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RESUMO 
 
 Um problema de plano não estacionário da dinâmica do invólucro elástico fino na forma de cilindro 
parabólico imerso no fluido sob o impacto da onda de pressão oblíqua plana é considerado. Para resolver este 
problema, é construído um sistema de equações na formulação relacionada. Com isto, os problemas de 
hidroelasticidade são reduzidos às equações da dinâmica da casca, o efeito de amortecimento do fluido é 
levado em conta pela introdução de um operador tipo convolução integral no domínio do tempo que na primeira 
aproximação permite contabilizar a porosidade capilar do material da casca. O núcleo do operador é uma 
função de transição de superfície do problema auxiliar da difração da onda de pressão acústica do plano em 
uma superfície convexa. O problema é resolvido aproximadamente com base na hipótese da camada fina. As 
equações integral e diferencial do movimento da casca são resolvidas numericamente com base na 
discretização de diferenças dos operadores diferenciais e na representação do operador integral pela soma 
usando a regra do trapézio. 
 
Palavras-chave: onda de pressão plana não estacionária, cascas finas, teoria de primeira ordem, funções de 
superfície transitória, contabilidade de material capilar poroso. 
 

ABSTRACT 
 
 A non-stationary plane problem of the dynamics of thin elastic shell in the form of parabolic cylinder 
immersed in the fluid under the impact of the plane oblique pressure wave is considered. To solve this problem, 
a system of equations in the related formulation is constructed. Herewith, the hydroelasticity problems are 
reduced to the equations of the shell dynamics, the damping effect of fluid is taken into account by introducing 
an integral convolution type operator in the time domain which in the first approximation allows for accounting 
the capillary porosity of the shell material. The operator core is a surface transition function of the auxiliary 
problem of the plane acoustic pressure wave diffraction on a convex surface. The problem is solved 
approximately based on the thin layer hypothesis. The integral and differential equations of shell motion are 
solved numerically based on the difference discretization of differential operators and the representation of the 
integral operator by sum using the trapezium rule. 
 
Keywords: plane non-stationary pressure wave, thin shells, first-order theory, transient surface functions, 
accounting of capillary-porous material.  

 

ABSTRACT 
 
 Рассматривается плоская нестационарная задача динамики тонкой упругой оболочки в виде 
параболического цилиндра, погруженной в жидкость, под действием плоской косой волны давления. Для 
решения поставленной задачи строится система уравнений в связанной постановке. При этом задачи 
гидроупругости приводится к уравнениям динамики оболочки, демпфирующее влияние жидкости 
учитывается введением интегрального оператора типа свертки во временной области, что в первом 
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приближении дает учет капиллярно-пористости материала оболочки. Ядро оператора является 
поверхностной переходной функцией вспомогательной задачи дифракции плоских акустических волн 
давления на выпуклой поверхности. Задача решается приближенно на основе гипотезы тонкого слоя. 
Интегро-дифференциальные уравнения движения оболочки решаются численно на основе разностной 
дискретизации дифференциальных операторов и представления интегрального оператора суммой с 
использованием правила трапеций. 
 
Keywords: плоская нестационарная волна давления, тонкие оболочки, теория первого порядка, 
функции переходные поверхностные, учет капиллярно-пористый материал. 
 

 
 

1. INTRODUCTION 
 
 The diffraction of weak shock waves in 
fluid based on the approximate models is studied. 
The solution of the problem is based on the 
apparatus of transition functions, which are the 
fundamental solutions of the non-stationary initial 
boundary value problem of the acoustic medium 
diffraction on a smooth convex surface. 

The problems of the acoustic waves 
diffraction on the second-order canonical surface 
and based on the thin-layer hypothesis are 
studied. The fundamental solutions at the zero 
viscous damping coefficients are built. 

The integral and differential equations of 
the elastic shells motion that are susceptible to 
shear under the action of weak shock waves of 
various shapes in the acoustic medium are 
obtained based on the constructed transition 
functions. The interaction with the surrounding 
continuous medium is modeled by the integral 
terms of the equations. 

