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Abstract. Long-term monitoring of snow cover is crucial for climate and hydrology studies. To meet the increasing demand 

for a long-term, consistent snow product, an exceptional snow cover climatology was generated dating back to the 1980s 10 

using AVHRR GAC data. However, the retrieval of snow extent is not straightforward due to artifacts introduced during data 

processing, which are partly caused by the coarse spatial resolution of AVHRR GAC data, but also heterogeneous land 

cover/topography. Therefore, the accuracy and consistency of this long-term AVHRR GAC snow cover climatology needs to 

be carefully evaluated prior to its application. Here, we extensively validate the AVHRR GAC snow cover extent dataset for 

the Hindu Kush Himalaya (HKH) region. The mountainous HKH region is of high importance for climate change, impact 15 

and adaptation studies. Additionally, the influences of snow depth, land cover type, elevation, slope, aspect, and 

topographical variability, as well as the sensor-to-sensor consistency have been explored using a snow dataset based on long-

term in situ stations and high-resolution Landsat TM data. Moreover, the performance of the AVHRR GAC snow cover 

dataset was also compared to that of MODIS (MOD10A1 V006). Our analysis shows an overall accuracy of 94% in 

comparison with in situ station data. Using a ±3 days temporal filter caused a slight decrease in accuracy (from 94 to 92%), 20 

which is still comparable to MOD10A1 V006 (93.6%). Validation against Landsat5 TM data over region of “P140-R40/41” 

indicated overall RMSEs of about 13% and 16% and overall Biases of about -1% and -2% for the AVHRR GAC raw and 

gap-filled snow datasets, respectively. It can be concluded that the here validated AVHRR GAC snow cover climatology is a 

highly valuable and powerful dataset to assess environmental changes in the HKH due to its good quality, unique temporal 

coverage (1982-2018), and inter-sensor/satellite consistency. 25 

1 Introduction 

Snow cover is an important indicator to estimate climatic changes and a key input for climate, atmospheric, hydrological, 

and ecosystem models (Fletcher et al., 2009; Hüsler et al., 2012; Xiao et al., 2018). On one hand, snow cover exacerbate the 

effect of global warming through the positive feedback between snow and albedo (Serreze & Francis, 2006). Furthermore, it 

affects the hydrometeorological balance through snow melt (Simpson et al., 1998). On the other hand, snow cover is severely 30 
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affected by climate change due to its high sensitivity to changes in temperature and precipitation (Brown & Mote, 2009). 

Therefore, accurate monitoring of its long-term behavior is a vital issue in improving weather and climate prediction, helping 

water management decisions, and investigating climate change impacts on environmental variables (Arsenault et al., 2014; 

Sun et al., 2020). 

Optical satellite data provide important data sources for snow cover retrieval through the contrasting spectral behavior 35 

of snow relative to other natural surfaces in the visible and middle infrared region (Tedesco, 2014; Zhou et al., 2013). The 

global spatial coverage of satellite data makes it an efficient data source to improve our knowledge of snow cover dynamics 

(Siljamo & Hyvärinen, 2011; Solberg et al., 2010). Many satellites have been used to generate snow cover products at 

various spatial and temporal resolutions, such as AMSR-E (KELLY, 2003), MODIS (Hall et al., 2002), AVHRR (Simpson 

et al., 1998), VIIRS (Key et al., 2013), and Landsat (Rosenthal and Dozier, 1996). In particular, new generation satellite 40 

sensors (e.g., MODIS, VIIRS) generally show an advantage over old sensors such as AVHRR and TM/ETM who suffer 

from significant saturation over snow in the visible channels (WMO, 2012). Nevertheless, AVHRR offers the unique 

opportunity to generate a consistent snow product over a 30-year normal climate period (IPCC, 2013), and thus remains 

vitally important. In response to the systematic observation requirements of Global Climate Observing System (GCOS), the 

ESA Climate Change Initiative (CCI) has emphasized the necessity of generating consistent, high quality long-term datasets 45 

over the last 30 years as timely contribution to the ECV databases. Following this recommendation, the Remote Sensing 

Group at University of Bern, Switzerland has generated a global time series of daily fractional snow cover product from 

AVHRR GAC data since 1982.   

However, retrieving snow cover from AVHRR GAC data is a challenging task from several observational and 

environmental standpoints (Hall and Riggs, 2007). First, the signal observed over a certain area does not necessarily 50 

represent its actual condition, but may depend on the circumstances of observation or the artifacts introduced during data 

sampling (Cracknell, 1997) and processing, such as cloud contamination (Crawford, 2015; Zhou et al., 2013), atmospheric 

constituents (e. g., water vapor, aerosols) (Gafurov et al., 2012), topographic illumination, solar zenith angles, off-nadir 

viewing angles, and bidirectional reflectance distribution function (BRDF) effects (Crawford, 2015). Second, dense 

vegetation like forest can cause problems in snow mapping because snow on ground is often not visible from above 55 

depending on the density of canopy (Gafurov et al., 2013). Last but not the least, the change between the 3B and 3A channel 

with the launch of AVHRR/3 instrument in 1998 may cause discontinuities in a satellite based time series (Heidinger et al., 

2004). All these factors decrease reliability of snow cover retrieval. Therefore, it is necessary to comprehensively evaluate 

the accuracy of this AVHRR GAC snow cover extent.  

To date, on the one hand, the performance of the AVHRR GAC snow product has not been fully explored. Of particular 60 

importance is the performance of the product over different platform operated periods, land cover types, elevations, aspect, 

slopes, topographies, and snow depths. On the other hand, the Hindu Kush Himalaya (HKH) area is of special interest due to 

large area, rich diversity of climates, hydrology, ecology, and biology (Wester et al., 2019). In this study, we therefore focus 

our comprehensive validation study of the ESA CCI+ snow product over HKH during snow seasons. This mountain area 
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features varying climate and snow conditions, and offers distinct characteristics of snow cover with shallowness, patchiness, 65 

and frequent short duration ephemeral snow (Qin et al., 2006). It provides an ideal area to fully investigate the performance 

of the AVHRR GAC snow cover product in different conditions. The validation was performed by using snow climatology 

derived from in situ measurements, high-resolution Landsat Thematic Mapper (TM) data, and third-party MODIS snow 

products following well-established snow validation and inter-comparison procedures. Long-term in situ measurements 

enable us to assess sensor-to-sensor consistency with regard to time series application and characterize the influence of snow 70 

depth (SD) on snow cover accuracy. The comparison with Landsat TM data enables us to account for various factors 

affecting data quality, including land cover, elevation, topography, and orientation (aspect/slope). While the comparison with 

MODIS snow product is focused on their agreement with in situ measurements, as well as the comparison of their absolute 

values. Section 2 describes the study area and data. The validation methodology is explained in Section 3. The performance 

of AVHRR GAC snow dataset is presented and discussed in Section 4. A brief conclusion is presented at the end. 75 

2 Study area and data 

2.1 Study area 

HKH covers a mountainous region of more than 4 million km2 within the geographic area between about 16° to 40° N 

latitude and 60° to 105° E longitude. It extends across all or parts of eight countries, namely Afghanistan, Bangladesh, 

Bhutan, China, India, Myanmar, Nepal, and Pakistan (You et al., 2017). Moreover, it contains the highest concentration of 80 

snow and ice outside the Polar Regions and is thus referred to as the Third Pole (Wester et al., 2019). 

      This region is one of the most dynamic, fragile, and complex mountain systems in the world due to the rich diversity of 

climatic, hydrological, and ecological characteristics. The climate conditions range from tropical (<500 masl) to high alpine 

and nival zones (> 6000 masl), with a principal vertical vegetation regime composed of tropical and subtropical rainforests, 

temperate broadleaf, deciduous, or mixed forests, temperate coniferous forests, alpine moist and dry scrub, meadows, and 85 

desert steppe (Guangwei, 2002). The main land cover of this region is rangeland, which covers approximately 54% of the 

total area. Agriculture and forest are also present, accounting for 26% and 14% of this region, respectively. 5% of this region 

is permanent snow and glaciers, and 1% is water bodies (Ning et al., 2014; Wester et al., 2019).  

The validation based on in situ sites covers mainly the eastern part of HKH (Fig. 1a). Therefore, the validation based on 

Landsat TM/ETM data was divided into two parts: east and west. Due to the fact that it is very challenging to find enough 90 

cloud-free Landsat TM data over such a large area, validation against Landsat TM data was performed in detail using two 

tiles of Landsat data (path 140, rows 40 and 41, denoted as “P140-R40/41”) (Fig.1c), covering a diverse region on the 

Nepal/Tibet border centered around Mount Everest. This region was chosen because it contains the greatest elevation range 

in the Himalayas. The northernmost part of this region are areas on the Tibetan plateau exceeding 6000 m a.s.l. where 

vegetation change is occurring rapidly (Qiu, 2016). Furthermore, it covers a broad range of climatic conditions (Bookhagen 95 
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& Burbank, 2006). Therefore, this region is a microcosm of the range of conditions experienced across the wide HKH and 

thus provides a good point for investigating snow extent accuracy under different conditions (Anderson et al., 2020). 

