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RESUMO  
  

A biomassa apresenta grande participação na matrix de geração de energia, devido aos benefícios 
econômicos regionais. Este trabalho tem como objetivo principal avaliar os parametros utilizados na fabricação 
de briquetes produzidos com resíduos florestais e a engenharia econômica para a fabricação. Os resíduos 
florestais foram: cavacos e lascas de madeira de Eucalyptus spp. e cascas de Pinus taeda. As avaliações 
realizadas foram caracterização química dos resíduos florestais e custos envolvidos no processo de 
briquetagem. Os resíduos florestais apresentaram em sua composição química extrativos e lignina. Os custos 
de produção dos briquetes foram afetados principalmente pela briquetadeira, sendo que as cascas de Pinus a 
que apresentou maior custo produção. Os custos de produção obtidos nesse estudo são de 20% menores que 
os custos empregando os métodos tradicionais. O valor energético da biomassa permite a redução da 
dependência de energia, que pode ser utilizada para a geração de vapor ou eletricidade, para subsistência. Um 
fato para conversão de energia é avaliar a umidade do material. É adequado para queimar resíduos com 
umidade entre 45 e 55%. A energia elétrica consumida é importante para avaliar os custos totais. Os resíduos 
florestais são uma importante fonte de produção de lenha ecológica, contribuindo para a geração de energia e 
diminuição dos resíduos sólidos armazenados na empresa. Desta forma, os novos parâmetros para a 
biomassa de briquetagem de resíduos florestais mostrados neste trabalho, que é uma etapa importante do 
processo, tornam economicamente viável e ambientalmente adequada a produção de lenha ecológica. 
 
Palavras-chave: Resíduos Florestais, Energia Renovável, Custos Produtivos, Energia de Biomassa 
  

ABSTRACT  
 
 Biomass has a large share in the energy generation matrix, due to the regional economic benefits. This 
work has as main objective to evaluate the parameters used in the manufacture of briquettes produced with 
forest residues and the economic engineering for the manufacturer. The forest residues were: wood chips and 
chips of Eucalyptus spp. and barks of Pinus taeda. The evaluations were the chemical characterization of forest 
residues and the costs involved in the briquetting process. The forest residues presented extractive chemical 
composition and lignin. The production costs of the briquettes were affected mainly by the equipment, being the 
Pinus taeda barks the one that presented higher production cost. However, the production costs obtained in this 
study are approximately 20% lower than the production costs using traditional methods for forest firewood. The 
energy value from biomass allows the reduction of the dependence of energy, which can be used for the 
generation of steam or electricity, for subsistence. A fact for energy conversion is to evaluate the material 
moisture. It is suitable to burn residues with moisture between 45 to 55%. The consumed electric energy is 
important to evaluate the total costs. The energy required depends on the quality of raw material and the system 
employed. Forest residues is an important source for eco firewood production, contributing to energy generation 
and decreasing of the solid waste stored at the company. In this way, the new parameters for briquetting 
biomass forest wastes shown in this work, which is an important stage of the process, make economically viable 
and environmentally suitable the eco firewood production. 
 
Keywords: Forest Waste, Renewable Energy, Productive Costs, Biomass Energy. 
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1. INTRODUCTION 

 
 Biomass is related to all organic matter, 
from vegetable or animal origin, used for energy 
production (Zhao et al., 2018, Campbell et al., 
2018, Li et al., 2017). It is useful for use as an 
energy source (ValeFntim et al., 2019; 
Maslennikov et al., 2019; Cataluña et al., 2018). 
Combustion of raw material is a way of biomass 
that considered energetically viable (Chan et al., 
2019, Caetano et al., 2018; Milovanovich et al., 
2017; Pahla et al., 2017, Xin-Gang et al., 2015, 
Prado et al., 2015; Zhang et al., 2014; Xiu and 
Shahbazi, 2012; Caetano et al., 2015a). The 

energy source is obtained by the decomposition 
of non-woody, woody and organic residues 
(Alvarez et al., 2018; Cai et al., 2016; Liu and 
Balasubramanian, 2013; Abbas et al., 2011; 
Muangrat et al., 2010). 