For the numerical solution of the integral 
and differential equations of the shell motion, the 
difference schemes are constructed, and their 
convergence is investigated. The difference 
schemes built on different templates are 
compared based on the model problem of the 
plane acoustic wave diffraction on the parabolic 
cylinder, and the use of five-point difference 
scheme by the spatial variable with the three-
point scheme by the time variable is proposed. 
This type of problem was considered earlier 
(Formalev et al., 2015, 2016a, 2016c, 2016b, 
2017a, 2017b, 2018b, 2018c; Kolesnik et al., 
2015; Formalev and Kolesnik, 2016, 2017, 2018; 
Okonechnikov et al., 2016; Prokofiev et al., 2016; 
Babaytsev et al., 2017; Gidaspov and Severina, 
2017; Lurie et al., 2017; Bulychev et al., 2018a, 
2018b, 2018c; Kuznetsova et al., 2018). 

The paper deals with the problem of 
diffraction of non- stationary plain oblique 
pressure wave on a thin elastic shell in the shape 
of a parabolic cylinder placed in the acoustic 

medium. To determine the hydrodynamic 
pressure acting on the shell, a transition function 
built based on the thin-layer hypothesis is used 
(Gorshkov et al., 2003a, 2003b; Medvedsky and 
Rabinsky, 2007; Lark et al., 2010). The 
integration of the shell motion equations of 
Timoshenko type obtained using the Maple 9.0 
software is carried out by the finite difference 
method using Matlab 6.5. 

 

2. METHODOLOGY 
 

The hypotheses which allow analytically 
for constructing the transition function of this 
problem are substantiated based on the solution 
of the problem of the acoustic wave diffraction on 
a curvilinear convex obstacle. 

Thin layer hypothesis, which is a 
generalization of the well-known hypothesis of 
plain reflection due to the obstacle curvature, is 
formulated. The approximate solutions obtained 
based on the thin layer hypothesis are compared, 
with exact solutions of model problems, and the 
effectiveness of the hypothesis application for 
determining the pressure in the acoustic wave on 
the surface of convex obstacle is demonstrated. 

The non-stationary problem of the 
acoustic medium dynamics is formulated in the 
curvilinear orthogonal coordinate system normally 
associated with an obstacle – a rigid body or an 
elastic shell.  

To determine the transition functions in 
the acoustic environment Laplace integral 
transforms with respect to time and Fourier 
transform over the coordinate are used. 

To assess the accuracy of the applied 
approximate approach to the solution of problems 
that do not allow an exact analytical solution an 
explicit finite-difference scheme for integrating the 
dynamics equations of acoustic medium in the 
curvilinear coordinate system normally 
associated with obstacle, and the convergence of 
the discrete finite-difference analog to the original 
initial boundary value problem has been built. 
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3. RESULTS AND DISCUSSION: 
 
2.1. Problem definition 

 
The mathematical definition of the 

problem is as follows. 

– Acoustic medium (Equations 1-2) 
(Medvedsky and Rabinsky, 2007); 

– Elastic isotropic thin shell (Equations 3-
5) (Rabinskiy, 2018). 

Here ϕ  is the velocity potential in the 

acoustic medium, p  is the pressure in the 

reflected and emitted waves, v  is the velocity 

vector of acoustic medium, 
i

u  are the 

generalized displacements of the middle shell 

surface, 
ij

L  are the known differential operators 

determined by the shell geometry, 
ij

δ  are 

Kronecker symbols. Relations (5) determine by 

means of operators 
( ) ( )m

iuN  the boundary 

conditions depending on the shape of the shell 
and its fixation in space. 

Further, the problem is solved in a 
dimensionless form. Herewith, all the linear 
dimensions are related to the focal distance a , 

velocity – to the sound velocity in the acoustic 

medium 0c , magnitudes having the pressure 

dimensions – to the complex 
2

0 0cρ , time τ  – to 

0tc a . 

From the conditions of the joint movement 
of shell and the adjacent particles of the acoustic 
medium, the impermeability conditions are 

derived in Equation 6, where *ϕ  is the velocity 

potential of the wave falling on the shell, n∂ ∂  is 

the derivative with respect to the outward normal 
to the shell, w  is the shell deflection. 

The pressures 1p  and 2p  in the reflected 

and radiated waves can be found using a 

transition function ( , )i
G x τ  constructed within 

the thin layer hypothesis (Equations 7-9, where 
an asterisk denotes a convolution operation with 
respect to time τ ). 

Herewith, the influence function ( , )i
G x τ  

satisfies the following initial-boundary value 

problem (Equations 10-12, where ( )δ τ  is the 

Dirac delta function). 

