Materials Research Bulletin,* 34(14-15): 2263-2270. https://doi.org/10.1016/S0025-5408(00)00166-5.
- 44. Quintero, M., Cadenas, R., Tovar, R., Quintero, E., Gonzalez, J., Ruiz, J., Woolley, J.C., Lamarche, J.C., Lamarche, A.M., Broto, J.M., Rakoto, H., Barbaste, R. (2001). Magnetic spin-flop and magnetic saturation in Ag₂FeGeSe₄, Ag₂FeSiSe₄ Cu₂MnGeSe₄ semiconductor and compounds. Physica B: Consended Matter. 294-295(1): 471-474. https://doi.org/10.1016/S0921-4526(00)00702-X.
- 45. Rietveld, H.M. (1969). A profile refinement method for nuclear and magnetic structures. *Journal of Applied Crystallography,* 2(2): 65-71. https://doi.org/10.1107/S00218898690065 58
- Rincón, C., Marcano, G., Marín, G., Mora, A.J., Delgado, G.E., Herrera-Pérez, J.L., Mendoza-Alvarez, J.G., Rodríguez, P. (2008). Raman scattering and X-ray diffraction study in Cu₂GeSe₃. *Solid State Communications*, 146(1-2): 65-68. https://doi.org/10.1016/j.ssc.2008.01.018.
- 47. Rincón, C., Quintero, M., Moreno, E., Power, Ch., Quintero, E., Henao, J.A., Macías, M.A., Delgado, G.E., Tovar, R., Morocoima, M. (2011). X-ray diffraction, spectrum and magnetic Raman susceptibility of the magnetic semiconductor Cu₂FeSnS₄. Solid State Communication. 151(1-2): 947-951. https://doi.org/10.1016/j.ssc.2011.04.002.
- 48. Rodriguez-Carvajal J. (1993). Recent advances in magnetic structure

determination by neutron powder diffraction. *Physica B: Condensed Matter, 192*(1-2): 55-69. http://dx.doi.org/10.1016/0921-4526(93)90108-I.

- 49. Rodriguez-Carvajal, J. Fullprof program: Rietveld pattern matching analysis of powder patterns (version 7.4), Laboratoire Léon Brillouin (CEA-CNRS), France, 2021.
- 50. Roisnel, T., Rodríquez-Carvajal, J. (2001). WinPLOTR: A windows tool for powder diffraction pattern analysis. *Materials Science Forum, 378-381*(1): 118-123. https://www.scientific.net/MSF.378-381.118
- 51. Sevik, C., Cagin, T. (2010). Ab initio study of thermoelectric transport properties of pure and doped quaternary compounds. *Physical Review B: covering condensed matter and materials physics, 82*(4): 045202. http://dx.doi.org/ 10.1103/PhysRevB.82.045202.
- 52. Shannon, R.S. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Foundations and Advances, 32(5): 751-767. http://dx.doi.org/10.1107/S056773947600 1551.
- 53. Shapira, Y., McNiff, E.J., Oliveira, N.F., Honig, E.D., Dwight, K., Wold, A. (1988). Magnetic properties of antiferromagnetic interactions in the wurtz-stannite structure. *Physical Review B: covering condensed matter and materials physics*, *37*(1): 411-418.

https://doi.org/10.1103/PhysRevB.37.411.

- 54. Shi, X.Y., Huang, F.Q., Liu, M.L., Chen, L.D. (2009). Thermoelectric properties of tetrahedrally bonded wide-gap stannite compounds Cu₂ZnSn_{1-x}In_xSe₄. *Applied Physics Letters*, 94(12): 122103. https://doi.org/10.1063/1.3103604.
- 55. SpringerMaterials, https://materials.springer.com. Access in 30/03/2021.
- 56. Thompson, P., Cox, D.E., Hastings, J.B. (1987). Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al₂O₃. *Journal of Applied Crystallography, 20*(): (1987) 79-83. http://dx.doi.org/10.1107/S002188988708 7090.