 

Figure 1. (a) The HKH region and the distribution of in situ station locations (red dots); (b) The distribution of Landsat 

scenes available over the whole HKH; (c) Land cover type of the “P140-R40/41” region of interest which corresponds to 100 

Landsat path 140, rows 41 and 42 on the Nepal/Tibet border. 

2.2 AVHRR GAC snow extent retrieval 

We used the Fundamental Climate Data Record (FCDR) based on daily composites of AVHRR GAC data 

(doi:10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V003) produced in the ESA Cloud CCI project (Stengel et al., 2020). The 

data were pre-processed with an improved geocoding and an inter-channel and inter-sensor calibration using PyGAC 105 

(Devastahle et al., 2017). Alongside the daily reflectance and brightness temperature information, an excellent cloud mask 

including pixel-based uncertainty information is provided (Stengel et al. 2017, Stengel et al. 2020 ). The fractional snow 

retrieval method by Salomonson and Appel (2006), which is based on a statistical linear regression between fractional snow 

cover (FSC) and the Normalized Difference Snow Index (NDSI) (FSC = −0.01 + 1.45 × NDSI), was utilized. To reduce the 

effect of cloud coverage, a temporal filter was used with application of a closest ±3 days of snow-cover observations. In this 110 
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study, both raw daily retrieval of AVHRR GAC snow extent (denoted by “AVHRR_Raw”) and cloud-gap-filled daily 

AVHRR GAC snow extent (denoted as “AVHRR_Gap filled”) were evaluated. 

2.3 Validation data sets 

Reference data to be used for validation of a snow satellite dataset should cover a similar spatial or temporal extent, ideally 

acquired at the same point in time. In situ station data provide valuable long time series measurements to check the temporal 115 

performance of the AVHRR GAC snow extent and sensor-to-sensor consistency.  Considering the limitations resulted from 

the spatial scale mismatch between in situ and satellite observations, snow maps generated from Landsat TM/ETM were also 

utilized, enabling us to check the dependence of AVHRR GAC snow extent accuracy on land cover type and topography. 

Additionally, MODIS snow product, as the most widely used snow product, was also compared to the in situ station data to 

evaluate the AVHRR GAC snow cover extent from a relative perspective. The data and validation purpose are briefly 120 

summarized in Table 1. 

Table 1. Validation data and purpose. 

Data type Data Method Validation purpose 

In situ-based Snow depth 

Direct comparison between in 

situ and AVHRR GAC snow 

dataset  

Investigate the sensor-to-

sensor consistency; 

Accuracy dependency on 

snow depth 

High spatial 

resolution images 

(Landsat) 

Landsat 

TM/ETM, 

Land cover, 

topography, 

elevation, 

orientation 

Quantitative analysis of 

accuracy of AVHRR snow 

extent  

Accuracy dependency on 

land cover type, 

topography, elevation 

Satellite snow 

product (MODIS) 
Snow cover 

Comparing their performance 

with respect to in situ data as 

well as their absolute values for 

a short period to show the 

relation to AVHRR GAC time 

series 

 Relative validation 

2.3.1 In situ snow depth measurements 

In situ data were provided by China Meteorological Administration (https://data.cma.cn/en). Daily snow depth (SD) 

measurements (118*32*365) are obtained from 118 stations located at different elevations ranging from 776 to 8530 m 125 

above sea level. SD was usually measured over a large flat area using rulers at 08:00 every day. Three measurements were 

made at least 10 meters away and their mathematical mean was used as the daily snow depth. In particular, if snowfall 

occurred after 08:00, a second measurement at 14:00 or a third measurement at 20:00 were needed depending on the time of 
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snowfall. The data were rounded to the nearest centimeter. Thus, SD less than 0.5 cm would be labeled as 0 cm in the record. 

Detailed quality control was made to flag suspicious values. The period from 1982 to 2013 was used to prove the long-term 130 

consistency of the AVHRR GAC snow extent. 

2.3.2 Landsat TM/ETM data and processing 

Data from Landsat were explored partly due to its high spatial resolution of 30 m and partly due to its longest operation 

period, which almost entirely covers all NOAA sensors (NOAA-6 to -19). To mitigate the effect of cloud, the validation over 

“P140-R40/41” was restricted to clear-sky (cloud no more than 10%) scenes of Landsat 5 TM during snow seasons (46*2 135 

scenes from 1984 until 2013; downloaded from https://glovis.usgs.gov/). But the validation over the whole HKH was 

restricted to Landsat clear-sky scenes from 1999 to 2018 (around 200 scenes) (Fig. 1b). Level-1 Precision and Terrain 

corrected (“L1TP”) data were selected since they have been radiometrically and geometrically corrected. Although many 

methods (Klein et al., 1998; Dozier and Painter, 2004; Salomonson and Appel, 2006) have been used to generate snow data 

from Landsat imagery, only the fractional snow method by Salomonson and Appel (2006) was employed to derive high-140 

resolution snow maps in this study. As the snow retrieval algorithm applied to the AVHRR GAC dataset identifies viewable 

snow, and Salomonson and Appel (2006) provides the same thematic information and was thus applied to the Landsat data. 

Spectral bands 2 (0.53–0.61 μm) and 5 (1.55–1.75 μm) were used to provide 30m NDSI estimates (Equation (1)), and 

FSC was retrieved using the statistical linear regression between FSC and NDSI (Equation (2)) (Salomonson and Appel, 

2006). Then the 30 m FSC were resampled (nearest neighbor method) and projected to a geographic projection of 0.05° to 145 

identify FSC within a given AVHRR GAC pixel. 

NDSI = (𝐵2 − 𝐵5) (𝐵2 + 𝐵5)⁄                                                                                                                                                  (1) 

FSC = −0.01 + 1.45 × NDSI                                                                                                                                                     (2) 

where 𝐵2 and 𝐵5 denote the spectral bands 2 and 5, respectively. 

2.3.3 MODIS snow cover product 150 

The Terra MODIS Level 3, collection 6, 500 m daily snow cover products (MOD10A1) (Hall et al., 2016) over HKH from 

2000 to 2013 were obtained through Google Earth Engine (GEE). MODIS snow detection algorithm also uses NDSI and 

other criteria tests (Riggs et al., 2015). Instead of directly providing binary snow-cover area (SCA) and FSC, V006 version 

provides NDSI_Snow_Cover and NDSI. The former is reported in the range of 0-100 with other features identified by mask 

values, while the latter represents the real NDSI values multiplied by 10000, which is calculated for all pixels (Riggs et al., 155 

2016). This treatment provides more information and great flexibility to enhance the accuracy of the product, because NDSI 

range is not necessarily restricted to 0.4 to 1.0 for snow detection. Actually, NDSI_Snow_Cover function very similarly to 

FSC in V005 version since they can be linked using the equation of FSC = −0.01 + 1.45 × NDSI. Compared to the previous 

version, V006 version made great improvements on atmospheric correction, cloud cover, and quality index. Furthermore, the 

algorithm takes pixel’s elevation into account, which is especially important for elevated snow-covered surfaces in spring. 160 
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2.3.4 SRTM DEM 

The DEM information was obtained from the SRTM dataset, which provides a nearly global coverage with a spatial 

resolution of 90 m. In this study, the elevation, slope, aspect, and topographical variability were derived using this dataset in 

order to investigate their influences on accuracy of AVHRR GAC snow extent product. The topographical variability within 

a certain AVHRR GAC pixel was determined by calculating the standard deviation of elevations of all sub-pixels within its 165 

spatial extent.  While the elevation, slope, and aspect were resampled to match the resolution of AVHRR GAC snow dataset. 

2.3.5 MODIS Land cover data 

The MODIS Terra/Aqua Combined Annual Level 3 Global 500-m Version 6 land cover dataset (MCD12Q1) was generated 

using a supervised classification methodology (Friedl et al., 2010). In this study, the International Geosphere–Biosphere 

Programme (IGBP) of MCD12Q1 mosaic was used to investigate the difference in accuracy over different land cover types. 170 

It includes 11 types of natural vegetation, 3 types of developed and mosaic lands, and 3 types of non-vegetated lands, which 

have been reclassified into nine major classes: forest, grassland, savannas, croplands, built-up lands, barren, permanent snow 

and ice, water body, and wetlands. 

