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RESUMO

Uma das principais complicacdes da producdo de petréleo é que os depédsitos de asfalteno-resina-
parafina (ARPD) séo formados durante a operagcdo dos poc¢os de producdo. Este € um problema urgente na
industria de petréleo e gas, especialmente nos campos da regido de Ural-Volga (RUssia). Este estudo teve como
objetivo desenvolver uma solucédo tecnolédgica para o tratamento térmico eficaz de depésitos a partir do calculo
do estado térmico dos pogos durante o funcionamento de uma bomba de haste de sucgdo. Na prética, o efeito
térmico no ARPD ¢é realizado por lavagem com um agente quente (agua, 6leo). Tradicionalmente, as descargas
sdo realizadas através do anular do revestimento. Porém, este método é ineficaz devido as grandes perdas de
calor e a impossibilidade de aquecer de forma suficiente a parte interna da tubulacdo, onde o ARPD € depositado.
A modelagem dindmica do processo foi realizada no produto de software ANSYS Fluent. O problema do calor foi
resolvido com base na equacéao de transferéncia média de calor e massa de Navier-Stokes Reynolds. Observou-
se que a temperatura do agente injetado (6leo quente ou agua) afeta a temperatura da parede interna da
tubulagcdo em menor grau do que a vazao do refrigerante. Foi estabelecido que é impossivel atingir o ponto de
fusdo da cera no nivel da bomba submersivel. A taxa de fluxo do refrigerante afeta este parametro mais
intensamente. Ao lavar com 6leo quente a 120°C com vazao de 300 m3/dia, a temperatura acima da bomba sera
igual a temperatura de derretimento da cera. Os calculos indicam que é mais aconselhavel usar éleo aquecido a
120°C como refrigerante para a lavagem de pocos do que dgua com temperatura de 90°C. A implementacéo do
método proposto pode ser usado em qualquer poco equipado com uma bomba de haste de sucgéo

Palavras-chave: complications at oil-producing, hollow rods, flushing-out of well.

ABSTRACT

One of the main oil production complications is that asphaltene-resin-paraffin deposits (ARPD) are formed
during production wells' operation. This is an urgent problem in the oil and gas industry, especially in the fields of
the Ural-Volga region (Russia). This study aimed to develop a technological solution for the effective thermal
treatment of deposits based on the wells' thermal state calculation during a sucker rod pump operation. In practice,
the thermal effect on ARPD is carried out by flushing-out with a hot agent (water, oil). Traditionally, flushes are
carried out through the casing annulus. However, this method is ineffective due to large heat losses and the
impossibility of heating the inner part of the tubing in a sufficient way, where ARPD is deposited. Dynamic
modeling of the process was performed in the ANSYS Fluent software product. The heat problem was solved on
the basis of the Navier-Stokes Reynolds-averaged heat and mass transfer equation. It was noted that the
temperature of the injected agent (hot oil or water) affects the temperature of the tubing's inner wall to a lesser
extent than the coolant flow rate. It has been established that it is impossible to reach the melting point of wax at
the submersible pump level. The flow rate of the coolant affects this parameter more intensively. When flushing
with hot oil 120°C with a flow rate of 300 m3/day, the temperature above the pump will be equal to the wax melting
temperature. Calculations indicate that it is most advisable to use oil heated to 120°C as a coolant for flushing
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wells than water with a 90°C temperature. The implementation of the methods proposed can be used on any well
equipped with a sucker rod pump.

Keywords: complications at oil-producing, hollow rods, flushing-out of well.