- 57. Todorov, T.K., Reuter, K.B., Mitzi, D.B. (2010). High-efficiency solar cell with earth-abundant liquid-processed absorber. *Advanced Materials, 2*(22): E156-E159. https://doi.org/10.1002/adma.200904155.
- 58. Tsuji, I., Shimodaira, Y., Kato, H., Kobayashi, H., Kudo, A. (210). Novel stannite-type complex sulfide photocatalysts A¹₂-Zn-A^{IV}-S₄ (A^I = Cu and Ag; A^{IV} = Sn and Ge) for sydrogen evolution under visible-light irradiation. *Chemistry of Materials, 22*(4): 1402-1409. https://doi.org/10.1021/cm9022024.
- 59. Wei, K., Nolas, J.S. (2015). Synthesis, characterization and alloying of Cu_2ZnSnQ_4 S. Se and (Q= Te) Journal of Solid State nanocrystals. Chemistry, 226(3): 215-218. https://doi.org/10.1016/j.jssc.2015.02.027.
- 60. Wei, M., Du., Q., Wang, D., Liu, W., Jiang, G., Zhu, C. Synthesis of spindle-like kesterite Cu₂Zn_SnS₄ nanoparticles using thiorea as sulfur source. *Materials Letters, 79*(7): 177-179. https://doi.org/10.1016/j.matlet.2012.03.08 0
- 61. Wooley, J.C., Lamarche, G., Lamarche, A.M., Rakoto, H., Broto, J.M., Quintero, M., Morocoima, M., Quintero, E., Gonzalez, J., Tovar, R., Cadenas, R., Bocoranda, P., Ruiz, J. (2003). High field magnetic Ag₂FeGeSe₄ in properties of the temperature range 2-300 K. Journal of Magnetism and Magnetic Materials, 257(1): 87-94. https://doi.org/10.1016/S0304-8853(02)01051-X.
- 62. Yeh, L.-Y., Cheng, K.-W. (2014). Preparation of the Ag-Zn-Sn-S quaternary photoelectrodes using chemical bath deposition for photoelectrochemical applications. *Thin Solid Films*, *558*(5): 289-293. https://doi.org/10.1016/j.tsf.2014.02.046.

7. OPEN ACCESS:

This article is licensed under a Creative Commons Attribution 4.0 (CC BY 4.0) International License, which permits use, sharing, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third-party material in this article are included in the article's Creative Commons license unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

Figure 2. Unit cell diagrams of the different structures that describe the I₂-II-IV-VI₄ family of compounds.

Figure 6. Observed (·), calculated (-), and difference plot of the final Rietveld refinement of Ag₂FeGeSe₄. The Bragg reflections for the studied phase are indicated by vertical bars.

Figure 7. Unit cell diagram of Ag₂FeGeSe₄ viewed in the **ba** plane of the space group Pmn2₁.