3 Methods 

3.1 Direct-comparison based on in situ data 175 

Although the validation based on in situ sites leaves issues of scale unresolved and therefore likely accompanied by 

uncertainties, in situ observations are nevertheless an important data source for validation in regions lacking long-term 

distributed validation data (Hao et al., 2018; Yang et al., 2015; Mir et al., 2015; Hüsler et al., 2012). Since there is no reliable 

way to convert SD to FSC, both FSC and SD information were converted to binary information by applying appropriate 

thresholds, respectively. Different thresholds have been suggested for in situ SD measurements to determine whether the 180 

associated pixel is covered by snow, ranging from 0 cm to 5 cm (Parajka et al., 2012; Hori et al., 2017; Hao et al., 2019; 

Huang et al., 2018; Liu et al., 2018; Zhang et al., 2019; Gascoin et al., 2019). Therefore, the sensitivity of thresholds was 

tested by computing accuracy metrics with SD increasing from 1 cm to 5 cm. The FSC maps were transferred from 

fractional to binary snow information by applying a threshold of FSC≥50%. The value of 50% is widely used and accepted 

in snow cover detection (Wunderle et al., 2016; Mir et al., 2015; Crawford, 2015; Marchane et al., 2015; Hall et al., 2007).  185 

Concerning the comparison of spatial satellite data with in situ measurements, a point-wise comparison was 

implemented. To relate in situ “point” measurements with AVHRR GAC “area” snow information, both the center pixel 

containing the in situ “point” measurement and the 3 × 3 pixels centered around this “point” were used, respectively. This 

treatment took into consideration the influence of data noise, geometric mismatch, and spatial heterogeneity. Furthermore, 
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the absence or presence of snow indicated by in situ observations is assumed to be representative of at least a 3 × 3 pixel area 190 

but this depends on topography. Consequently, there are altogether 10 combination cases for accuracy assessment (Table 2). 

Table 2. A short summary of all the combinations of thresholds 

Cases Combinations Cases Combinations 

case1 SD>=1cm, center pixel case6 SD>=1cm, 3 × 3 pixels 

case2 SD>=2cm, center pixel case7 SD>=2cm, 3 × 3 pixels  

case3 SD>=3cm, center pixel case8 SD>=3cm, 3 × 3 pixels  

case4 SD>=4cm, center pixel case9 SD>=4cm, 3 × 3 pixels  

case5 SD>=5cm, center pixel case10 SD>=5cm, 3 × 3 pixels  

 

The 2 × 2-contingency table statistics (Table 3) was utilized to indicate the quality of snow product. If both reference 

data and snow product identified the pixel as snow, it is labeled as a hit (a); if neither of them indicated the pixel as snow, it 195 

is labeled as zero (d); if the snow product indicates the pixel as snow, but the reference data is not, it is marked as false (b); 

and if the opposite occurs, it is indicated as a miss (c) (Hüsler et al., 2012; Siljamo et al., 2011). 

Table 3. Contingency table used to determine probability of detection and bias. 

    Reference data ( In situ)   

Snow product 
 

yes no 
 

(AVHRR 

GAC，

MODIS) 

yes a: hit b: false a+b 

no c: miss d: zero c+d 

    a+c b+d n=a+b+c+d 

Based on these measures, indicators such as accuracy (ACC), Heidke Skill Score (HSS), and bias (Bias) were 

determined (Equations (3-5)) (Hüsler et al., 2012). ACC denotes the percentage of correctly classified pixels divided by total 200 

number of pixels. ACC values closer to 1 denotes a better agreement between the snow product and the reference data, while 

a value of 0 corresponds to complete disagreement. However, it is strongly influenced by the most frequent category (i.e. in 

summer) (Hüsler et al., 2012) and thus ideally requires an equal distribution of categories. Hence, we confine our accuracy 

assessment to the snow season (from October to March) only, a limitation that was performed by other studies as well (Yang 

et al., 2015; Gafurov et al., 2012; Hüsler et al., 2012; Huang et al., 2011). The HSS and Bias provide refined measures in 205 

case that the frequency distribution within the validation subsets is not equal. The former describes the proportion of pixels 

correctly classified over the number correct by chance in the total absence of skill. Negative values indicate that the chance 

performance is better, 0 represents no skill, and a perfect performance obtains a HSS of 1 (Hüsler et al., 2012). It is generally 

true that a value above 0.3 denote a relatively good score for a reasonably sized sample for binary forecast (Singh, 2015). 

The latter, described by the ratio of the number of snow cover pixels to the number of reference data pixels, is a relative 210 

measure to detect overestimation (value is higher than 1) or underestimation of snow (value is less than 1). Unbiased results 

should have the value of 1. 
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ACC =
𝑎+𝑑

𝑎+𝑏+𝑐+𝑑
                                                                                                                                                                       (3)    

HSS =
2(𝑎𝑑−𝑏𝑐)

(𝑎+𝑐)(𝑐+𝑑)+(𝑎+𝑏)(𝑏+𝑑)
                                                                                                                                                  (4) 

Bias =
𝑎+𝑏

𝑎+𝑐
                                                                                                                                                                             (5) 215 

The validation follow two types of strategies: First, the snow cover data time series of satellite and in situ station were 

compared, resulting in accuracy indicators over each station. This validation allow us to check the spatial divergence of 

accuracy within different sites as well as the effect of land cover on accuracy of satellite derived snow information.  Second, 

the snow cover data of all in situ stations and the corresponding satellite snow pixel values were combined respectively for 

each day in snow season. Furthermore, the comparison was implemented on daily basis, resulting in a time series of accuracy 220 

indicators for the whole period. In this way, the sensor-to-sensor consistency of accuracy can be evaluated. Additionally, in 

order to assess the product performance with respect to the temporal variability of snow cover, the binary metrics are 

summarized and analyzed for each month. An analysis of increase/decrease of accuracy with respect to FSC and SD was also 

included to explore the influence of smaller snow patches on the accuracy. 

3.2 Validation based on high-resolution snow cover maps 225 

In this validation framework, Landsat TM/ETM aggregated FSC were used as the reference to assess the performance of 

AVHRR GAC snow. Snow free values are treated as 0% snow and fully snow-covered pixel is assigned 100% snow. This 

validation approach provides two benefits: (i) quantitative validation results (fractional metrics) are obtained and (ii) the 

spatial performance of the AVHRR GAC snow cover dataset is evaluated by a pixel by pixel comparison. Statistical indexes 

such as the root mean square error (RMSE), mean bias (mBias) and the coefficient of correlation (R) were employed to 230 

quantitatively characterize the accuracy.  

The evaluation was conducted over the ‘P140-R40/41’ and whole HKH respectively from two aspects. First, the pixel 

values over the entire study period were combined, resulting maps containing RMSE and mBias for each pixel. The 

validation over ‘P140-R40/41’offers the possibility to assess the effects of potential influence factors (land cover, elevation, 

slope, aspect, and topography variability) on the accuracy of AVHRR snow dataset given the relatively high availability of 235 

scenes (46*2). Furthermore, the analysis was also performed for the whole HKH, eastern and western areas, forested and 

non-forested areas, mountain and plain areas. Second, the values of each pixel of the selected map were combined, resulting 

in a RMSE, mBias, and R per scene. In this way, the influence of the acquisition date on the performance of AVHRR GAC 

snow dataset can be investigated. This kind of validation was only performed over ‘P140-R40/41’ given the relatively high 

availability of scenes. 240 
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3.3 Relative comparison with MOD10A1 

In this study, the comparison with MOD10A1 was carried out from two aspects: their agreement with in situ measurements, 

as well as their absolute values. To achieve this, MOD10A1 V006 was compared with in situ station data as described in 

Section 3.1, to evaluate the overall quality of the newly derived AVHRR GAC snow cover climatology in relation to the 

well-used MODIS product. It is expected that the major difference in agreements between the two satellite-derived snow 245 

cover products and the in situ measurements reflect their relative performance, which is either due to the quality of the 

applied processing and snow cover retrieval algorithms or the general satellite data characteristics. As for the comparison of 

their absolute values, the 500 m FSC derived from MOD10A1 were resampled and projected to the resolution of AVHRR 

GAC pixel. RMSE, mBias, and R were calculated to measure their difference. 

4 Results and discussion 250 

4.1 The comparison with in situ data 

4.1.1 The threshold sensitivity analysis 

To test the sensitivity of the in situ SD threshold for the snow cover detection, the overall accuracy metrics were computed 

by combining data of all in situ sites throughout the study period (from 1982 to 2013 for the AVHRR GAC-derived snow 

and from 2000 to 2013 for MOD10A1). The variations of ACC, HSS, and Bias with all the threshold combinations (Table 2) 255 

are shown in Fig. 2. We can notice that the ACC for all three datasets (AVHRR raw, AVHRR gap-filled, and MODIS snow 

data) are generally high, with values larger than 0.9 for all combination cases. Nevertheless, ACC changes considerably 

among the 10 cases. An increasing SD threshold positively affect ACC (Fig. 2a). Generally, the rate of change for ACC is 

highest between the 1 and 2 cm SD threshold and flattens for greater SD thresholds. This is valid for all three satellite 

datasets and independent of the pixel(s) considered (center pixel versus 3 × 3 pixels, Table2). 260 

It is noticeable that ACC increases at the expense of the other metrics of HSS and Bias. In fact, both HSS and Bias 

feature the opposite behavior than ACC, i.e. an increasing SD threshold, negatively affects HSS and bias (Fig. 2(b and c)). 