 Non-woody are classified by main energy 
storage substance: i) saccharide - has as storage 
tissue the sugars (saccharose). These sugars are 
used for the production of ethanol; ii) cellulosic - 
uses carbohydrates as storage tissue; iii) starchy 
- have starch storage tissue. Starches are 
complex carbohydrates. This was transformed 
into simpler sugars for fermentation; iv) oilseed - 
which have oils and fats extracted through 
industrial processes; v) aquatic - are plants and 
algae that have potential for energy generation 
(Chan et al., 2019; Sun et al., 2019; Haykiri-Acma 
et al., 2011; Fan et al., 2013; Cataluña et al., 
2017; Fagundez et al., 2017; Yang et al., 2017; 
Yellapu et al., 2019; Bharathiraja et al., 2015; 
Caetano et al., 2015b; Ojeda et al., 2011).  

The woody is able to produce firewood as 
a sustainability fabric (Vandecasteele et al., 

2016). The production of wood used in 
technological processes allows the conversion of 
energy (Shi et al., 2013). Planned plantations 
produce a large volume of biomass (Zhou et al., 

2018). Therefore, all the organic waste from 
agriculture is useful as fuel (Velásquez et al., 
2017; Akbi et al., 2017; De Boni, 2017; Paradelo 
et al., 2013; Dias et al., 2012; Quintero et al., 
2008;  ). The energy stored in these residues is 
very significant, having as main representative 
the biogas (Lizasoain et al., 2016; Montingelli et 
al., 2016; Santos et al., 2016; Pöschl et al., 2010; 
Holm-Nielsen et al., 2009). The energy value 

from biomass allows the reduction of the 
dependence of energy, which can be used for the 
generation of steam or electricity, for subsistence 
(Pedrazzi et al., 2016; Caetano et al., 2015c). A 

fact for energy conversion is to evaluate the 
material moisture. It is suitable to burn residues 
with moisture between 45 to 55% (Yadav and 

Devi, 2018). 
Biomass production in Brazil is in large scale, 
with extensive areas and good weather 
conditions (Felfli et al., 2011). 

In environmental terms, the use of 
biomass contributes to the low emissions of 
carbon dioxide (CO2). These low carbon dioxide 
emissions can be predicted by geochemical 
modeling (Klunk et al., 2019a; Klunk et al., 2018; 
Klunk et al., 2015; Saffy et al., 2015; García et 
al., 2011; Szklo et al., 2005). Another important 

factor of the use of biomass is to include the 
residues in the process of synthesis of zeolites to 
be used in industrial processes (Klunk et al., 
2019b; Massoudi Farid et al., 2017; Kramb et al., 

2014).  
An industrial process takes to the 

attention of companies linked to the energy, 
which consists of the compaction of material, in 
order to higher the energy concentration 
(Balasubramani et al., 2016; Flórez-Orrego  et al., 
2015; Stolarski et al., 2013; Felfli et al., 2011; Wu 
et al., 2010). 

This technique is effective in the way of 
taking benefits using biomass residues (Sordi 
and Manechini, 2013). The process pressurizes 
the particles of biomass to make it one solid block 
of high density (Trubetskaya et al., 2019; Zhang 
et al., 2018; Prasityousil and Muenjina, 2013; Do 
Rosário, 2011). The quality of the eco firewood is 
influenced by the physical and chemical 
characteristics of the raw material and mainly by 
the parameters of production (Shekhar, 2011; 
Vilas Boas, 2011; Purohit et al., 2006). The 

production presents several advantages, the 
volume reduction to lower the cost of 
transportation and the higher the calorific power 
(Balasubramani et al., 2016). Thus, the process 

cost of production is dominated by the 
characteristics of the raw material and the energy 
dissipated by the equipment (Zhang et al., 2018; 

Turdera, 2013).  
 The production plant has an influence on 
the costs and therefore, was evaluated as a 
function of the volume (Filippetto, 2008; Purohit 
et al., 2006). Operating costs has been specified 
as fixed: equipment depreciation, business, 
maintenance, industrial installation, and 
transportation (Guerra et al., 2014). The variable 

costs: raw material, fuel processing, expenses, 
and energy (Da Silva et al., 2006). 