AHHOTALMUA

OoHMM M3 OCHOBHbIX  OCMOXHEHMM  npu  gobblde  HeddTm  ABnsietcd  obpasoBaHue
acdanbTeHocmornonapaduHUCTbIX oTrnoxeHun (ACIO) npu askcnnyataumm [OObIBAOWMX CKBaXWMH. JTO
akTyanbHas npobnema B HedpTeraszoBon oTpacnu, ocobeHHO Ha MmecTopoxaeHusax Ypano-flosomkes (Poccus).
Llenbio gaHHon paboThl siBnsinacb pa3paboTka TEXHOMOrMYeckoro peweHus ans apdekTMBHOro Bo3aencTens
TEPMUYECKMM METOAOM Ha OTMOXEHWUS HAa OCHOBE pacyeTa TernnoBOro COCTOSIHUSA CKBaXXMH BO BpeMsi paboThbl
LWTaHroBoro rnybuHHoro Hacoca. Ha npaktuke Tepmuyeckoe Bosgencteme Ha ACIO ocyulecTBnseTca nytem
NMPOMbIBKM TFOpsiYMM  areHTom (Boda, HedTb). TpaavuMOHHO NPOMbLIBKM MNPOBOAAT 4Yepe3 3aTpybHoe
npocTtpaHcTBo. OgHako Takon crnocob HeaddhekTuBeH 3a cveT GonbliMX MOTEepb Tenma M HEBO3MOXHOCTU
nporpeBa BHYTPEHHEN YacTu HacocHO-komnpeccopHbix Tpyb (HKT), roe otknagbiBaetca ACIO, goctaTtoyHbIM
obpasom. [JuHamnyeckoe mMogenvMpoBaHuMe npouecca NpoBoAUIIoch B nNporpamMmHoM npoaykte ANSYS Fluent.
TennoBas 3agjava pellanacb Ha OCHOBE ypaBHEHMS TenriomMacconepeHoca, ycpeaHeHHoro no HaBbe-CTokcy 1
PeriHonbacy. bbino otmeyeHo, Y4TO TeMnepaTypa HarHeTaemoro areHTa (ropsiievt HedTu UnNu BoAbl) BNMSIET Ha
TemnepaTypy BHyTpeHHen cTeHkM HKT B MeHblien cTeneHu, 4em CKOpPOCTb MOTOKa TEMMOHOCUTENS.
YcTaHoOBNeHo, 4To AoCTudb Toudkn nnaenexHus ACIO Ha ypoBHE MOrpyXHOro Hacoca HeBO3MOXHO. Pacxon
TeNnnoHocCUTENs cunbHee BNUSET Ha 9ToT napameTp. [pu npombiBke ropsden HedTbio npn 120°C ¢ pacxogom
300 m3/cyT TemnepaTypa Hag HacocoMm OyaeT paBHa Temnepatype nnaeBneHust napadwuHa. PacyeTbl
NoKasbIBaloT, YTO B KAYECTBE TEMMOHOCUTENS AN NPOMbIBKN CKBaXXMH LienecoobpasHee Mcnonb3oBaTh HarpeTyto
Ao 120°C HedTb, Yem Boay ¢ Temnepatypon 90°C. MNpeanoxeHHbIi MeTod MOXET BbITb MCNONb30BaH Ha nobon
CKBaXXMHe, 060pyJ0BaHHOM LUTAHTOBbIM HACOCOM.

KniouyeBble cnoBa: OC/10KHEHUS rnpu 00bbI1ye Heq)mu, roJible wmaHeu, rpoMbI8KU CK8a>XUH

1. INTRODUCTION: space. The interval of intensive deposits is 300-

800 m for the Ural-Volga fields.

There are thermal, chemical, and
mechanical ways among different methods of
ARPD removing from well (Huang, 2016; Wang,
2015). The simple-to-apply method is mechanical,
but there is a risk of jamming rods and equipment
failure when the process of paraffin deposition is
quite intensive. The chemical method is expensive
when chemicals are required in a lot rate (Hassan,
2019). The thermal method has industrial
limitations about heating agents and transporting
it to wells (Zhao, 2015). But the choice of
technological and economic effective method
depends on the content of paraffin, resin and
asphaltenes (Buenrostro-Gonzalez, 2004,
Bemani, 2019). In practice, the intensity of
precipitation of solid organic substances is

Within the territory of the Perm region, the
main problem arising during the operation of wells
is asphaltene-resin-paraffin deposits (ARPD),
establishing onto the surface of deep-pumping
equipment (Figure 1) (Khizhnyak, 2014). Wherein,
there are premature failures of pumping
equipment and well shutdowns, accompanied by
shortages in oil production (Eskin, 2014). Known
methods for paraffin deposition prognostication
are divided into two main groups — methods aimed
to determine the depth of the beginning of ARPD
establishing  (the  beginning of paraffin
crystallization) and methods determining the
intensity  (velocity) of ARPD establishing
(Johansen, 1991; Newberry, 1999; Turbakov,
2009; Escobedo, 2010; Aiyejina, 2011; Al-Yaari,

2011).

