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Fig. S1: Correlation of Rainfall, Surface Runoff, and Soil Moisture at monthly scale during the 

years 1982-2019. Blue line indicates linear regression and shaded region around it refers to 95% 

confidence interval. Data Source: McNally et al. 2018.  

Fig. S2: Regional rainfall variation. Inset ‘a’ shows the location of study area and extent used to 

represent elevation and regional rainfall variation. Image Source: Google earth. Inset ‘b’ shows 

regional elevation map. Data Source: SRTM. Rainfall data source: GPM_3IMERGDF v.06 (Huffman et 

al. 2019). 
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Note: The present study is intended to evaluate the hillslope response under extreme Rainfall and 

Earthquake conditions. More emphasis was given to understand the particular hillslope ‘Varlaam’ 

response. Further, correlating rainfall and earthquake at slope level might be difficult because both 

triggering factors operate and affect at different scale. Earthquakes even with the distant epicentres (250–

300 km) have triggered landslides in the region (Havenith et al. 2016), whereas rainfall varies within 

kilometers (Supp. Fig. 3). Another limitation exists with the availability of high resolution rainfall data. 

At present, the best possible spatial resolution for the daily rainfall data, available for the study area, is 

0.1° (Huffman et al. 2019). 

 

 

  

 

 

 

 

Fig. S3: Rainfall and Earthquake distribution around study area. Daily Rainfall data is time averaged 

(2000-2019) to show spatial distribution. Rainfall Data Source: GPM IMERG Final Precipitation 

(Huffman et al. 2019). Earthquake Data Source: National Institute for Earth Physics, Romania.  



Governing equations of the RAMMS Debris Flow model 

A Voellmy-Salm (Voellmy 1955; Salm, 1993) Fluid-flow continuum Model 

Although the avalanche/debris flow is made up of discrete granules, it has been assumed as a continuum. 

It implies that the depth and length of the flowing mass are large compared to the dimensions of a typical 

particle. While the mass density of the material making up the individual grains might be constant, 

noticeable variations in bulk density may exist as a result of variations in void spaces between grains. 

Such fluid-flow continuum has following assumptions (Bartelt et al., 1999); 

 Flowing material is modeled as a fluid continuum of mean constant density ρ. 

 The flow width is known. 

 A clearly defined top flow surface exists. 

 The flow height, h(x, t), is the average flow height across the section, i.e. the flow height is 

level over the flow width, w(x). 

 The vertical pressure distribution is hydrostatic. Centripetal pressures which modify the 

hydrostatic pressure distribution are not accounted for. 

 Flow velocity and depth are unsteady and non-uniform. 

Such flow moves in an unsteady and non-uniform motion and is characterized by two main flow 

parameters, which are the flow height H(x, y, t) (m) and the mean velocity U(x, y, t) (m/s). The initial 

height (or release area depth) is determined by the user when defining the source area of the debris flow 

as a polygon. Thus, the Voellmy-Salm model uses the following mass balance equation for such a flow:  

∂tH + ∂x (HUx ) + ∂y HUy  = Q(xyt)  

Where, Ux and Uy are the velocities in the x and y directions respectively, and Q(x, y, t) (m/s) is the mass 

production source term, also called the entrainment rate (Q >0) or deposition rate (Q<0).  

The principles of conservation of momentum are invoked to provide the governing differential equations 

describing depth-averaged flow movement in conservative form in the x and y directions; 

∂t (HUx ) + ∂x {cxHU
2
X + gzka/p H

2
 /2} +∂y (HUxUy) = Sgx − Sfx 

and  

∂t (HUy ) + ∂y {cyHU
2

y + gzka/p H
2
 /2} +∂y (HUxUy) = Sgy − Sfy 

Where, cx and cy are profile shape factors that are determined by the DEM. The ka/p: kactive (tensile)/passive 

(compressive) is the earth pressure coefficient that is set to 1 to model the flow hydrostatically. Here, ka/p = 2+ 

[1± {1-(1+tan²δ) cos²ϕ} ^
1/2

/ cos²ϕ-1] (Savage and Hutter, 1991).  

Where, δ is bed friction angle and ϕ is material friction angle. However, to avoid the complexities caused 

by bed friction angle, slope angle, dry friction, μ, and cohesion on the active/passive coefficient, formula 

has been simplified in the form of Rankine theory; 

ka/p =  tan² (45°±ϕ/2) (Rankine, 1857 ; Bartelt et al. 1999) 

k=ka (∂U/∂X >0) during flow along the slope 



k=kp (∂U/∂X <0) during deposition of runout 

Where, ∂U/∂X refers to velocity gradient in longitudinal (along the slope) direction. 

The Sg and Sf refer to acceleration (driving factor) and friction (frictional resistance factor), respectively.   

Sgx = gxH and Sgy = gyH 

Where, g is acceleration due to gravity and H is flow height. Further, with an assumption that shear 

deformations during flow are concentrated at the base of the flow, the basal shear resistance consisting of 

a dry Coulomb-like friction (µ) and a Chezy-like resistance (ξ), has been given as;  

Sf = µσ + (ρgU
2
)/ξ 

The Chezy-like resistance is famous as "turbulent" friction, term used by Voellmy (1955) since the 

mathematical formulations are similar to the well-known turbulent Chezy equation (Herschel, 1897; 

Chow, 1959) used in open-channel-flow hydraulics.  

Where, σ is the normal stress that is dependent on the flow height (H) through the following equation; 

σ = ρgHcosψ 

Where, ψ is slope angle. Later, in view of the observations of debris flow as coherent visco-plastic flow 

and its similarity to snow avalanche, nonlinear relationship between normal stress and shear stress was 

proposed (Platezer et al. 2007). This allowed the inclusion of cohesion (c) in the equation with the 

following modification. 

Sf = µσ + (1-µ) c-(1-µ) c exp
(-σ/c)  

+ (ρgU
2
)/ξ 

This formula ensures that Sf →0 when both σ →0 and U→0. It increases the shear stress and therefore 

causes the avalanche or debris flow to stop earlier, depending on the value of c (RAMMS, v.1.7). 

Recently, Zimmermann et al. (2020) have noted that such cohesive interaction improved the accuracy of 

the observed deposition of hillslope debris flow.  
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