The consumed electric energy is 
important to evaluate the total costs. The energy 
required depends on the quality of raw material 
and the system used (Trubetskaya et al., 2019; 
Lowesmith et al., 2007). Thus, was considered 
the electric energy consumed in a period, which 
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is expressed in (kWh) (Bigaton et al., 2015; 
Bigaton et al., 2016; Bigaton et al., 2017; Xin-
Gang et al., 2015; Pedrazzi et al., 2016). 

 

2. MATERIALS AND METHODS 
 
 Forest biomass residues were processed 
in mills and separated in classes dependent on 
the species of the biomass (Table 1). 
 The moisture content of the particles was 
determined according to the TAPPI T 210 cm-93. 
The forest residues processed in the mills were 
classified for the chemical analysis. Granulometry 
was used of 40-60 mesh, according to TAPPI T 
204 cm-97. The determination of the total 
extractive contents acid-insoluble lignin and 
inorganic compounds were applied TAPPI T264 
cm-97, TAPPI T222 om-98, TAPPI T211 om-93. 
Holocellulose content (HC) was determined 
(Álvarez et al., 2018; Rosa, 2003): 

 
HC (%) = 100 - (insoluble lignin content + total 
extractive content)                                        (Eq.1) 

 
The determination of the residues bulk density 
was performed by 10 mL of the material (Dukes 
et al., 2013). The production machine is 

LIPPELTM model LB-32, under pre-defined 
manufacturing parameters. 

Tests revealed that the best-operating 
conditions of the equipment were: i) 100 bar; ii) 
393 K, with three minutes of compression and six 
minutes of cooling time. 

The apparent density (AD) (g/cm³) was 
determined by the stereometric method (ratio of 
mass/volume with moisture content) (Sova et al., 

2018). The diameters were carried by a digital 
caliper. The mass of the briquettes was 
determined by means of an analytical balance. 

The higher calorific value (HCV) were 
classified in 60 mesh and placed in an oven at 
105 ± 5ºC during 48 that the total moisture 
evaporates (Antwi-Boasiako and Acheampong, 
2016). The 0.5 g of the sample was placed in an 
adiabatic pump IKATM model C5000. 

The energy density (ED) was calculated 
by the product of the calorifc value (CV) and the 
apparent density (AD), according to the equation:                      
 
ED = (CV x AD) / 1000              (Eq.2) 
 
where, ED is (Mcal/m³), UCV (kcal/g) e AD is 
(g/cm³).  

The UCV was obtained from the lower 
calorific value (LCV), using the following 
equations: 
 

LCV = HCV x (1 – MCw.b) – (600 x MCw.b)    (Eq.3) 
 
UCV = LCV x [(100 x MCw.b) / 100] – 6H      (Eq.4)   
 
where LCV, HCV, and UCV are expressed in 
kcal/m³, MCw.b is moisture content, H is the 
hydrogen content (% on a dry basis. 

The electric power was measured in the 
mills (1 and 2) and in the eco firewood using ET-
5060C/ET-5060 Power Quality Analyzer - 
MinipaTM equipment to calculate the electric 
energy consumption in the production. The 
energy released by the equipment was calculated 
by the integral of the active power (W) during the 
operation time (Fraga et al., 2014; Klunk et al., 

2012). Thus, the energy consumed by equipment 
was calculated by the equation: 
     

                                             
 
 where t2 - t1 is the time interval between 
measurements and p (t) is the power at the same 
time step. The energy consumption was 
calculated by the results obtained by Equation 6:                 