 

2.2. Determination of hydrodynamic pressure on 
the shell 
  

Let us introduce a curvilinear coordinate 

system 
1 3( , )ξ ξ  associated with curve Γ . Let the 

radius 
1

0 ( )ξr  be the vector of curve Γ , and let 

1

0 ( )ξn  be the unit normal vector to the shell 

surface in the shape of parabolic cylinder. Then 
the curvilinear coordinate system is determined in 
Equation 13 (the differentiation is indicated by a 
subscript). 

The metric tensor components will be as 

in Equation 14, where 
1( )k k ξ=  is the curvature 

of the curve Γ . 

In the first approximation, we can assume 
that the main contribution to the hydrodynamic 
load is obtained from the motion of the medium 
along the normal to the surface (Gorshkov et al., 
2003a, 2003b; Medvedsky and Rabinsky, 2007; 
Lark et al., 2010). In this case, the motion of 

medium along the surface Γ  can be neglected. 
Therefore, the derivatives with respect to 

coordinate 
1

ξ  in (1.1) can be set identically equal 

to zero, and the Laplace operator can be 

calculated on the cylinder surface 
3 0ξ = . The 

latter corresponds to the Laplace operator 
ξ

∆  in 

(Equation 10). Therefore, the initial boundary 
value problem (Equations 10-12) will be as in 
Equations 15-17. 

The influence transition function 
1

0( , )G ξ τ  on the obstacle surface Γ  is found by 

the operational method and is as in Equations 18-

19, where [ ] [ ]( )2 , , ,F a b c z  is the generalized 

hypergeometric function (Gorshkov et al., 2003a). 

In this case, the expressions for pressure 
in the reflected and radiated waves with regard to 
equations 7-8 are presented as in equations 20-
22. 

 
2.3. Plane oblique pressure wave diffraction on 
elastic shell in the form of parabolic cylinder 
 

The pressure behind the wavefront in the 

coordinate system ( )1,2i
Ox i =  is set by 

relation, which is shown in Equations 23-24, 

where constant C  determines the wave front 

position at the initial moment of time 0τ = ; 0p is 

the amplitude pressure (Gorshkov et al., 2003a). 
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To determine the constant C  and 
coordinates of the tangency point, we obtain the 

system of equations 25-26, where 
1

0ξ  is the 

parameter corresponding to the tangency point 

A ) (Gorshkov et al., 2003b). 

The velocity potential of incident wave 

*( , )j
xϕ τ  corresponds to pressure (Equations 

23, 27). 

For the derivative by normal to the surface 
of the incident wave potential from (Equation 27), 
we obtain Equations 28-29. 

Taking into account Equations 28-29 the 
pressure in the reflected wave is determined in 

Equation 30, where the function 
1( , )pG ξ τ  

means 
1( ,0, )pG ξ τ  at the mean surface 

curvature 
1( ) / 2k ξ . 

Relation (30) allow approximately within 
the thin layer hypothesis determine the reflected 
pressure in the diffraction problems. 

Let us consider an example of solving the 
problem of diffraction of plane oblique pressure 
wave on various obstacles. Herewith, let us 

suggest 
1

ξ = ξ  everywhere. 

At the initial time 0τ =  the shell and 
medium are in the unperturbed state which 
corresponds to the homogeneous initial 
conditions (Equations 2 and 4). 

Let us consider the problem of diffraction 
of plane step-like pressure wave on the elastic 
rigid stationary curvilinear obstacle. An oblique 
plane acoustic wave with a front that makes an 

angle ϑ  with the axis 
1

Ox  at the initial time 

0τ =  touches at point A  (Figure 1) the surface 

of the cylinder with a guide Γ . 

The guide of thin elastic shell in the shape 
of a parabolic cylinder Γ  is parameterized as 
follows. 

This surface with focal distance 0a >  in 
the Cartesian rectangular coordinate system 

1 2
Ox x  is determined in Equation 31, where 
value a  is selected as the linear dimension in 

(1.2.23): L a= . 

The main curvature is determined by the 
formula (1.2.28) where the average curvature 

takes the form of ( ) 2k ξ  and the components of 

the normal vector are set by the expressions 32-

33 for the case of plane problem (Formalev et al., 
2018a; Rabinskiy and Tushavina, 2018, 2019; 
Zhavoronok, 2018). 

Herewith, constant C  and coordinate of 
tangency point is found from the system of 
equations 25-26 and is as in equation 34. 

