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Abstract. Drought is a major natural hazard in the Bolivian Altiplano that causes large losses to farmers, 

especially during positive ENSO phases. However, empirical data for drought risk estimation purposes are scarce 

and spatially uneven distributed. Due to these limitations, similar to many other regions in the world, we tested 15 

the performance of satellite imagery data for providing precipitation and temperature data. The results show that 

droughts can be better predicted using a combination of satellite imagery and ground-based available data. 

Consequently, the satellite climate data were associated with the Normalized Difference Vegetation Index (NDVI) 

in order to evaluate the crop production variability. Moreover, NDVI was used to target specific drought hotspot 

regions. Furthermore, during positive ENSO phase (El Niño years), a significant decrease in crop yields can be 20 

expected and we indicate areas where losses will be most pronounced. The results can be used for emergency 

response operations and enable a pro-active approach to disaster risk management against droughts. This includes 

economic-related and risk reduction strategies such as insurance and irrigation. 
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1. Introduction  25 

Agricultural production is highly sensitive to weather extremes, including droughts and heat waves. Losses due 

to such extreme hazardous events pose a significant challenge to farmers as well as governments worldwide 

(UNISDR, 2015). Worryingly, the scientific community predicts an amplification of these negative impacts due 
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to future climate change (IPCC, 2013). Especially in developing countries such as Bolivia, drought is a major 

natural hazard and Bolivia has experienced large socio-economic losses in the past due to such events. However, 

the impacts vary on a seasonal and annual timescale, hazard intensity, and capacity to prevent and respond to 

droughts (UNISDR, 2009). Regarding the former, the El Niño Southern Oscillation (ENSO) plays an especially 

important role in several regions of the world, including the Bolivian Altiplano, as it drives losses in agricultural 5 

crops, and causes increased food insecurity (Kogan and Guo, 2017). Most important rainfed crops in the region 

include quinoa and potato (Garcia et al., 2007). Generally speaking, agricultural productivity in the Bolivian 

Altiplano is low due to adverse weather and poor soil conditions (Garcia et al., 2003). On the other hand, low 

agricultural production levels can also be associated with the ENSO climate phenomena (Buxton et al., 2013). For 

this area, droughts are generally driven by the ENSO warm phases (Vicente-Serrano et al., 2015;  Garreaud and 10 

Aceituno, 2001;  Thompson et al., 1984). Previous research has addressed the influence of ENSO on agriculture 

(e.g. Anderson et al., 2017;  Iizumi et al., 2014;  Ramirez-Rodrigues et al., 2014). Moreover, Anderson et al. 

(2017) synthetized published studies on this topic. The studies suggest that a better understanding of the 

association between ENSO and agriculture could improve the crop management and food security. 

In this regard, the Sustainable Development Goals (SDGs) state that priorities for adaptation to climate change 15 

include water and agricultural dimensions. These in turn, can be related to extreme natural hazardous phenomena 

including floods, droughts, and higher temperatures (UN, 2016). The implementation of drought risk management 

approaches is now seen as fundamental for developing a strategic plan processes and the planning of mitigation 

policy measures for sustainable development in vulnerable regions, including Latin American countries such as 

Bolivia (Verbist et al., 2016). To lessen the long-term impacts of these extreme events, the national government 20 

in Bolivia has taken several steps, e.g., to allocate budgets for emergency operations to compensate part of the 

losses, which are usually evaluated ex-post (i.e. after the event). However, based on ENSO forecasting, an El Niño 

event can be predicted 1 to 7 months ahead (Tippett et al., 2012) and consequently there is also opportunity to 

implement additional ex-ante policies (i.e. before the event) to reduce societal impacts to droughts, increase 

preparedness, and generally improve current risk management strategies. 25 

This paper addresses the corresponding question how a risk based approach can be used to determine the potential 

need of resources during droughts and provide ways forward how to determine hotspot areas where it is most 

likely that such resources would be needed. One major constraint for developing countries, when it comes to 

analyse current and future drought occurrences, is the uneven and scarce distribution of weather and crop related 

ground data. To circumvent this problem we suggest to use rainfall, land surface temperature, and vegetation 30 
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satellite data so as to have a full coverage (of land area) for drought risk and its spatial distribution in the study 

area. Furthermore, these data are combined with empirically gauged precipitation, temperature and crop yield data 

on the ground level to enhance the knowledge and provide consistent relationship between agriculture production 

and climate variability. Finally, the approach is used to assess drought risk impacts on agriculture associated with 

ENSO for the Bolivian Altiplano which was found to be significantly important to be considered within any 5 

drought risk management strategy. We provide ways forward to tackle these challenges using a risk based 

approach. The paper is organized as follows, section 2 will present the methodology applied and data used, while 

section 3 will present the results. Section 4 gives a discussion in regards to risk management strategies and finally, 

section 4 concludes and provides an outlook to the future. 