The basis for determining the depth of the
beginning of the formation of paraffin deposits are
the physical and chemical properties of oil and
thermodynamic conditions of its production
(Korobov, 2018; Movchan et al., 2019). As the oll
lifts through the pipe, the flow's temperature and
pressure decrease to the paraffin-formation point
(Rehan, 2016; Sullivan, 2020; Abramovich et al.,
2019). Above this deep, ARPD is sedimented on
the pipe surfaces and equipment plugging free

estimated using the inter-cleaning period (ICP) of
the well (Moradi, 2019), which means the interval
between cleaning. The ICP is evaluated practically
and set in such a way when producing wells work
without failures connected with ARPD. Flushing of
wells is the most economically and technologically
method in condition with low ICP and intensive
organic deposits (Barker, 1999; Ustkachkintsev,
2016; Mahmoud, 2019). It has current interest
when deposits have stable surface crust from
asphaltene-wax complexes (Rogel, 2015), which
leads to a decrease in their solubility by chemical
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(Zlobin, 2015; Hashemi, 2016; Guzman, 2017;
Khalaf, 2019; Behnous, 2020).

Hot oil and freshwater are considered to be
coolant (agent). These are traditional agents,
which are found in the oil treatment plant and easy
to get at any time. Typically, such an agent can be
delivered to the well site within 1 or 2 hours by
special trucks.

Therefore, this study aimed to develop a
technological solution for the effective thermal
treatment of deposits based on the calculation of
the wells' thermal state during a sucker rod pump
operation.

2. MATERIALS AND METHODS:

In this study, there were considered wells
equipped with sucker rod pumps (SRP), artificial-
lift pumping systems. The system has a surface
power source to drive a downhole pump assembly.
A beam and crank assembly create reciprocating
motion in a sucker-rod string that connects to the
downhole pump assembly. The pump contains a
plunger and valve assembly to convert the
reciprocating motion to vertical fluid movement.
The authors deal with a topical issue of conducting
thermal treatment throughout the SRP's hollow
rods without shutting a well-operating down.
Currently, the theoretical material and field
experience of wells backwash with coolant supply
into the annular space (Ramey, 2013) have been
accumulated, but systematic ideas concerning the
effectiveness of flushing throughout hollow rods
have not been represented (Garcia, 2001;
Soulgani, 2010; Khaleel, 2020; Kovalev, 2018;
Yemelyanov et al., 2019).

The issue regarding estimation of a
thermal condition of a well under the heat
treatment throughout hollow rods and the
definition of the most optimal conditions
concerning effective removal of ARPD was
considered.

2.1. Problem Statement and Solution

The geometric model of a well is shown in
Figure 2. SRP is lowered onto the tubing into the
well. The movement of the pump plunger is
performed throughout the hollow rods. A coupling
is installed to bypass the coolant from the rod
column into the tubing at a given depth. During the
well's operation, the coolant is fed into the hollow
rods, passing through which, the agent heats the
flow of downhole products, leaves through the
coupling, then are mixed with the main flow and
rise to the wellhead. An essential advantage of this

technology before flushing the well throughout the
annular space is reducing heat losses into the
environment, thereby increasing heat flow density
into the ARPD removal area.

The main tasks were to determine the
coolant's temperature at which the complete
melting of paraffin occurs and assess the impact
of operational characteristics of the well regarding
the washing efficiency.

2.2. Method of Solving Problem

The stated problems were solved
numerically by the finite element method. The
finite element method is a systematic way to
convert the functions in an infinite-dimensional
function space to the first function in finite-
dimensional function space. Finally, ordinary
vectors (in a vector space) tractable with numerical
methods. It used the realizable k-epsilon (k-€)
model as a model of turbulent heat-and-mass
transfer Reynolds-Averaged Navier-Stokes
(RANS) (Launder, 1972; Wilcox, 1998; Sumer,
2007). The traditional RANS equations are directly
applied for turbulent flow and heat transfer of the
fluid, ignoring the thermal physical properties'
turbulent effect due to the intense nonlinearity.