The resolving equations for the shell can 
be written in the operator form (Equations 35-36), 
suitable for the numerical solution of the discrete 
analogue of the problem ( L  is the linear operator 
of the problem, p  is the vector function of the 

right-hand sides) (Rabinskiy, 2018; Rabinskiy and 
Tushavina, 2019). 

In general, the construction of resolving 
equations 35-36 in the curvilinear coordinates 
associated with the surface of arbitrary shape is 
very difficult. At the same time, the use of 
computer algebra systems that support the basic 
operations of tensor analysis allows for 
automating the process of transition from the 
general formulation of the problem to its operator 
record in the particular coordinate system. In this 
case, the Maple 9.0 computer algebra system 
with Tensor extension package was used. 

The results of solution are presented in 
Figures 2–5 for the steel thin shell in the shape of 

parabolic cylinder (density 37200кг мρ = , 

elastic modulus 
62 10E = ⋅  MPa, Poisson’s ratio 

0,3ν = , shell thickness 0,01h =  m, ratio 

between semi-axes 0.5b a = ) placed in water 

(density 
3

0 1000кг мρ = , sound velocity 

0 330м сс = , β ). The pressure intensity at the 

front of the incident wave at the initial time 
4

0 10 Паp = . 

Figures 2-3 show the dependences of the 
total pressure and deflection on the coordinate at 
the moments of the dimensionless time τ =  0.4, 

0.6, 0.625, 1.0. The dashed line shows the same 
curves with regard to the damping in liquid. 

 

4. CONCLUSIONS: 
 

The paper based on the critical analysis of 
existing methods for constructing the accurate 
and approximate solutions for the problem of the 
weak shock wave diffraction in the acoustic 
medium on the rigid or deformable convex 
obstacle is justified by the use of the apparatus of 
transition functions. 

The pressure profiles of plane waves with 
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arbitrary orientation of the front and spherical or 
cylindrical waves with arbitrary source location 
diffracting on the parabolic cylinder are 
constructed.  

The examples show the effectiveness of 
the applied method of semi-analytical calculation 
of pressure on the rigid obstacle. 

The integral and differential equations of 
the elastic shells motion that are susceptible to 
shear under the action of weak shock waves of 
various shapes in the acoustic medium are 
obtained based on the constructed transition 
functions. The interaction with the surrounding 
continuous medium is modeled by the integral 
terms of the equations. 

The solutions of the problems of the 
dynamics of non-circular cylindrical shells in the 
plane formulation and shells of revolution in the 
spatial formulation are constructed based on the 
developed method. Numerical examples show 
the effectiveness of the method when solving the 
problems of non-stationary interaction of shells 
with the surrounding continuous medium. 

The pressure profiles and kinematic 
parameters of plane waves with arbitrary 
orientation of the front diffracted on the parabolic 
cylinder in the plane formulation of the problem 
are constructed. 
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= ( ) ( ) ( , 1,2,3)i

ij j i

u
u p p i j

∂
+ + δ =

∂τ

L   (Eq. 3) 

 
0

0

0i
i

u
u

τ=

τ=

∂
= =

∂τ

  (Eq. 4) 

     1 1

( ) ( ) 0 ( 1,2)
k

m

iu k
ξ =ξ

= =N   (Eq. 5) 

 *w

n n
Γ Γ

∂ ∂ϕ ∂ϕ
= +

∂τ ∂ ∂

  (Eq. 6) 

 

1
1 1*

1

( ,0, )
( , ) ( , )pp G

n

∂ϕ ξ τ
ξ τ = ∗ ξ τ

∂

  (Eq. 7) 

 
1 1 1

2
( , ) ( , ) ( , )

p

w
p G

t

∂
ξ τ = ξ τ ∗ ξ τ

∂

  (Eq. 8) 

 
1

1 2

( , )
, ( , )

i

p

G x
p p p G

Γ

∂ τ
= + ξ τ = −

∂τ

  (Eq. 9) 

 

2
2

02

G
c G

ξ

∂
= ∆

∂τ

  (Eq. 10) 

 
0

0

0
G

G
τ=

τ=

∂
= =

∂τ

 (Eq. 11) 



 

Periódico Tchê Química.  ISSN 2179-0302. (2019); vol.16 (n°32) 
Downloaded from www.periodico.tchequimica.com 

  334 

 ( ), ( , ) (1) при
G

G r O r
n

Γ

∂
= δ τ τ = → ∞

∂

 (Eq. 12) 

 
1 1 1 3 1

0 0( , ) ( ) ( )ξ ξ = ξ − ξ ξr r n   (Eq. 13) 