2. Data Used and Methodology 10 

2.1 Ground data and satellite imagery 

Climate-wise, the Altiplano has a pronounced southwest-northeast precipitation gradient (200–900 mm year−1) 

during the wet season occurring from November to March (Garreaud et al., 2003). Over 60% of total precipitation 

occur during summer months (DJF) in association with the South American Monsoon (SAM) (see Fig. 1a). Time 

series of monthly precipitation at 23 locations as well as mean, maximum, and minimum temperature at 11 15 

locations from September 1981 to August 2015 were obtained from the National Service of Meteorology and 

Hydrology (SENAMHI) of Bolivia (see Table A1). Initially, the available precipitation data set included 65 gauges 

but only 23 were used as they had less than 10% of missing data (chosen as cut-off point for use in the analysis). 

Data gaps were filled with mean monthly values from the full dataset. 

As already indicated, precipitation and temperature gauge locations are unevenly distributed and mainly 20 

concentrated in the northern Bolivian Altiplano. To improve the spatial coverage of rainfall data, monthly quasi-

rainfall time series from satellite data were therefore included in our study. The Climate Hazards Group InfraRed 

Precipitation with station data (CHIRPS) from the quasi-global rainfall dataset was used. CHIRPS represents a 

0.05° resolution satellite imagery and is a quasi-global rainfall dataset from 1981 to the near present with a satellite 

resolution of 0.05° (Funk et al., 2015). The advantage of using CHIRPS is the higher spatial resolution of data, 25 

i.e., the resolution of 0.05°, obtained with resampling of TMPA 3B42 (with 0.25° grid cell). The spatial resolution 

represents a better option for agricultural studies (CHIRPS is described in detailed at 

http://chg.geog.ucsb.edu/data/chirps/). 
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Fig 1. (a) Mean monthly total precipitation and average maximum and minimum temperature from September 1981 to August 

2015 of the 23 gauged stations. (b) The mean monthly NDVI at the same spatial locations. 

Additionally, monthly mean land surface temperature (LST) was obtained from the Global Historical Climatology 

Network and the Climate Anomaly Monitoring System (GHCN and CAMS) from the US National Oceanic and 

Atmospheric Administration (NOAA, https://www.esrl.noaa.gov/psd/data/gridded/data.ghcncams.html). The 5 

LST has a resolution of 0.5° and it is conveniently also available during the study period from September 1981 to 

August 2015.  

2.2 Validation of satellite rainfall and temperature products using gauged data 

The performance of the satellite products to accurately estimate amount of rainfalls (i.e., to assess rain detection 

capability) was based on statistical measures including categorical analyses as suggested in the literature (Blacutt 10 

et al., 2015;  Satgé et al., 2016). The mean error (ME), also called bias, was calculated based on Wilks (2006). 

Additionally, the Nash-Sutcliffe efficiency (E) coefficient was calculated based on Nash and Sutcliffe (1970). The 

bias shows the degree of over- or underestimation (Duan et al., 2015), and the E  coefficient evaluates the 

prediction accuracy compared to observations. E equals to one that corresponds to a perfect match between gauge 
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observation and satellite-based estimate and zero indicates that the satellite estimations are as accurate as the mean 

of observed data. Negative values indicate that the observed mean is better than satellite-based estimate, see Nash 

and Sutcliffe (1970) for more details. Furthermore, and similar to Blacutt et al. (2015) and Satgé et al. (2016), the 

Spearman rank correlation was computed to estimate the goodness of fit to observations. To evaluate results, as 

done in similar studies, correlation coefficients larger or equal to 0.7 with a significance level of 0.01 were 5 

considered as reliable (Satgé et al., 2016;  Condom et al., 2011). 

 

Fig. 2. The mean of the total annual precipitation from September 1981 to August 2015 for: (a) gauged precipitation data 

(circles) and isohyets (solid line), (b) the CHIRPS satellite rainfall product, and (c) Bolivia, and the major political divisions: 

La Paz, Oruro and Potosi, where crop yield data is available in the Altiplano. 
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Two statistical indicators based on a contingency table were computed for the categorical statistics, namely 

Probability of Detection (POD) and False Alarm Ratio (FAR). The POD indicates which fraction of the observed 

events was correctly estimated, and FAR indicates the fraction of the predicted events that did not occur 

(Bartholmes et al., 2009;  Ochoa et al., 2014;  Satgé et al., 2016). The POD and FAR range from 0 to1, where 1 

is a perfect score for POD, and 0 is a perfect score for FAR. The categorical statistic measures were used to 5 

evaluate the satellite estimations. Here, the rainfall amounts are considered as discrete values, i.e., rain occurrence 

or absence. Based on this approach, four scenarios were taken into account: the number of events when the satellite 

rain estimation and the rain gauge report a rain event (H), when only the satellite reports a rain event but is a false 

alarm (F), and when only the rain gauge reports a rain event but not the satellite not and therefore is a miss (M).  