 
E = W x 106 / w                                      (Eq.6) 
 
where E is the energy consumption (kWh/ton), W 
is the work done by the equipment w is the 

weight of the briquette (g). The cost of production 
was based on the commercial value of electricity, 
which was multiplied by the total work obtained, 
according to the equation: 

 
C1 = W x ET(103 / 3600)                              (Eq.7) 

 
where C1 is the cost for the production of 1 
sample expressed in R$ (BRL), W is the work 
done by the equipment, and ET is electric tariff 
(0,53 R$/kWh). The energy cost was estimated to 
1 ton, regarding the weight of the forest residue 
used (class E = 70 g and class P = 64 g), 
according to the equation: 
 
C2 = C1 (106 / w)                                           (Eq.8) 

 
where C2 is the cost for 1 ton of briquette 
(R$/ton), and w is the weight of the biomass 

(class E or P). 

 
3. RESULTS AND DISCUSSION 

  
3.1. Moisture content 

 
It is recommended for the manufacture of 

  (Eq.5) 
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briquettes the moisture content of the material 
between 8 and 15% (Antwi-Boasiako and 
Acheampong, 2016; Paula, 2010). Therefore, the 
values obtained in this work are in agreement 
with the literature (Bamgboye and Bolufawi, 
2009; Eriksson and Prior, 1990). There is no 
influence of moisture in determining the calorific 
value of the samples. 
 
3.2. Bulk density 

 
The average values of the bulk density 

are presented in Table 2.The forest residue of the 
genus Eucalyptus SSP. (class E) presented a 3% 
higher result than the genus Pinus Taeda (class 

P), which was expected. Bulk density is a 
property related to the granulometry (Dukes et 
al., 2013; Phanphanich and Mani, 2009). Bulk 

density must be considered in the use of biomass 
for energy generation (Zamora-Cristales et al., 
2015; Peng et al., 2013). 
 
3.3. Chemical analysis  
 

In order to determine the biomass quality 
of the different samples for energy purposes, 
Table 3 shows the composition values for the 
residues. The classes of forest residues 
presented different chemical composition. The 
highest values of extractives and lignin were 
observed in the P residue class, due to its 
composite Pinus taeda. On the other hand, the 

class of residues E presented high content of 
minerals and holocelulose (Haykiri-Acma et al., 
2014; Kumar et al., 2009). The bark of the trees 

presents chemical differences when compared to 
the wood, due to the higher levels of extractives 
and ashes and, lower concentration of cellulose 
and hemicellulose (Álvarez et al., 2018; Hu et al., 

2016).  
 
3.4. Calorific value 
 

The average values of the higher calorific 
value (HCV) were 4,363.95 kcal/kg and 4,631.94 
kcal/kg, respectively, for the classes of residues 
E and P. According to the results, class P 
presented an HCV of 5% higher, according to 
expected because it was the residue with the 
highest values of extractives and lignin (Table 3). 
The higher calorific value of wood, further 
moisture, is influenced by the chemical 
composition of the material, mainly lignin and 
extractives (resins, oils, resins, greases, oils) 
(Antwi-Boasiako and Acheampong, 2016). Lignin 
has a carbon content of about 50% higher than 

that found in polysaccharides (Raud et al., 2016; 
Fu et al., 2015).  

Therefore, this type of biomass presents 
great potential for energy production. In addition, 
volatile extractives are important in the direct 
burning of wood, as they dissociate more quickly 
and help to maintain combustion. Thus, even 
though the consumption of electricity is higher for 
the manufacture of briquettes of this type of 
biomass, the energy balance is made feasible 
(Caetano and Silva, 2017; Stolarski et al., 2013). 

In addition, biomass in the form of briquettes 
facilitates transport, due to compaction and 
organization, which can be a crucial factor in the 
sale price of this material as fuel (Nguyen et al., 

2013). Briquettes also make easier the storage, 
which could influence biomass employment as 
fuel (Cortez et al., 2008). 