This model was relatively recently
developed. It differs from the standard k-e model
by (Shih, 1995; Dobek, 2012) (1) improving
notation for turbulent viscosity; and (2) the new
transport equation for the dissipation rate is
obtained from the exact transport equation for the
mean-square pulsating vortex. The realizable k-e
model was tested for the case of a single rotating
coordinate system. The results showed a more
accurate solution than in the case of the standard
k-e turbulence model. Used in the article model
describes well sufficiently for a round section
modeling pipe.

The interaction of well production and
coolant was described by the convection-diffusion
equation (Jia, 2014). The natural convection was
considered within the paper. The issue was solved
as stationary (Lei, 2016). The thermophysical
properties of solid materials did not depend on
temperature. A limited area replaced the infinite
array of the earth. The oil liquid was considered a
single-phase medium (Ghasemi, 2020). The
axisymmetric formulation of the issue was used to
save computing resources (Table 1). The ICEM
CFD processor was used to construct a geometric
model. It divided the model into a finite element
mesh (Figure 3). Engineering calculations were
performed in the software product ANSYS Fluent.
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2.3. Numerical experiment Turbulent viscosity y, :

The mathematical model of motion and
heat transfer within an oil well is based on the rules
of conservation of mass, amount of motion, and
energy (Shirani, 2012; Al-Safran, 2018). Taking
into account the assumptions made, the system of - .
differential equations has got the form (1)-(9). Continuity equation:
Transfer equations (Navier-Stokes equations
averaged by Reynolds):

a J_i.— a -._I'}-
ov; O0: P;[ (?U_)‘F (o )]
_ Ir 4 ?}') — oz or

k2
e = piCy— (5)

p}' (U ir @r Ui- a: ( ) ( )
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Transporting equation for the kinetic energy of
turbulence k : Convection-diffusion equation:
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Transfer equation for the rate of dissipation of the
kinetic energy of turbulence: where fl is the diffusion flow, which is as:
(apz.gﬁb_ +8p2.35ip) 0 1, \Os f ( D4 )(GY N GYL-)
=)=— A == [+ — | —+—] -
ar xz oM ) Pilim or 0z
VT
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+az Hﬂ Yo Jﬁz}r‘q “ r 9)
g2 s where r, z - cylindrical coordinates; i - index of
-p.C, +C1 —C,.G, areas studied, i=1- oil, i=2 -associated petroleum
"k + k= @) gas, i=3- pump - compressor- pipe, i=4- casing
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string, i=5 -hollow rods, i=6- soil; i=7- water;
DirDi, - time - averaged velocity components;
pulsation velocity

components;v;,.v;,- turbulent stresses;
T-temperature;P;- time-averaged pressure; p;-
medium density; u;- dynamic viscosity of the
medium; k-kinetic energy of turbulence; s-velocity
turbulence energy dissipation;a;, and o,- turbulent
Prandtl numbers for kand &, respectively;
Gi-kinetic energy of turbulence due to mean
velocity gradients;G, - kinetic energy of turbulence

li !
UipUiz-

due to buoyancy; u-turbulent viscosity;
C“-variable determining turbulent viscosity;
vi-kinematic  viscosity; Y-dilation dissipation

taking into account the effect of compressibility
under turbulence; C,,C;.,C3.- constants; E-total
energy; (7)f-deviator stress tensor;
k.ss-effective thermal conductivity; Sp,-volumetric
heat sources; Y;-mass fraction of substance;
Ji-diffusion flux; R;-reaction rate; S;-mixing rate
with dispersed phase; D;,,-mass diffusion
coefficient;  Sc,-Schmidt  turbulent  number;
Dy ;-turbulent diffusion, - author defined source; v
- molecular kinetic viscosity; p - pressure.