Again, these results are generally valid for all three satellite datasets and independent of the pixel(s) considered. However, 

interestingly for both AVHRR datasets the bias changes from underestimation for a SD threshold of 1 cm to overestimation 

for SD thresholds ≥ 2 cm. Unlike AVHRR, MODIS snow product exhibits a consistent overestimation with increasing SD 265 

threshold. Generally, the rate of change for HSS and Bias is greatest between the 5 and 4 cm SD threshold and flattens for 

smaller SD thresholds. Considering Bias, a SD threshold of 2 cm (case2 and 7) and of 1 cm (case1 and 6) maximizes the 

overall accuracy of the AVHRR GAC snow cover dataset and the MODIS snow product, respectively. In other words, the 

presence of snow can be best detected by the AVHRR GAC dataset for in situ snow depth measurement of 2 cm. 
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 270 
Figure 2. Sensitivity analysis of product accuracy to the choice of the snow depth threshold in the in situ station data. The 

overall error is a spatio-temporally integrated statistical measure.  

When it comes to the influences of geometric mismatch or spatial heterogeneity (center pixel versus 3 × 3 pixels, 

Table2), they are negligible for the variation trend of accuracy indicators with SD threshold but cannot be ignored for the 

absolute value of accuracy indicators. However, the latter effect is not fixed and varies with satellite datasets and accuracy 275 

indicators. For the AVHRR raw snow dataset, the ACC based on center pixel (cases 1-5) are consistently larger than those 

based on the average of 3 × 3 pixels (cases 6-10) at each specific threshold on SD (Fig. 2a). While a contrary phenomenon 

can be observed for the AVHRR gap-filled snow cover dataset, which exhibits smaller ACC based on center pixel than based 

on the average of 3 × 3 pixels. The magnitude of ACC for MODIS seems to be unaffected by the choice of pixel(s) 

considered. Unlike the results for ACC, the HSS of all three satellite datasets and all five SD thresholds based on the center 280 

pixel are consistently smaller than those based on the average of 3 × 3 pixels, indicating that the effect of geometric 

mismatch and spatial heterogeneity on HSS is systematic and basically independent of the satellite datasets and SD 

thresholds. A similar result can be found for the Bias, which is consistently larger based on the center pixel than those based 

on the average of 3 × 3 pixels for each SD threshold and all three satellite datasets. 

Since the performance of the satellite snow datasets is represented by three indicators, a compromise is needed in the 285 

choice of SD threshold to both account for increasing ACC and decreasing HSS and Bias with increasing SD threshold. Here, 

we adopted 2 cm as the optimum threshold to transform in situ SD measurements to snow-covered or snow-free information 

as the threshold of 2 cm is always the visible break for ACC, HSS, and Bias (Fig. 2). Furthermore, both the center pixel and 

the average of 3 × 3 pixels will be considered since their effects on magnitude of ACC are not consistent among these three 

satellite datasets. Consequently, the validation results based on case2 and case7 will be focused in the following analyses.  290 

In general, we can observe that the ACC for AVHRR raw snow cover datasets are 0.942 and 0.939 in case2 and case7, 

respectively. Using a temporal filter to mitigate the impact of clouds caused a slight reduction in ACC of the AVHRR gap-

filled snow cover dataset to 0.916 and 0.922 in case2 and case7, respectively. The ACC of MODIS is situated between 

AVHRR raw and gap-filled snow datasets, and equals to 0.936 in both cases. A similar phenomenon can be found in HSS, 

where the AVHRR raw snow cover dataset shows the largest HSS of 0.366 and 0.387, followed by the MODIS snow 295 
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product, with 0.353 and 0.373 in case2 and case7, respectively. The AVHRR gap-filled snow cover dataset ranks last, with 

smallest HSS of 0.318 and 0.335 in case2 and case7, respectively. In contrast, the Bias shows a different behavior compared 

to ACC and HSS. While the AVHRR raw and gap-filled snow cover datasets are exhibiting very similar values (1.091 and 

0.955, and 1.076 and 0.855 in case2 and case7, respectively), the MODIS snow products shows a much larger Bias of 1.740 

and 1.613 in case2 and case7, respectively. Combining the results of ACC, HSS, and Bias, it can be concluded that the 300 

AVHRR raw snow cover dataset present a good to very good performance when compared with in situ data. The AVHRR 

gap-filled snow cover dataset shows a slightly worse performance, but it still maintains a high overall accuracy, which is 

comparable to the MODIS snow product. 

4.1.2 The temporal behavior of quality indicators 

The temporal consistency provides information on potential sensor artifacts in the time series. It was assessed by computing 305 

the validation measures for each day in snow season (Fig. 3). Both 1*1 (case2) and 3*3 (case7) pixel area were considered 

for three satellite snow datasets. It can be seen that the accuracy metrics show a certain inter-annual variability, especially for 

ACC and HSS. Furthermore, the temporal variation characteristics of these metrics derived from AVHRR raw and gap-filled 

datasets are basically consistent throughout the time series in the two cases. 

In the time series derived by AVHRR GAC data, ACC is basically distributed between about 85% and 90% (Fig. 3a). 310 

An obvious increase of ACC can be observed from 1982 to 1985, followed by a decrease in ACC from 1985 to 1990. From 

1990 to 1995, ACC is relatively stable, followed by an increase from 1995 to 2000. From 2000, ACC shows a very slightly 

decreasing trend until 2007 from when it was substantially retained. Differently from the previous assessments, the ACC of 

AVHRR snow datasets at the beginning of the time series (1982-1995) is slightly worse than the end of the time series 

(1996-2013). Similar to ACC, the HSS also shows clearly visible fluctuations in the time series (Fig. 3b). A slight increase of 315 

HSS can be found from 1982 until 1988, followed by a decrease from 1988 to 1992, and then an increase appear again until 

1998 when HSS reach the maximum value (approximately 0.47 and 0.4 for AVHRR raw and gap-filled snow cover datasets, 

respectively). From 1998, the HSS of the two datasets show a decreasing trend until 2004, from when it continues to increase 

year by year and reaches the maximum in the final year. The Bias shows a different behavior compared to ACC and HSS 

(Fig. 3c), which shows a slightly increasing trend throughout the time series except for the AVHRR raw snow datasets in 320 

case7. When the case2 was focused, the Bias of AVHRR raw snow dataset basically equals to 1 at the beginning of the time 

series and reach the maximum value of 1.15 in the end. By contrast, the AVHRR gap-filled snow dataset slightly 

underestimate snow cover at the beginning with Bias very close to 1 and reach the maximum value of 1.2.  Nevertheless, a 

considerable underestimation can be observed in AVHRR raw snow dataset before 2000 and gap-filled dataset before 2005 

when the case7 was considered. 325 
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Figure 3. The time series (denoted by the dashed lines) of ACC, HSS, and Bias for AVHRR raw, AVHRR gap-filled, and 

MODIS snow data during the experimental period.  A simple moving average with box dimension n=7 was applied to the 

time series in order to reduce the noise and uncover patterns in the data. The solid lines represent the smoothing line with the 

method of “auto”. 330 

From Fig. 3, it is obvious that AVHRR raw snow dataset performs better than the gap-filled snow dataset. The ACC 

and HSS of the former is consistently larger than that of the latter in two cases throughout the time series (Fig. 3(a-b)). As 

for the Bias, a slight difference can be observed between them in case2, and their difference narrow down with the time. 

Nevertheless, the Bias of AVHRR raw snow dataset is closer to 1 than the gap-filled snow dataset before 2005 in case7 (Fig. 

3c). In comparison to the 1-pixel case, AVHRR raw snow dataset shows decrease in ACC and HSS with aggregation but the 335 

AVHRR gap-filled snow dataset shows increase (Fig. 3(a-b)). As for the Bias, the 1-pixel case is closer to 1 for both datasets 

before 2000 beyond which the 3-pixel case is closer to 1 (Fig. 3c). Hence, it is concluded that the effect of the pixel(s) 

considered is not systematic. A comparison between the different platforms operation periods reveals minor and non- 

systematic difference in ACC and HSS throughout the time series. While the consistent slight increasing trend on Bias is 

notable. 340 

The amount of snow over HKH varies over time during a year. Therefore, the performances of satellite snow datasets 

on the monthly scale is crucial to know to highlight how they vary at different month of the year. It was assessed by 

computing validation measures for each month during the experimental period, which are presented in Figs. 4-6. 

From the results of ACC derived from AVHRR snow datasets (Fig. 4(a-d)), it can be seen that both the temporal 

variation trend and the magnitude of ACC show differences from month to month. It is interesting that the results tend to 345 

polarize into two groups: the ACC for January through March and the ACC for October through December. Generally, the 

ACC in former group are generally smaller than those in the latter group. Furthermore, their temporal trends disagree 

between these two groups. The former group first shows a slight decreasing trend until 1995 and increases gradually from 

then on until about 2005. After that, it is relatively stable over time. While the latter group show relative large difference 

within the group regarding the magnitude and temporal trend.  The ACC for November is relatively stable in time series. 350 

While a slight decreasing trend can be observed in ACC for October until 1990 and form then on an increasing trend appear 

until 2000. After that, it keeps nearly at a constant. By contrast, the ACC for December first show an increasing trend until 

1998 and then present a decreasing trend until 2002, form which it keeps an increasing trend until the end. The ACC for 

AVHRR raw dataset is over 0.86 for all months and even above 0.90 for the months from October through December. By 

contrast, AVHRR gap-filled dataset shows a constantly lower ACC, which is distributed above 0.83 but below 0.93 for all 355 

months. It is noteworthy that the ACC after 2000 are generally larger and more stable than those before it on the monthly 

scale (Fig. 4(a-d)), indicating the better accuracy and consistency of the later satellite platforms after 2000. Despite the 

difference in magnitude of ACC between the two datasets, their temporal trends of ACC agree very well for all months. 