 
3.5. Electric energy consumption 
 

The measured values of power in all 
stages of the briquetting process are presented in 
Figure 1. The power is the energy consumed by 
the facilities per unit of time (He et al., 2018; 
Bilgili et al., 2017). Figure 1 and Table 4 shows 

that class E has consumed more energy (868 
kW) which was increased to 1,005 kW at the 
period of 20 s and reduced to 626 kW in 35 s, 
rising to 821 kW in 50 s. Thus the global cost is 
93 BRL/ton for the production.  

Considering the Pinus, the power 
measured was 970 kW, reducing to 677 kW at 10 
s, which yields a cost of 25 BRL/ton. The higher 
power consumed by mill 1 and the higher energy 
cost for the production of Eucalyptus is due to the 
hard character of this material, given by the lower 
porosity, as shown by higher bulk density (Table 
2). Mill 2 shown the larger energy consumption 
for Eucalyptus, 42 BRL/ton, comparing to Pinus, 
22 BRL/ton. The grinding of the Eucalypts begun 
with energy consumption of 168 kW and in 6 s 
turns to 640 kW, remaining constant until 30 s 
(684 kW), after that, it fell again until 40 s (297 
kW). The Pinus sample remained with values 
initially of 296 kW reaching 237 kW in 30 s. The 
power consumed by Eucalyptus was 493 kW, 
showing an increase to 725 kW in 80 s and for 
Pinus, with 498 kW, showed an increase of 657 
kW in 70 s. This result is due to the wide space 
required by the Pinus in the compressing capsule 
and the lower bulk density of this material (Table 
2). This requires an increase in the time of the 
process, which consumes more energy and, 
consequently, increases the production cost. 

The compression was the stage that 
required the highest energy, BRL 281 for 
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Eucalyptus and BRL462 for Pinus, due to the 
warming process, which melt the lignin and 
increase the adhesive. Moreover, press time and 
temperature parameters during the briquetting 
were used smaller than those found in the 
literature and, due to the care in the grinding 
process and the qualification of the particles. 
However, the production cost observed for 
Eucalyptus was 416 BRL/ton and for Pinus 509 
BRL/ton, which are higher than the values found 
in the literature (Tan et al., 2017; May- Moulin et 
al., 2017). However, these values can be reduced 

if production is carried out on a large scale in the 
industrial production system. 
 
4. CONCLUSIONS 
 

The cost to produce eco firewood was 
calculated as 416 BRL/ton for Eucalyptus and 
509 for Pinus. The most expensive part of the 
process is the compacting phase, which costs 
281 for Eucalyptus and 462 for Pinos. Also, the 
forest residues produced by the industry is an 
important source for the production of eco 
firewood, contributing to energy resource of the 
company (energy generation) and a significant 
decrease of the solid waste stored at the 
company. In this way, considering the new 
parameters for briquetting forest wastes is an 
economically viable and environmentally 

important stage of the process. 
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Figure 1. Power consumed by mills in function of time by the production process. 

 
Table 1. Classification of forest residues according species, sampling and biomass type. 

 

Class Species Sampling Type 

E Eucalyptus spp. Industrial area Wood chips 

P Pinus taeda Forecourt wooden Bark 

 
Table 2. Average values of bulk density of residues. 

 

Classe Density (kg/m³) 

E 375 

P 364 

 
Table 3. Average values of the chemical composition of the forest waste class 

 

Class TE (%) LC (%) MC (%) HC(%) 

E 5 16 4 79 
P 18 42 3 40 

TE = total extracts; LC = lignin content; MC = minerals content or ash; HC = holocellulose content 
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Table 4. Electric energy costs per equipment and the total cost for the production of briquettes of 

classes E and P. 
 

Equipment 
Costs (R$/ton) 

Class E Class P 

Mill 1 92.70 24.60 

Mill 2 41.70 22.21 

Briquetting Machine 281.30 462.16 

Total  415.70 508.96 
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