During the numerical experiment, the
following characteristics of the deep-pumping
equipment were taken as initial data: the diameter
and wall thickness of casing — 146 mm and 8 mm;
the tubing diameter and wall thickness — 73 and
5.5 mm; the length, diameter, and wall thickness
of the 1st stage rod string is 500 m, and 4 37 mm;
the length, diameter and wall thickness of the 2nd
stage rod string — 300 m, 34th and 3.5 mm; the
installation depth of the by-pass coupling (Hcoup) —
800 m; the temperature of the downhole
production installation depth of clutch — 15 °C;
geothermal gradient is 0.02 deg/m; the melting
point of the paraffin — 52 °C (at the wellhead), 60
°C (level of coupling) (Turbakov, 2011); the
production rate of oil of 20 m3day.
Thermophysical characteristics of materials and
media are provided in Table 2.

2.4. Practical Substantiation

To assess the possibility of ARPD
removing (melting) within the tubing under heat
treatment throughout hollow rods, a temperature
distribution (onto the tubing inner wall (products
extracted within the wellbore) is defined
depending on the flow rate and the temperature of
the coolant of 120, 200, 300°C. The temperature
of 200 and 300°C is adopted to perform theoretical
calculations and evaluate heat treatment

possibilities.

To confirm the applicability of the results,
the hydraulic resistance was evaluated during the
organization of heat treatments through hollow
rods. Further -calculations were carried out,
considering the volume and duration of time,
based on flushing wells' practical experience. The
results of such operations onto wells within the
Ural-Volga region indicate the practical
applicability and definite success of the operation
with a flow rate of 12-16 m* / h (288-384 m?/day)
using a well dewaxing unit (ADP, ADPM type)
without additional pumping equipment.

Besides, upon injecting the coolant into the
well throughout the hollow rods, the inevitable
pressure loss to overcome the hydrodynamic
resistances occurs. The estimation of the pressure
loss onto the resistances during the motion of the
coolant was performed according to the Darcy-
Weisbach equation:

LV?

dz?
where A — the coefficient of hydraulic resistance
based onto the flow mode (turbulent and laminar),
and the value of the Reynolds number per this
high-speed flow regime, Re=f(V, d, v); L —
characteristic length; d — characteristic outer

diametre, V — the linear flow velocity; p, v — the
density and kinematic viscosity of the coolant.

P, =1 (10)

3. RESULTS AND DISCUSSION:

The calculations for oil and water washing
for the flow rate of 300 m3/day and the problem's
conditions are shown in Tables 3 and 4. Using the
equivalent roughness value within the range of
0.15-0.3 mm, which corresponds to the values for
pipes past several years of operation, the total
pressure loss according to The Altschul formula
A=0.11 (A/d) °* was 13.2-15.7 MPa (A -
equivalent absolute roughness). The estimated
calculations regarding the determination of
hydraulic resistances associated with the loss of
pressure due to friction forces along the rod
column's length also confirm the applicability
under specified conditions, only within the range of
costs up to 300m®/day with the involvement of
ADP without additional equipment. The pressure
loss during the agent's delivery into the coupling
inlet to a depth of 800 m does not exceed 16 MPa
within this flow range.

Figure 4 displays that even at the injected
hot oil temperature equal to 300°C (curve 1), the
temperature at the coupling level falls below the
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paraffin's melting point and is 47°C. While at a
coolant temperature equal to 120°C, the coupling
inlet's temperature is 36°C (curve 3). According to
the calculation results, it may be noted that the
coolant's temperature has got its little effect on the
temperature of the inner wall of the tubing at a
depth of 800 meters. By changing this parameter
within the technical capabilities of oilfield
equipment (not above 150°C), it is not possible to
achieve effective well heating.

The agent's thermal power injected for
warming up the well is determined by its
temperature and thermophysical properties and
the flow rate. Therefore, to assess this parameter's
influence, the problems for the coolant injection
conditions of 150, 250, and 300 m?%aday,
respectively, are solved. The results are shown in
Figure 5. Upon increasing the coolant flow rate,
the tubing's inner wall's temperature at the
coupling level increases more significantly
compared to the increase in the coolant
temperature (Figure 5). When oil heated up to
120°C is pumped at a flow rate of 300 m*/ day, the
temperature at the coupling level is 59-60°C,
which corresponds to the melting point of paraffin
(Figure 5). Therefore, within the entire considered
area, the wax will melt. At the same flow rates,
when the water plays the role of the coolant being
heated up to 90°C, the temperature equal to the
melting temperature of paraffin is not reached at
the level of the coupling (Figure 6).