Regarding the comparison of ACC between case2 and case7, their temporal variation characteristics agree well. But their 

magnitudes show little differences. The AVHRR raw snow dataset shows slightly higher ACC in case2 and than 7, and it is 360 
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especially true before 2000. While the AVHRR gap-filled snow dataset shows slightly higher ACC in case 7 than case2 

before 2000. 

 
Figure 4. The temporal behavior of ACC for AVHRR raw, AVHRR gap-filled, and MODIS snow data in different months 

during the snow season. 365 

A similar behavior can be found in the results of HSS derived from AVHRR snow datasets (Fig. 5(a-d)), where a visible 

divergence appears between the months from January through March and the months from October through December 

regarding their temporal variation characteristics. The former show relatively smaller temporal variation than the latter 

throughout the time series. But their magnitudes show relative large difference from month to month. Generally, the HSS is 

the smallest on March and largest on December for most of the time, and this is particularly true on the results of AVHRR 370 

gap-filled snow dataset (Fig. 5(c-d)). While the HSS for other months basically located between the minimum and maximum. 

This result indicate that during the period of snow ablation, the skill (the correct proportion over the number correct by 
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chance) decreases. This is understandable since snow cover is often thin and discontinuous during this period. Therefore, the 

point scale measurement at in situ sites may not be representative of the AVHRR GAC pixel. It is noticeable that from 2005, 

the HSS of December is even smaller than other months. Instead, the HSS of January is the largest for AVHRR gap-filled 375 

dataset and the HSS of October and February is largest for AVHRR raw snow dataset. This result may be associated with the 

shift of snow cover phenology under the context of global warming. Overall, the HSS between different months is relatively 

concentrated at the beginning and then spread until 1998 from when they tend to concentrate again until the end. Regarding 

the comparison of HSS between two datasets, AVHRR raw snow dataset generally display larger HSS than the gap-filled 

snow dataset, but their temporal variation trend basically agree. As for the comparison between the two cases, most months 380 

show similar magnitude and temporal variation trend. But the HSS on November show relative large difference on 

magnitude for both dataset. This may be attributed to the large surface heterogeneity during this month as the snow cover is 

more likely to be shallowness and patchiness. 
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Figure 5. The temporal behavior of HSS for AVHRR raw, AVHRR gap-filled, and MODIS snow data in different months 385 

during the snow season. 

 
Figure 6. The temporal behavior of Bias for AVHRR raw, AVHRR gap-filled, and MODIS snow data in different months 

during the snow season. 

Similarly, both the magnitude and the temporal variation characteristics of Bias are not consistent from month to month 390 

Fig. 6(a-d). Specifically, the temporal variation of Bias from October through December are generally larger than that of 

January through March. Although the Bias on November is relatively stable before 2000, a sharp increase appear after that. 

Regarding the magnitude of the Bias, a visible break can be seen around the year 2005. After 2005, all months show Bias 

larger than 1 for both datasets in case2 (Fig. 6(a, c)), although the cause of the overestimation of AVHRR snow dataset after 

2005 is still unknown. Furthermore, the Bias on February and March are relatively stable and even show a slight decreasing 395 

trend. While the Bias of other months all present an increasing trend.  Before 2005, no systematic bias is found given that the 

Biases of different months are either slightly larger or smaller than 1. To be specific, the snow cover during December and 
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January are underestimated with Bias consistently smaller than 1, while the Bias on November is very close to 1, but the 

snow cover on February and March seems to be overestimated with Bias larger than 1. This result is understandable because 

during December and January, snow coverage tends to increase and in situ sites are more likely to be covered by snow, but 400 

there is a very strong possibility that the AVHRR GAC pixel contain large areas not covered by snow due to its large spatial 

coverage. By contrast, during February and March when snow cover is patchy, AVHRR GAC data is more able to detect 

snow than in situ “point” observation due to its large pixel coverage. From Fig. 6(a-d), it can also be found that both the 

magnitude and temporal variation characteristics of Bias are not complete coincident between two cases, indicating that the 

pixel(s) used is an import factor to be considered when estimating Bias. 405 

From the results above, it can be concluded that AVHRR GAC snow dataset performs different at different times of the 

year, which is mainly related to different amount of snow in HKH. Generally, the agreement between AVHRR snow datasets 

and in situ data is found to be better for October through December than January through March, but their differences reduce 

after 2000. It is important to remember that the skill of snow detection decreases during the period of snow ablation. In 

particular, the AVHRR snow dataset obviously overestimates snow cover in March and February, but underestimates snow 410 

cover in December and January. 

4.1.3 The spatial divergence of quality indicators 

Fig. 7 show the boxplots of validation metric derived from each in situ site, with the aim of revealing their spatial variability. 

It can be observed that the spatial variability of these validation metrics is widely existed given their dispersed distribution. 

The maximum of ACC even reach 0.99 for both AVHRR raw and gap-filled snow datasets, while the minimum values are 415 

close to 0.7 (Fig. 7a). Similarly, HSS also shows dispersed distribution for both AVHRR snow datasets. The raw dataset 

ranges from 0 to about 0.7 while the gap-filled dataset ranges from 0 to about 0.6 (Fig. 7b). Likewise, the minimum Bias is 

located around 0.1 for both AVHRR datasets, while their maximum values range from 2.3 to 4.5, depending on the satellite 

datasets and different cases (Fig. 7c). These results are understandable because the performance of satellite snow datasets are 

affected by many factors. 420 

AVHRR raw snow dataset produces better results than gap-filled datasets regarding the values of ACC and HSS, which 

are consistent with the results in temporal dimension (Fig. 3). The former generally show larger ACC and HSS than the latter 

in the same case (Fig. 7(a-b)). But the Bias shows a different behavior. AVHRR raw snow dataset tends to overestimate with 

values deviated from 1 in case2. By contrast, the gap-filled snow dataset tends to underestimate with values deviated from 1 

in case7. But the raw snow dataset in case7 and gap-filled snow dataset in case2 show similar values around 1 as well as 425 

similar distributions (Fig. 7c). This result indicates again that the effect of which pixel(s) are used cannot be ignored in 

assessing the Bias of satellite snow dataset. 
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Figure 7. The boxplots of ACC, HSS, and Bias for AVHRR raw, AVHRR gap-filled, and MODIS snow data throughout the 

sites. The numbers around the plots indicate the minimum, lower quartile, median, upper quartile, maximum of the boxplots, 430 

respectively. 

Despite the awareness of spatial variability of these validation metrics, the degree of variability depends on satellite 

dataset, validation cases, and metrics. The ACC of AVHRR gap-filled snow dataset is more divergent than AVHRR raw 

snow dataset, but the opposite is true for HSS and Bias. It is obvious that the 1-pixel case show more variable Bias than the 

3-pixel case, but this is no significant difference between the two cases for ACC and HSS. 435 

4.1.4 The potential influential factors on accuracy 

Following early study (Klein and Barnett, 2003), the effect of SD on the accuracy of satellite snow datasets was evaluated 

(Fig. 8(a, c, e)). Observed SD was divided into six categories: SD=0cm, 1cm, 2cm, 3cm, 4cm and 5cm. It is obvious that the 

ACC of three satellite snow datasets show similar responses. The highest ACC occurred when SD=0 cm, which is followed 

by SD=1 cm. When SD>=2 cm, the ACC decreases significantly. The threshold of 2 cm which transform in situ SD 440 

measurements to snow-covered or snow-free information is partly responsible for this result. Another cause of this 

phenomenon is the representativeness of the point scale in situ observation, compared with satellite observation on a larger 

pixel scale. When SD was less than 2cm, it is more likely that snowfall events only occurred over a limited area of the 

satellite pixel. In this condition, satellite snow datasets are more likely to classify the pixel as snow-free, which would 

increase the agreement between satellite and in situ observations. Despite the decrease of ACC when SD>=2 cm (compared 445 

to SD<2cm), the ACC of various snow datasets clearly show an increasing trend with increasing SD. It is understandable 

since with increasing SD, satellite pixel is more likely to be entirely covered by snow, and the agreement between satellite 

and in situ observations, as a result, increases. In general, SD was shown to affect the overall agreement of satellite snow 

datasets, and their accuracies increase with increasing SD in the situation where in situ site indicates snow-covered 

information, which is in line with previous studies (Zhou et al., 2013; Wang et al., 2009). 450 

The effect of FSC on the accuracy of satellite snow datasets was checked in Fig. 8(b, d, f). FSC was grouped into five 

categories using the ranges of 0-20%, 20%-40%, 40%-60%, 60%-80%, and 80%-100%, respectively. Likewise, the ACC of 

three satellite datasets shows similar response to FSC. The highest ACC was found when FSC<=20%, followed by 20 %< 

FSC<=40%. This is also partly caused by the threshold (FSC≥50%) applied to FSC maps to transfer fractional to binary 

snow information and partly caused by the spatial representativeness of in situ sites. When only a small part of the pixel is 455 

covered by snow, in situ sites is more likely covered by very thin snow or not covered by snow. Consequently, in situ sites 

are more likely indicate snow-free, which increases the agreement between in situ and satellite observations. In the situation 

of 40 %< FSC<=60%, ACC decreases significantly. This occurs because part of satellite data in this group indicate snow 

cover using the threshold (FSC≥50%), but there appears a strong possibility that in situ site is not covered by snow or only 

covered by very thin snow. For the case of 60%<FSC<=80%, all satellite data in this group indicate snow cover but there 460 

remains a very real risk that in situ site is not covered by snow or only covered by very thin snow. As a result, the agreement 
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between them further decreases. With the further increase of FSC, the possibility that in situ sites indicate snow cover also 

increases. Thus, ACC increases in the situation of 80 %< FSC<=100. From these results, it is concluded that FSC affects the 

overall agreement between satellite snow datasets and in situ observations. In the condition where satellite data indicates 

snow-free, ACC decreases with increasing FSC. By contrast, in the case of satellite data indicating snow-cover, ACC 465 

increases with increasing FSC. Nevertheless, it is important to note that the variations of ACC with snow depth and FSC are 

related to the threshold adopted for transferring SD and FSC to snow-cover or snow-free information. 