Molecular Formula	System	Space group	a, b, c, β (Å,°)	V (ų)	Ag-VI (Å)	II-VI (Å)	IV-VI (Å)	Ref.
Ag ₂ FeSiS ₄	Mon.	Pn Z= 2	6.4220(1) 6.6185(1) 7.8650(1) 90.614(1)	334.28(1)	2.546(1)	2.354(1)	2.129(2)	Brunetta <i>et al</i> ., 2013
Ag2FeSnS ₄	Tetr.	l 4 2m Z= 2	5.74(3) 10.96(5)	361.11	-	-	-	Caye <i>et</i> <i>al</i> ., 1968
Ag_2MnSnS_4	Ortho.		8:1705(5) 6:9413(5) 6:6532(5)	377:33(5)	2.5982)	2.56(2)	2.25(2)	Delgado <i>et al.</i> , 2018
	Mon.	<i>Рс</i> Z= 2	6.651(1) 6.943(1) 10.536(2) 129.15(1)	377.3(1)	2.933(5)	2.401(4)	2.428(6)	Friedrich <i>et al.</i> , 2018
Ag₂ZnSiS₄	Mon.	Pn Z= 2	6.4052(1) 6.5484(1) 7.9340(1) 90.455(1)	332.77(1)	2.2557(2)	2.344(2)	2.128(4)	Brunetta <i>et al</i> ., 2012a
Ag₂ZnGeS₄	Tetr.	I	5.74996(9) 103434(3)	341.98(2)	2.578(5)	2.372(5)	2.332(5)	Parasyuk <i>et al</i> ., 2010
Ag_2ZnSnS_4	Tetr.	I	5.786 10.829	362.53	-	-	-	Johan <i>et</i> <i>al</i> ., 1982
Ag ₂ CdGeS ₄	Ortho.	<i>Pmn</i> 2 ₁ Z= 2	8.0338(3) 6.8680(2) 6.5866(3)	363.43(4)	2.55(1)	2.52(1)	2.22(1)	Parasyuk <i>et al</i> ., 2005a
	Ortho.	<i>Pna</i> 2₁ Z= 4	13.7415(8) 8.0367(5) 6.5907(4)	727.85(8	2.558(2)	2.526(2)	2.214(3)	Brunetta <i>et al</i> ., 2012b
Ag₂CdSnS₄	Ortho.	<i>Cmc</i> 2 ₁ Z= 8	4.1015(3) 7.0224(4) 6.6946(4)	192.82(4)	2.478(4)	2.496(5)	2.557(7)	Parasyuk <i>et al</i> ., 2005b
Ag ₂ FeSiSe ₄	Ortho.	Pmn2 ₁	7.653 6.529 6.638	318.79	-	-	-	Quintero <i>et al</i> ., 1999
Ag ₂ FeGeSe ₄	Ortho.	Pmn2 ₁	7.658 6.515 6.434	321.04	-	-	-	Quintero <i>et al</i> ., 1999
	Ortho.	<i>Pmn</i> 2 ₁ Z= 2	7.6478(1) 6.5071(1) 6.4260(1)	319.79(1)	2.450(8)	2.417(8)	2.126(8)	this work
Ag₂FeSnSe₄	Ortho.	Pmn2 ₁	7.398 6.993 6.401	331.12	-	-	-	Quintero <i>et al</i> ., 1999
Ag₂CdSnSe₄	Ortho.	<i>Cmc</i> 2 ₁ Z= 8	4.2640(2) 7.3170(3) 6.9842(4)	217.6(1)	2.572(2)	2.627(4)	2.649(3)	Parasyuk <i>et al</i> ., 2002
Ag₂FeSiTe₄	Ortho.	Pmn2 ₁	7.721 6.657 6.588	338.65	-	-	-	Quintero <i>et al</i> ., 1999
Ag ₂ FeGeTe ₄	Ortho.	Pmn2 ₁	8.048 6.668 6.450	346.15	-	-	-	Quintero <i>et al.</i> , 1999
Ag₂FeSnTe₄	Ortho.	Pmn2 ₁	8.098 6.785 6.335	348.05	-	-	-	Quintero <i>et al.,</i> 1999

Table 1. Crystallographic information about the quaternaries I_2 -II-IV-VI4 with I = Ag, II = Fe, Mn, Zn,Cd, IV = Si, Ge, Sn, VI = S, Se, Te.

Mon.= monoclinic, Ortho.= orthorhombic, Tetr.= tetragonal

Composition	MW (g/mol)	Nominal Stoichiometry (%)	Experimental Stoichiometry (%)
Ag₂FeGeSe₄	660.03	Ag = 25.0 Fe = 12.5 Ge = 12.5 Se = 50.0	$Ag = 25.1 \pm 0.2$ Fe = 11.2 ± 0.2 Ge = 11.5 ± 0.2 Se = 52.2 ± 0.4

Table 2. SEM experimental results for the sample Ag₂FeGeSe₄.

Table 3. Results of the Rietveld refinement for Ag₂FeGeSe₄.

Molecular formula Molecular weight (g/mol) a (Å)	Ag₂FeGeSe₄ 660.03 (g/mol) 7.6478(1)	D _{calc} (g.cm ⁻³) N° step intensities independent refl.	6.85 4001 145
b (Å)	6.5071(1)	Peak-shape profile	Pseudo-Voigt
c (Å)	6.4260(1)		
V (Å ³)	319.79(1)	R _{exp}	6.6 %
System	Orthorhombic	Rp	7.7 %
Space group	<i>Pmn</i> 2₁ (N° 31)	R _{wp}	8.4 %
Z	2	S	1.3