Under these technological parameters of
production, changing the coolant's temperature, it
is not possible to achieve the temperature at the
level of the coupling equal to the melting
temperature of paraffin. Technologically, it is more
efficient to change the flow rate of the coolant.
Thus, under the oil temperature equal to 120°C
and a flow rate of 300 m®/day, the temperature at
the coupling inlet is equal to paraffin's melting
temperature.

The degree of heating of downhole products
during thermal washing throughout hollow rods
depends on the well's technological mode of
operation. The value of the dynamic liquid level
within the annular space (Han) has got its
significant impact. Upon increasing the Hayn, the
petroleum-associated gas column  height
increases, removing the heat to the surrounding
rocks less intensively than the liquid column. For
operating conditions of wells within the Perm
region, the dynamic level is maintained at 150-300
m above the depth of the rod pump descent, which
is, on average, 900-1200 m (Kamentschikov,
2005).

The well model can also be divided into
zones reflecting the dewaxing process stages
performed by pumping coolant within the volume
of 150 m®/day into hollow rods located in the tubing
(Jorg Oschrmann, 2002). In zone | the
temperature onto the tubing wall does not fall
below 52°C; therefore, it may be argued that there
is a complete melting of paraffin within this area.
In zone Il the exfoliation of paraffin deposits is
most likely. This zone's lower boundary is
determined by the temperature at which the
paraffin mass shift is observed (30-32°C) (Zlobin,
2015). In zone lll, the zone of weakened adhesion
of paraffin to the surface of the pipe is very small
and is assumed to be 50 m; and in zone IV is
practically inaccessible for the method of thermal
dewaxing of wells.

Figure 7 depicts an example of the
calculations' results regarding the area of probable
(I-11) ARPD washing out. The calculations of the
probable depth of the ARPD washing out were
made regarding the conditions of washing with hot
water and oil under different dynamic liquid levels
within the annular space. The results are shown in
Table 5. In this theoretical research, the
effectiveness evaluation method is used to study
the effect of ARPD removal and application study
results to the real industry (Kamentschikov, 2005;
Rahman, 2017). This section discusses the
interpretation of modeling results during the
process of flushing out of wells.

4. CONCLUSIONS:

It can be concluded that, as the coolant for
flushing-out of well, it is most expedient to use oll
heated up to 120°C than water with its temperature
of 90" C. The best indicators of the technological
efficiency of the flushing-out of well with the
coolant are observed provided that Hayn>Hcoup, and
with the increase in the dynamic level in the well,
the thermal efficiency washing throughout the
hollow rods is increased. It was established that,
given the technological production parameters
and the increase of the coolant temperature, it is
not possible to reach the melting point of the
paraffin at the depth of the coupling level. The flow
rate of the coolant affects this parameter more
intensively. Thus, under the oil temperature equal
to 120°C and a flow rate of 300 m®day, the
temperature at the coupling inlet is equal to
paraffin's melting temperature. Improving the
technological efficiency of the technology of
washing wells throughout hollow rods may
enhance the design of the rod column and its
coating with thermal insulation materials.
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Figure 1. Picture of ARPD Establishing onto the Surface of Deep-Pumping Equipment: (a) ARPD in
Pipes; (b) Deposits onto Pump and Rods
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Figure 2. Geometric Model of a Well Equipped with SRP with Hollow Rods. Source: The author.
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Figure 4. The Temperature Distribution onto the Inner Wall of the Tubing from the Depth under
Different Temperatures of the Coolant. Dynamic Level — 0 m. Coolant - oil supplied with a flow rate of
150 m* / day and temperature: 1 — 300 " C; 2 —200° C; 3—-120 ° C; 4 -the temperature of paraffin
melting. Source: The author.