Besides the precipitation data also satellite temperature data were validated using ground data. The LST was 10 

correlated with the mean gauged temperature at the same spatial location. The mean temperature of the gauged 

data was calculated using the arithmetic mean between the maximum and minimum temperature. The relationship 

enables to correct the LST with a linear regression equation (Zhou and Wang, 2016). The regression performance 

was evaluated using the relative ME or bias and the E coefficient. 

2.3 Crop yield simulation based on NDVI data 15 

As indicated above, quinoa and potato are the main crops in the Bolivian Altiplano and they are still gaining 

importance. The quinoa growing season is from September to April and for potato it is from October to March. 

Yield data from 1981 to 2015 for quinoa and potato were obtained from the Bolivian National Institute of Statistics 

(INE, https://www.ine.gob.bo) for the administrative regions La Paz, Oruro, and Potosi (Fig. 2). The annual crop 

yield datasets represent production (t) in relation to area (ha) at regional level. No historical crop yield data on 20 

local scales are available yet which is a major limitation for any risk-based approach and needs to be addressed in 

the future. Nevertheless, we suggest that the coarse distribution of the crop yield data can be improved using the 

NDVI. Besides improving the crop yield resolution, the NDVI also allows to analyse the variability of vegetation 

at a monthly time scale. This makes it possible analyse the phenology of the studied crops through to the growth 

phases. NDVI estimates the vegetation vigour (Ji and Peters, 2003) and crop phenology (Beck et al., 2006). NDVI 25 

was assembled from the Advanced Very High Resolution Radiometer (AVHRR) sensors by the Global Inventory 

Monitoring and Modelling System (GIMMS) at semi-monthly (15 days) time steps with a spatial resolution of 

0.08ᵒ. NDVI 3g.v1 (third generation GIMMS NDVI from AVHRR sensors) and the data set spans from September 

1981 to August 2015. Note, the NDVI is an index that presents a range of values from 0 to 1, bare soil values are 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-403
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 27 March 2019
c© Author(s) 2019. CC BY 4.0 License.



7 

 

closer to 0, while dense vegetation has values close to 1 (Holben, 1986). NDVI 3g.v1 GIMMS provides 

information to differentiate valid values from possible errors due to snow, cloud, and interpolation errors. These 

errors were eliminated from the dataset and replaced with the nearest neighbour value. 

Relationships between crop yield and NDVI for agricultural land area of the Altiplano were developed using 

Spearman’s rank correlation, based on a similar approach by Huang et al. (2014). The maximum semi-monthly 5 

NDVI of March and April for every year was identified. Only March and April were considered because this 

period represents the maximum phenological development of quinoa and potato crops. The maximum NDVI of 

each grid was compared to the annual crop yield at La Paz, Oruro, and Potosi. The NDVI grids and crop yield 

correlations equal or larger than 0.6 (Spearman correlation, p = 0.05) were considered as adequate for crop yield 

estimation, and only these grids were considered for further use. As will be discussed further below, a regression 10 

approach was applied for selected NDVI grids and corresponding climate variables (precipitation and 

temperature). In doing so, the agricultural land in the Bolivian Altiplano was delimited based on the land use map 

for Bolivia developed by Raul Lara Rico from the Ministry of Rural Development and Land of Bolivia in 2010 

(geo.gob.bo) using Landsat imagery and ground information at a scale 1:1,000,000.  

2.4  Regression of vegetation and climate variables 15 

Only the NDVI grids that properly simulated the crop yield were related to climate variables. Thus, the stepwise 

regression approach was used to quantify the dependency between vegetation and satellite based climate variables 

(precipitation and temperature; Eq. 1). The final results presented are a combination of forward and backward 

selection techniques to increase the robustness of the results. The independent variable considered was the NDVI, 

and the dependent variables were accumulated precipitation and accumulated degree days (ADD) for the same 20 

spatial location. Firstly, the NDVI was related to CHIRPS rainfall datasets. Secondly, the ADD was included in 

the analysis. For this, only the NDVI grids that better simulated the crop yield of quinoa and potato were used 

(see section 2.3). 