 

Figure 8. The variation of ACC with snow depth (left) and FSC (right) for AVHRR raw, AVHRR gap-filled, and MODIS 

snow data throughout the sites during the experimental period. 470 

Fig. 9 presents the distribution of ACC for three satellite snow datasets against in situ site observations over forest, 

savannas, grasslands, barren land, and cropland. Although the ACC over cropland is high enough (0.97 and 0.96 for AVHRR 

raw and gap-filled snow datasets, respectively), this land cover type is not considered in the following analysis, because 

there is only one in situ site located in cropland area. 
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Figure 9. Boxplots of ACC from the direct comparison with in situ site observations over different land cover types for 

AVHRR raw, AVHRR gap-filled, and MODIS snow data. The numbers around the plots are the mean values of the 

corresponding boxplots. There are 17, 17, 66, 15, 1 sites for forest, savannas, grasslands, barren, and croplands, respectively. 

Generally, ACC shows similar responses to land cover type between AVHRR raw and gap-filled snow datasets (Fig. 

9(a-b)). The highest agreement of these land cover types is found in forest, with mean value larger than 0.94 for both datasets 480 

in two cases. Furthermore, the ACC over forest is centralized distributed. This is unexpected given the well-known issues of 

identifying snow in forested areas using optical satellite data. One possible reason is the sampling technique of in situ site 

and precision within the forest. The other reason may be that the forest in this region is not very dense. The land cover type 

followed is barren land and savannas. The former show mean ACC of 0.93 and 0.94 in case2 and case7 respectively for 

AVHRR raw snow dataset, and mean ACC of 0.92 and 0.93 in case2 and case7 respectively for AVHRR gap-filled snow 485 

data. While the latter present mean ACC of 0.92 in both case for AVHRR raw snow dataset, and mean ACC of 0.89 and 0.90 

in case2 and case7 respectively for AVHRR gap-filled snow dataset. Moreover, the distribution of ACC over savannas is 

more dispersed than that of barren land. The land cover type ranked last in terms of ACC is grassland, where mean ACC of 

AVHRR raw dataset are 0.90 in both cases for AVHRR raw snow dataset, and 0.87 and 0.88 in case2 and case7 respectively 

for AVHRR gap-filled snow dataset. The wide spread of ACC over grassland is partly caused by the much larger number of 490 

in situ sites over it. 

4.2 The comparison with high-resolution data 

High resolution images were used here to avoid the limitations of in situ observations and allow a more precise description 

of errors than binary metrics. The spatial accuracy was assessed on the pixel basis based on Landsat5 TM data time series 

over the areas covered by ‘P140-R40/41’ (Fig. 10). Large spatial variations can be observed between different areas in both 495 

mBias and RMSE. Here, histogram was employed to show the distribution of mBias and RMSE in different levels (Fig. 11), 

and the overall accuracy indicators were summarized in Table 4. 

It can be seen that the mBias distribution is non-symmetrical towards negative values (Fig. 11(a-b)). Although the 

maximum value of mBias can even larger than 20%, most of them are distributed within the range of ±5% with the overall 

mBias of -1.065% and -1.78% for AVHRR raw and gap-filled snow datasets, respectively. This result indicates that AVHRR 500 

snow datasets, on average, slightly underestimate snow covered areas with regards to the Landsat5 TM data. This can be 

explained by the fact that direct coarse resolution FSC is more likely to be lower than the FSC aggregated from high-

resolution FSC. Because high-resolution data is able to pick up snow in one pixel, which is too little to create enough snow 

signals in coarse resolution pixels but will show up in the aggregated FSC (Singh et al., 2014; Jain et al., 2008). Despite the 

wide spread of RMSE (Fig. 11(c, d)), the RMSEs gained from pixel-to-pixel comparison are mostly distributed within the 505 

range of 0-5% with the overall values of 12.593% and 16.172% for AVHRR raw and gap-filled datasets, respectively. It is 

thus concluded that AVHRR GAC snow datasets are accurate enough with good closeness with reference dataset estimated 

from high-resolution Landsat5 TM data. Despite the consistent distribution of mBias and RMSE between these two tiles (Fig. 
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11), the accuracies of two datasets seem better over “P140-R40” than “P140-R41”, indicated by the RMSE and mBias in 

Table 4. The slight difference of their accuracies is mainly related to other factors, such as land cover types (Fig. 1b) and 510 

topography.  AVHRR raw and gap-filled snow datasets show similar results, with raw dataset slightly more accurate with 

smaller RMSE of 12.593% (vs. 16.172%) and mBias of -1.065% (vs. -1.78%) as well as a higher R of 0.462 (vs. 0.456). 

 

Figure 10. The spatial accuracy (mBias and RMSE) of AVHRR raw and AVHRR gap-filled snow data with Landsat-5 TM 

snow data on the pixel basis by combining all the valid data in the time dimension for “P140-R40” and “P140-R41”, 515 

respectively. 

 

Figure 11. The distribution of mBias and RMSE for “P140-R40” and “P140-R41”, respectively. For histograms, the heights 

of the bars indicate the density. In this case, the area of each bar is the relative frequency, and the total area of the histogram 

is equal to 1. 520 

Table 4. Summary of accuracies of AVHRR raw and AVHRR gap-filled snow data with Landsat5 TM snow over “P140-

R40” and “P140-R41”. 

  AVHRR gap-filled snow AVHRR raw snow 

 
RMSE mBias R RMSE mBias R 

P140-R40 13.808 -1.018 0.465 11.004 -0.642 0.457 

P140-R41 18.352 -2.59 0.453 14.139 -1.53 0.469 
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Overall 16.172 -1.78 0.456 12.593 -1.065 0.462 

Since there is a slight difference of accuracies over different regions (Table 4), the influential factors on the accuracy of 

AVHRR GAC snow dataset were explored here. Fig. 12 displays the scatterplots of RMSE against elevation, slope, aspect, 

and topographical variability for both datasets.  It is obvious that RMSEs of two datasets show similar responses to these 525 

factors. Generally, a considerable number of RMSEs increase with elevation, although there are still a large number of 

RMSEs approaching 0 (Fig. 12(a, e)). This is unexpected as coarse-pixel satellite snow products generally perform better in 

higher elevations due to the continuous and thick snow cover. The larger RMSEs in higher elevations are partly caused by 

the large values of FSC themselves and partly caused by the cloud effects given that the probability of cloud rises with rising 

altitude in mountain areas. When slope is considered as a criterion, AVHRR GAC snow datasets tend to give better results 530 

over the areas with smaller slopes (Fig. 12(b, f)). This is understandable because satellite data suffer from topographic 

effects in steep mountain area. Regarding the effect of aspect, although there is not a clear trend of RMSEs with aspect, the 

large RMSEs are mostly located around 180° (south facing slope) (Fig. 12(c, g)). This is attributed to the fact that during 

winter months, south facing slopes receive significantly more radiant energy, providing unfavorable environment for snow 

accumulation. Thus, snow cover in south facing slopes is more likely to be shallowness and patchiness, reducing the 535 

accuracy of AVHRR GAC snow datasets. As seen from Fig. 12(d, h), there is an increasing trend of RMSE against 

topographical variability, indicating its significant effect on the accuracy of AVHRR GAC snow datasets. This is because the 

rugged relief can lead to shadowing effects, resulting in different degree of surface information loss between high-resolution 

satellite data and coarse resolution satellite data. 

 540 

Figure 12. The variation of RMSE with elevation, slope, aspect, and topographical variability. The results have combined 

data over “P140-R40” and “P140-R41”. The blue line denotes the fitting line. 