 ( )
2

2 2 3 3 2

11 1 12 22 21 2 , 0, 1g H k k g g H 
= = + ξ + ξ = = =  

τ  (Eq. 14) 

 
3

2 2

0
12 1 1

1 0

G c G
H

H
ξ =

  ∂ ∂ ∂
=   

∂τ ∂ξ ∂ξ  
  (Eq. 15) 

 
0

0

0
G

G
τ=

τ=

∂
= =

∂τ

  (Eq. 16) 

 
3

3

0

( ), ( , ) (1) при
G

G r t O r
ξ =

∂
= δ τ = → ∞

∂ξ

 (Eq. 17) 

 0( , ) ( ) ( )G H R zξ τ = − τ ;  (Eq. 18) 

 

2

1 2

1 1 ( )
( ) , ,1 , ,

2 2 4 2

z k
R z z F z

  ξ τ   
= − + − − =        

. (Eq. 19) 

 

1
1 1*

1 2

0

( ,0, )
( , ) ( , )

p

t
p G t dt

τ

∂ϕ ξ τ −
ξ τ = − ξ

∂ξ
    (Eq. 20) 

 

1
1 11

2

0

( , )
( , ) ( , )

p

u t
p G t dt

t

τ

∂ ξ τ −
ξ τ = − ξ

∂
   (Eq. 21) 

 

1
1 0( , )

( , )
p

G
G

∂ ξ τ
ξ τ =

∂τ    (Eq. 22) 

 ( )* 0( , ) ( , )i i
p x p H f xτ = τ − ϑ   (Eq. 23) 

 
1 2( , ) cos sini

f x x x Cϑ = ϑ + ϑ +    (Eq. 24) 

 
1 1 2 1

0 0( )cos ( )sin 0x x Cξ ϑ + ξ ϑ + =    (Eq. 25) 

 

1 1 2 1

0 0

1 1

( ) ( )
cos sin 0

dx dx

d d

ξ ξ
ϑ + ϑ =

ξ ξ

   (Eq. 26) 

 ( )* 0( , ) ( , )
j j

x p f x
+

ϕ τ = − τ − ϑ    (Eq. 27) 



 

Periódico Tchê Química.  ISSN 2179-0302. (2019); vol.16 (n°32) 
Downloaded from www.periodico.tchequimica.com 

  335 

 
( )

( ) ( )

*
0

0 0

1 2 1

0 0 0 0

( , ) ( , )
( , )

cos sin ( , ) ,

j j k
j

k

f x x
p H f x

x

p n n H f

η= η=

∂ϕ ξ τ ∂ ϑ ∂
= τ − ϑ =

∂η ∂ ∂η

= ϑ + ϑ τ − ξ ϑ

 (Eq. 28)  

 ( )( )
1

0
0

( , ) ,i jf f x
η=

ξ ϑ = ξ ϑ   (Eq. 29) 

 
( )

( )

1
0 ( , )

1 1 2 1

1 0 0 0

0

1 2 1 1

0 0 0 0 0

( , ) cos sin ( , )

cos sin ( , ( , )) ,

f

pp p n n G t dt

p n n G f

τ− ξ ϑ

ξ τ = − ϑ + ϑ ξ =

= − ϑ + ϑ ξ τ − ξ ϑ


 (Eq. 30)  

 

2
1 2: , ,

2
x x

ξ
Γ = = ξ ξ∈R /  (Eq. 31) 

 

( )
3/ 2

2

1
( )

1
k ξ =

+ ξ

  (Eq. 32) 

 
1 2

0 0
2 2

1
, .

1 1
n n

ξ
= = −

+ ξ + ξ

  (Eq. 33) 

 0

1
tg , tg sin .

2
Cξ = − ϑ = ϑ ϑ   (Eq. 34) 

 

2

2

∂
= +

∂τ

u
Lu p   (Eq. 35) 

 
d d

d d
2

= + +

ξ ξ

L C B A    (Eq. 36) 

 



 

Periódico Tchê Química.  ISSN 2179-0302. (2019); vol.16 (n°32) 
Downloaded from www.periodico.tchequimica.com 

  336 

 

Figure 1. The diffraction of plane step-like pressure wave on the elastic rigid stationary curvilinear 
obstacle 

 

 

Figure 2. Distribution of total pressure at different time intervals 
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Figure 3. Distribution of shell deflection at different time intervals 
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