 $\begin{array}{ll} R_{p} = 100 \; \sum |y_{obs} - y_{calc}| \; / \; \sum |y_{obs}| & R_{B} = 100 \; \sum_{k} |I_{k} - Ic_{k}| \; / \; \sum_{k} \; |I_{k}| & S = [R_{wp} \; / \; R_{exp}] \\ R_{wp} = 100 \; [\sum_{w} |y_{obs} - y_{calc}|^{2} \; / \; \sum_{w} |y_{obs}|^{2}]^{1/2} & R_{exp} = 100[(N+C) / \sum_{w} (y_{obs}^{2})]^{1/2} & N-P+C= \text{ degrees of freedom} \\ \end{array}$

Table 4. Atomic coordinates, occupancy factors and isotropic temperature factor for Ag₂FeGeSe₄.

Atom	Ox.	Wyck.	x	У	z	foc	B (Ų)
Ag	+1	4b	0.255(1)	0.317(1)	0	1	0.51(5)
Fe	+2	2a	0	0.849(1)	0.987(1)	1	0.51(5)
Ge	+4	2 <i>a</i>	0	0.186(1)	0.490(1)	1	0.51(5)
Se1	-2	4 <i>b</i>	0.237(1)	0.324(1)	0.387(1)	1	0.51(5)
Se2	-2	2 <i>a</i>	0	0.186(1)	0.822(1)	1	0.51(5)
Se3	-2	2a	0	0.885(1)	0.366(1)	1	0.51(5)

Table 5. Distance lengths (Å) and bond angles (°) for Ag₂FeGeSe₄.

Ag-Se1	2.491(6)	Fe-Se1 ^{iv}	2.393(8)	Ge-Se1	2.128(8)
Ag-Se1 ⁱ	2.447(9)	Fe-Se1 ^{vi}	2.393(8)	Ge-Se1 ^{vii}	2.128(8)
Ag-Se2 ⁱⁱ	2.416(8)	Fe-Se2 ^v	2.436(9)	Ge-Se2	2.133(9)
Ag-Se3 ⁱ	2.445(8)	Fe-Se3 ⁱⁱⁱ	2.447(9)	Ge-Se3 ^{viii}	2.115(9)
Se1-Ag-Se2 ⁱⁱ	115.8(2)	$\begin{array}{l} & \text{Se3}^{\text{iii}}\text{-}\text{Fe-Se1}^{\text{iv}}\\ & \text{Se3}^{\text{iii}}\text{-}\text{Fe-Se1}^{\text{vi}}\\ & \text{Se3}^{\text{iii}}\text{-}\text{Fe-Se2}^{\text{v}}\\ & \text{Se2}^{\text{v}}\text{-}\text{Fe-Se1}^{\text{iv}}\\ & \text{Se2}^{\text{v}}\text{-}\text{Fe-Se1}^{\text{vi}}\\ & \text{Se1}^{\text{iv}}\text{-}\text{Fe-Se1}^{\text{vi}}\\ \end{array}$	108.2(2)	Se1 ^{vii} -Ge-Se2	108.1(2)
Se1-Ag-Se3 ⁱ	113.8(2)		108.2(2)	Se1 ^{vii} -Ge-Se3 ^{viii}	105.9(2)
Se1-Ag-Se1 ⁱ	106.3(2)		110.3(3)	Se1 ^{vii} -Ge-Se1	116.8(3)
Se1 ⁱ -Ag-Se3 ⁱ	112.9(2)		107.9(2)	Se2-Ge-Se3 ^{viii}	112.1(4)
Se1 ⁱ -Ag-Se2 ⁱⁱ	102.5(2)		107.9(2)	Se2-Ge-Se1	108.1(2)
Se2 ⁱⁱ -Ag-Se3 ⁱ	105.2(2)		114.4(3)	Se3 ^{viii} -Ge-Se1	105.9(2)

Symmetry codes: (i) 0.5-x, 1-y, -0.5+z; (ii) x, y, -1+z; (iii) x, y, 1+z; (iv) -0.5+x, 1-y, 0.5+z; (v) x, 1+y, z; (vi) 0.5-x, 1-y, 0.5+z; (vii) -x, y, z; (viii) x, -1+y, z.