Another influence factor this is known to impact satellite snow cover detection is land cover type. The boxplots of 

RMSE of pixels over different land cover types are given in Fig. 13. The distribution of RMSE responses similarly to land 

cover types between the two datasets. It is obvious that AVHRR GAC snow datasets perform better in some land covers than 545 

in others. Specifically, in forest, savannas, croplands, and built-up lands, the errors in snow mapping are very low with 

RMSE basically concentrated near 0. In grassland, errors become much larger. And the largest errors occur in barren lands. 
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Furthermore, RMSEs show larger spatial variability over grassland and barren lands, demonstrating that the accuracy of 

AVHRR GAC snow datasets over these two land cover types is more likely to be affected by other factors. One reason for 

the wide distribution of RMSEs over these two land cover types is their larger number of pixels than other land cover types. 550 

Combining the results of Fig. 13 and Fig. 9, it can be found that validation using different and independent reference datasets 

indicates a good performance of AVHRR GAC snow datasets in forests, savannas, and croplands, and a slightly lower 

accuracy in grasslands. The results based on in situ data and high resolution data basically agree with an exception in barren 

lands. This is partly due to significantly different number of samples in the boxplots and partly due to the different 

mechanism of calculation of reference data as well as validation metrics. 555 

 

Figure 13. The variation of RMSE with land cover types. The results have combined data over “P140-R40” and “P140-

R41”. There are 326, 1211, 446, 202, 6, 605 pixels for forest, grassland, savannas, croplands, built-up lands, and barren, 

respectively. 

In order to describe the variation of accuracy of AVHRR GAC snow datasets throughout the time series (1985-2012), 560 

the day-by-day results of RMSE, mBias, and R are therefore presented in Fig. 14. The RMSE and mBias derived in scene-

by-scene comparison still indicate a reasonable accuracy of both datasets, with the former distributed between 5% and 20% 

and the latter distributed between 0 and -5% (Fig. 14(a and b)). This result of mBias has confirmed once more that AVHRR 

GAC snow datasets are generally underestimated in these areas. Both the temporal variation trends of RMSE and mBias 

indicate that accuracies of both datasets gradually increase over time. The RMSEs drop from about 20% at the beginning to 565 

about 10% in the end. And the mBiases drop from about -2.5% at the beginning to about 0 in the end. The results of mBias 

disagree with those based on in situ site (Fig. 3c). The disagreement is partly caused by different mechanism of calculation 

of reference data and validation metrics, and partly caused by the effect of spatial representativeness errors of in situ sites. 

The day-by-day results reveal that AVHRR raw snow dataset is more accurate than the gap-filled snow dataset. Both 

the magnitude of RMSE and mBias of the former are consistently smaller than those of the latter in the whole time series 570 

(Fig. 14(a and b)). This result agrees well with above results. The difference of RMSE and mBias between the two areas 

(“P140-R40/41”) stand out again in the day-by-day comparison. Both datsets show better performance over the area covered 

by “P140-R40” than those over the area covered by “P140-R41”. The former consistently display smaller RMSE and mBias 

than the latter for both datasets in the whole time series. This result demonstrate again that in the validation based on high-
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resolution datasets, validation results depends the location of the area. Therefore, larger areas are desired in this kind of 575 

validation. 
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Figure 14. The RMSE, mBias, and R of AVHRR raw and AVHRR gap-filled snow data based on Landsat 5 TM snow data as 

a function of all the available dates in “P140-R40” and “P140-R41”, respectively.  

Unlike RMSE and mBias, the correlation coefficient R between AVHRR GAC snow dataset and Landsat5 TM data 580 

show a relatively large temporal variation for both datasets over the two areas. On average, the R after 2000 are significantly 

lower than those before it. And it is not very high (0.125 ≤ R ≤ 0.5 depending on the time) over these two areas, indicating 

that the consistency of the spatial distribution characteristics of FSC is not very good. A relative large difference can be 

observed in the magnitude of R between these two areas, and this is especially true for AVHRR gap-filled snow dataset. The 

area covered by “P140-R40” generally shows larger R than the area covered by “P140-R41”, again demonstrating that the 585 

validation based on high-resolution datasets depends on validation region. Therefore, a more comprehensive validation by 

expanding the comparison area is needed. 

In order to give more comprehensive validation results based on high-resolution datasets, the comparison between 

AVHRR snow datasets and Landsat data was also carried out over the whole extent of HKH. The RMSE, mBias, and R in 

different conditions are summarized in Table 5. RMSE is generally less than 25% for both datasets in different conditions 590 

with an overall RMSE of 22.91% and 24.65% for AVHRR raw and gap-filled snow datasets, respectively. The mBias still 

indicates underestimation of AVHRR snow datasets, and the degree of underestimation is smallest in forest, but with small R 

of 0.32 and 0.42 for AVHRR raw and gap-filled snow datasets, respectively. The mountain areas show a larger mBias and a 

slightly smaller R relative the to the plain areas. The overall mBias are -6.74% and -7.56% and the overall R are 0.83 and 0.8 

for  AVHRR raw and gap-filled snow datasets, respectively, again demonstrating the slightly better accuracy of AVHRR raw 595 

snow datset. 

Table 5. Summary of accuracies of AVHRR raw and AVHRR gap-filled snow data with Landsat5 TM snow data over the 

whole HKH. 

 

RMSE(gap-

filled)% 

mBias(gap-

filled)% 

R(gap-

filled) 

RMSE 

(raw)% 

mBias 

(raw)% 

R 

(raw) 

Plain 21.92 -5.47 0.87 20.22 -5.16 0.89 

Mountain 24.98 -7.82 0.79 23.25 -6.96 0.82 

Forest 23.23 -4.55 0.42 19.42 -0.92 0.32 

Global 24.65 -7.56 0.8 22.91 -6.74 0.83 
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Figure 15. The boxplots of  RMSE for AVHRR gap-filled snow data based on Landsat5 TM snow data derived with the 600 

methods proposed by Dozier and Painter (2004), Klein et al. (1998), Salomonson and Appel (2006) respectively in different 

conditions over the whole HKH. 

In order to show the effect of FSC retrieval method based on high-resolution data, a simple comparison between 

different methods was made by summarizing RMSEs in the form of boxplots (Fig. 15). Several conditions including east vs. 

west, forest vs. no forest, mountain vs. plain, were considered here. Similar results in terms of the magnitude and distribution 605 

of RMSEs can be found between different methods. It is interesting that the eastern area shows larger RMSEs than western 

areas, but the latter shows a larger spatial variability (Fig. 15(a and b). Consistent with previous results, forest shows smaller 

RMSEs and spatial variability compared to no forest areas. As expected, the mountain areas show larger RMSEs and spatial 

variability than plain area. 

4.3 The performance relative to MODIS snow product 610 

The performances of AVHRR GAC snow datasets were compared with MOD10A1 V006 in terms of their overall accuracy 

relative to in situ sites, temporal consistency of accuracy over time, spatial variability of accuracy, the accuracy under 

different conditions (SD, FSC, and land cover types), as well as the difference of their absolute values. 

As indicated by Fig. 2, the ACC and HSS of MODIS snow product are both located between AVHRR raw and gap-

filled snow dataset in case2 and case7, but closer to AVHRR raw dataset. It is thus clear that AVHRR raw dataset performs 615 

slightly better while AVHRR gap-filled dataset performs worse than MODIS snow product with respect to the agreement 

with in situ sites and the algorithm performance (skill). Nevertheless, both AVHRR raw and gap-filled datasets show distinct 

advantage over MODIS snow product when Bias is focused. MODIS snow product presents serious overestimation errors in 

two cases while AVHRR snow datasets show unbiased results in the same cases. 
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Regarding the temporal behavior of three snow datasets (Fig. 3), the ACC of MODIS snow product reveals slightly 620 

larger variability during the year 2000-2013, but its value is still basically distributed between AVHRR raw and gap-filled 

datasets (Fig. 3a). Unlike AVHRR snow datasets, the ACC of MODIS snow in two cases are almost equal over time series, 

meaning that its accuracy is less affected by spatial heterogeneity or geometric mismatch. However, the HSS of MODIS 

snow show large difference between case2 and case7. The former show larger temporal variations than AVHRR snow 

datasets, while the latter keep constant over time (Fig. 3b). The magnitude of HSS of MODIS basically located between 625 

AVHRR raw and gap-filled datasets. However, the Bias of MODIS snow product exhibits different temporal variation 

characteristics compared to ACC, which almost keep constant over time (Fig. 3c). Therefore, we can conclude that AVHRR 

snow datasets display a more stable behavior regarding the accuracy but less stable regarding the Bias than MODIS snow 

products over the same period. As for the performance of MODIS snow products in different months of the year, the inter-

annual variability of ACC (Fig. 4(e and f)), HSS (Fig. 5(e and f)), and Bias (Fig. 6(e and f)) all become more significant 630 

compared to Fig. 3(a-c). Furthermore, the temporal variations of these metrics on the monthly scale are generally more 

significant for MODIS snow product than AVHRR snow datasets (Figs. (4-6)).  

When it comes to the spatial variability of the performance of MODIS and AVHRR snow datasets, the ACC of the 

former are more concentrated than the latter (Fig. 7a). Nevertheless, the HSS and Bias of the former show a more variable 

distribution than the latter (Fig. 7(b and c)). Hence, we can believe that the accuracy of AVHRR snow datasets shows a 635 

larger spatial variability than MODIS snow product, but the HSS and Bias of AVHRR snow exhibit a smaller spatial 

variability than the latter.  