Temperature, °C
10 20 30 40 50 60 70 80 90 100 110

100
200
300
400
500
600

Depth, m

700

800
900

Figure 5. The temperature distribution onto the inner wall of the tubing from the depth under different
coolant flow. Dynamic Level — 0 m. Coolant oil heated up to 120°C during injection consumption:
1- 300 m*®/ day; 2- 250 m® day; 3- 150 m® day; 4-the melting temperature of paraffin. Source: the

author
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Figure 6. The Dependence of the Downhole Production Temperature at the Coupling Level onto the
Flow Rate and the Coolant Type. Source: the author
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Figure 7. The Temperature Distribution within the Well Depth. Coolant is the oil with its flow rate of
150 m3/day; within the annulus - oil, Hdyn= 0: 1 - is oil flow temperature in a hollow rod; 2- is hollow
rod wall temperature; 3- is tubing wall temperature; 4 - is paraffin melting point. Source: the author
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Table 1. Boundary conditions

No. Boundary condition Specified parameter
1 AXI Axis of symmetry
2 Inl Tinl Plot of oil flow rates corresponding to the well production rate.
' Oil temperature at the coupling level equal to 15 °C

3 Outl The boundary condition for the liquid outlet at the wellhead
Plot of coolant flow rates corresponding to a given flow rate.

4 In2, Tin2 Heat carrier temperature equal to 90 °C for water and 120 °C for

oil
5 out2 The boundary condition for the release of the coolant from the
coupling

6 Tniz Temperature at the coupling level equal to 15 °C

7 Convect Condition of natural convection on the surface

8 T=f(X) Geothermal gradient equal to 0.2 °C /10 m

Table 2. The Properties of Materials and Media

) . Thermal ) .
Material Densllzap, kg Heatj;:(izialgty C, Conductivity VISl\c;l(l)DSa!.tsy K,
A, W/(m-K)

Soll 1,900 1,680 1.82 -
Steel 8,030 502 16.27 -
Water 998.2 4,200 0.6 1

Qil 761.5 2,000 0.15 10

Associated 1.225 1,006 0.0242 0.0018

Petroleum Gas

Periédico Tché Quimica. ISSN 2179-0302. (2020); vol.17 (n°36)
Downloaded from www.periodico.tchequimica.com
764



Table 3. The Results of Calculation of Hydraulic Pressure Losses During Hot Water Washing

No. Characteristic Hot Water onto the Rods Flow
1 Rod Length, m 500 300
2 Inner Diametre of the Rod, mm 29 27
3 Consumption, m®/ day 300 300
4 Kinematic Viscosity, mm?/ s 0.326 0.326
Result of Calculation
1 Flow Rate, m/ s 6.1 5.3
2 Reynolds number, un. 502,524 467,867
3 The Coefficient of Hydraulic Resistance, un. 0.0295 0.0290
4 Head Loss due to Friction, m 604 692
5 Friction Pressure Loss, MPa 6.0 6.9
6 Total Pressure Loss, MPa 12.9

Table 4. The Results of Calculation of Hydraulic Pressure Losses during Hot Oil Washing

No. Characteristic Hot Oil onto the Rods Flow
1 Rod Length, m 500 300
2 Inner Diametre of the Rod, mm 29 27
3 Consumption, m®/ day 300 300
4 Kinematic Viscosity, mm? / s 1.71 1.71

Result of Calculation
1 Flow Rate, m /s 6.1 5.3
2 Reynolds number, un. 95,803 89,196
3 The Coefficient of Hydraulic Resistance, un. 0.0303 0.0299
4 Head Loss due to Friction, m 620 714
5 Friction Pressure Loss, MPa 6.2 7.1
6 Total Pressure Loss, MPa 13.3

Table 5. Probable Depth of ARPD Washing under Different Hayn and a Type of the Heat Carrier

Dynamic Level, m Hot Qil (120°C) Hot water (90°C)
0 645 360
300 698 427
500 above 800 500
800 above 800 596

Note: * Technological efficiency and probable depth of washing are provided at productivity of the unit
(ADP, ADPM type) operated not below the second speed.
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