       Seen from Fig. 8(a, c, e), we can find that the accuracy of AVHRR snow datasets is larger than MODIS snow product 

when SD<=1cm, but consistently smaller than MODIS snow at each SD when SD>=2cm. This means that in snow-free or 

very thin snow conditions, AVHRR snow datasets are less misclassified than MODIS snow product. By contrast, in snow-640 

covered condition, although the three datasets all reveal an increase in ACC with increasing SD, MODIS snow product is 

more reliable and correctly classified. The discrepancies between them are mainly resulted from the different spatial scale of 

the pixel. By comparing Fig. 8f with Fig. 8(b and d), it can be found that accuracies of AVHRR snow datasets are slightly 

lower than MODIS product for each level of FSC when FSC<=60%, but larger than MODIS product when FSC>60%. This 

phenomenon is related to the different degrees of spatial representativeness of in situ sites relative to different pixel scales.  645 

MODIS snow product presents a similar response to land cover types as AVHRR snow datasets (Fig. 9). It performs 

best over forest with a high agreement even up to 0.97 and very narrow distribution, followed by barren land and savannas. 

However, over grasslands, its agreement decreases, together with a very dispersed distribution (Fig. 9c). Generally, AVHRR 

snow datasets and MODIS snow product present comparable ACC over each land cover type. 
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 650 
Figure 16. The distribution of mBias and RMSE derived from the scene-by-scene comparison between AVHRR GAC snow 

datasets and MODIS snow products over the region “P140-R40/41” throughout the snow season between 2012 and 2013. 

Table 6. Overall accuracies of AVHRR raw and AVHRR gap-filled snow data in comparison with MODIS snow over “P140-

R40/41”. 

  AVHRR gap-filled snow AVHRR raw snow 

 
RMSE mBias R RMSE mBias R 

Overall 19.024 2.832 0.433 14.636 1.564 0.504 

 655 

In order to show the absolute difference between AVHRR GAC and MODIS snow, RMSE and mBias derived from 

scene-by-scene comparison over the region “P140-R40/41” throughout the snow season between 2012 and 2013 were 

presented in the form of histograms (Fig. 16). It can be seen that AVHRR GAC snow datasets are slightly overestimated 

relative to MODIS snow given the non-symmetrical distribution of mBias towards positive values. But their overall mBiases 

are very small, with the values of 1.564% and 2.832% for AVHRR raw and gap-filled snow datasets, respectively (Table 6). 660 

The RMSEs are mainly distributed within the range of 1-10%, with the overall values of 14.636% and 19.024% for AVHRR 

raw and gap-filled snow datasets, respectively. Nevertheless, the spatial distribution characteristics of FSC are not in good 

agreement, given that the R between them are not very high (0.504 and 0.433 for AVHRR raw and gap-filled snow datasets 

respectively).   

5 Conclusion 665 

Snow cover extent is a key component of climatic variability. This paper introduces a new version of snow extent dataset 

derived from AVHRR GAC data and assesses the spatial and temporal accuracy of the dataset over complex terrain. 

Compared to other AVHRR snow extent products, this dataset is designed to provide global snow extent with consistent 

performance across the whole suite of AVHRR sensors, which is considered a major step toward a detailed snow 

climatology on the global scale. 670 
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A comprehensive validation was carried out using different and independent reference datasets. First, the validation was 

performed with in situ SD measurements and was provided in terms of snow detection or misclassification frequencies 

covering the timespan (1982-2013), with more emphasis on the sensor-to-sensor consistency. The optimum threshold to 

transform in situ SD to snow-covered information was determined through sensitivity analysis, which has been proved to be 

2 cm in this study. With consideration of the effect of spatial heterogeneity and geometric mismatch, two validation cases (1 675 

pixel and 3 × 3 pixels centered on in situ site) were carried out. Second, Landsat5 TM scenes, with a high spatial resolution, 

provide absolute snow cover information to investigate small quantitative inconsistencies. 30 years (1984-2013) of Landsat5 

TM FSC data for two different regions were used to enable a spatio-temporal appreciation of the AVHRR GAC detection 

errors. Third, the daily 500m MODIS snow product was evaluated using in situ measurements to be compared with AVHRR 

GAC snow dataset in order to assess its performance from a relative perspective. Furthermore, their absolute difference was 680 

also quantified. 

Validated against in situ site observations, the overall ACC of AVHRR raw snow dataset was about 94% for the two 

cases. The use of temporal filter caused a slight reduction in ACC of AVHRR gap-filled snow dataset, with overall values 

around 92% in two cases. The ACC of MODIS is situated between AVHRR raw and gap-filled snow data, which equal to 

93.6% in both cases. AVHRR raw and gap-filled snow datasets are very close in Bias, with values around 1 in two cases. 685 

Nevertheless, MODIS snow shows obvious overestimation errors with Bias of 1.740 and 1.613 in case2 and case7, 

respectively. When validated against Landsat5 TM images over the region of “P140-R40/41”, the overall RMSEs are 12.593% 

and 16.172% and the overall mBiases are -1.065% and -1.78% for AVHRR raw and gap-filled snow datasets, respectively. 

But the R for two datasets are low (0.462 and 0.456 respectively for AVHRR raw and gap-filled datasets). When the whole 

HKH was considered, the RMSE, on average, is generally less than 25% for both datasets in different conditions, with the 690 

overall RMSEs of 22.91% and 24.65% and R of 0.83 and 0.8 for AVHRR raw and gap-filled snow datasets, respectively. 

Regarding the temporal behavior of AVHRR GAC snow datasets, the sensor-to-sensor consistency was found to differ 

slightly and unsystematically in ACC and HSS throughout the time series. While the consistent slight increasing trend on 

Bias is noteworthy. By contrast, the validation results based on Landsat5 TM data suggest a better performance with later 

sensors, as indicated by the temporal variation trends of RMSE and Bias. The disagreement between them is partly related to 695 

different mechanism of calculation of reference data and validation metrics, and partly related to the effect of spatial 

representativeness errors of in situ sites. It is important to point out that the different performance of AVHRR GAC snow 

datasets in different months is mainly caused by variable amount of snow. Particularly, AVHRR snow dataset obviously 

overestimates snow cover in March and February but underestimates snow cover in December and January. During the 

period of snow ablation, the skill of snow detection decreases. The validation results with two independent reference data 700 

both show considerable spatial variabilities, indicating the effect of other factors (e.g., SD, FSC, land cover type, elevation, 

slope, aspect, and topographical variability). 

Generally, in the situation of snow cover, accuracy of satellite snow datasets increases with increasing SD and FSC. By 

contrast, in snow-free condition, accuracy decreases with increasing SD and FSC. In terms of how errors relate to land cover 
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type, validation via two independent reference datasets indicates a good performance of AVHRR snow datasets in forests, 705 

savannas, and croplands, and a slightly lower accuracy in grasslands. Higher elevation is more likely to experience larger 

errors, which is partly caused by the large values of FSC themselves and partly caused by the cloud effects. Better accuracy 

is generally observed in areas with smaller slopes since the topographic effects become significant in steep mountain areas. 

The errors in south facing slopes are generally larger than other aspects, because snow cover is more likely to be shallowness 

and patchiness, reducing the accuracy of AVHRR GAC snow datasets when compared with Landsat5 TM data. The errors of 710 

AVHRR snow datasets tend to increase with topographical variability. This is because the shadowing effects caused by 

rugged relief would result in different degree of surface information loss between high resolution Landsat5 TM data and 

coarse resolution AVHRR GAC data. 

When it comes to the performance relative to MODIS snow products, AVHRR raw dataset performs slightly better 

while AVHRR gap-filled dataset performs worse than MODIS snow product with respect to the agreement with in situ sites 715 

and the algorithm performance (skill). Nevertheless, both AVHRR snow datasets show distinct advantages over MODIS 

snow product focusing on Bias. Regarding the temporal and spatial behaviors, different results appear in the two dimensions. 

In the temporal dimension, AVHRR snow datasets display a more stable behavior regarding the accuracy but less stable 

regarding the Bias than MODIS snow products. But in the spatial dimension, AVHRR snow datasets show a larger spatial 

variability of accuracy but a smaller spatial variability of HSS and Bias than MODIS snow products. The absolute 720 

differences between AVHRR GAC and MODIS snow datasets were still reasonable, with the overall RMSE of 14.636% and 

19.024%, mBias of 1.564% and 2.832%, and R of 0.504 and 0.433 for AVHRR raw and gap-filled snow datasets, 

respectively. 

This study represents the first validation of daily AVHRR GAC snow extent in the mountain region. Although the 

reference datasets (i.e., in situ sites, high resolution satellite data) have their own limitations and flaws, our results still 725 

encourage the compilation of a consistent, complete, long time series snow extent dataset from historical AVHRR GAC data. 

This study characterizes the product performance with distinct accuracy parameters from different perspectives, thus 

contributes to the ongoing efforts to improve the performance of existing snow products by enhancing our knowledge of the 

thematic and absolute accuracy of current products. 
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