 

𝑁𝐷𝑉𝐼 = 𝛽0 + 𝛽1𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + 𝛽2𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑑𝑒𝑔𝑟𝑒𝑒 𝑑𝑎𝑦𝑠 (1) 25 

 

Both precipitation and temperature were represented as accumulated values (for temperature using the GDD). The 

mean monthly temperature was multiplied by the number of days of each month to obtain daily values. GDD was 
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computed only considering the months of the growing season for each year. To calculate the ADD, the 

accumulated value of the Growing Degree Day (GDD) multiplied by the number of days of each month was 

computed. The GDD is defined as the difference between mean and base temperature. The mean temperature is 

the arithmetic average between maximum and minimum temperature, and 𝑇𝑏  is the minimum threshold or base 

temperature. Base temperature of potato was 4°C and 3°C for quinoa (Jacobsen and Bach, 1998). If Tb is greater 5 

than Tmean, then GDD is equal to 0. For the ADD calculation we considered crop phenology, September to April 

were used to calculate the ADD for quinoa, and from October to April for potato.  

For the forward selection, the variables were entered into the model one at a time in an order determined by the 

strength of their correlation with the criterion variable (only including variables if they are significant on the 5 

percent level). The effect of adding each variable was assessed during its entering stage, and variables that did not 10 

significantly added to the fit of the model were excluded (Kutner et al., 2004). For backward selection, all predictor 

variables were entered into the model first. The weakest predictor variable was then removed and the regression 

fit re-calculated. If this significantly weakened the model then the predictor variable was re-entered, otherwise it 

was deleted. This procedure was repeated until only useful predictor variables (in a statistical sense, e.g. significant 

as well as model fit) remained in the model (Rencher, 1995). The results were compared with other results from 15 

the literature to check for suitability of results with phenology and weather related dimensions of plants. It should 

be noted that the cumulative precipitation was calculated for a period of 12 months from September to August of 

the following year for all locations. The precipitation in the Altiplano shows a marked rainy season from 

November to March. The highest peak of precipitation is in December and January (Fig. 1a). And, NDVI displays 

the highest peak in March and April (Fig. 1b). The lag between the max precipitation and max NDVI is reasonable 20 

since vegetation requires time to grow (e.g. Shinoda, 1995;  Cui and Shi, 2010;  Chuai et al., 2013). The 

accumulated precipitation and NDVI with a lag of two, three, and four month lag was developed for the 

agricultural area.  

2.5 Crop yield relationship with ENSO  

The Oceanic Niño Index (ONI) is usually used to identify El Niño (warm) and La Niña (cool) years 25 

(http://www.cpc.ncep.noaa.gov/). ONI is the 3-month running mean of Extended Reconstructed Sea Surface 

Temperature (ERSST v5) anomalies in the El Niño 3.4 region. The El Niño 3.4 anomalies represent the average 

equatorial SSTs in the equatorial Pacific Ocean (5oN to 5oS latitude, and 120o to 170oW longitude).  Five 

consecutive overlapping three month periods at or above +0.5°C anomaly represent warm events (El Niño), and 

at or below the -0.5 anomaly cold (La Niña) events.  This threshold was further broken down into weak (with a 30 
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0.5 to 0.9 SST anomaly), moderate (1.0 to 1.4), and strong (≥ 1.5) events (http://ggweather.com/enso/oni.htm). In 

our study we considered the categories neutral/moderate (with a 0 to 1.4 SST), strong El Niño (≥ 1.5) and strong 

La Niña (≤ -1.5) years (Appendix Table A2). The classification considered three consecutive overlapping 3-month 

periods at or above the +1.5oC anomaly for warm (El Niño) events and at or below the -1.5oC anomaly for cold 

(La Niña) events. The ENSO year in this study starts in September-October-November and ends in August-5 

September-October for each year from 1981 to 2015. Subsequently, the crop yield of quinoa and potato was 

compared with strong El Niño years. This relationship was analysed using parametric two sample t-test as well as 

the non-parametric Wilcoxon rank sum test. In more detail, the two sample t-test and Wilcoxon rank sum compare 

two independent data samples, with the difference that the first compares samples that assume a normal 

distribution, and the second is a non-parametric test which is based on the ranking of empirical values (Wilks, 10 

2006). The null hypothesis of the two sample t-test was that crop yields during El Niño and neutral/moderate years 

have equal means. The null hypothesis of the Wilcoxon rank sum test was the crop yield during El Niño and 

neutral/moderate years are samples from continuous distributions with equal medians. Both tests compute two-

sided p-value. When the hypothesis is equal to 1, the null hypothesis is rejected at 5% significance level. And the 

null hypothesis is accepted when it is equal to zero. 15 

3. Results and Discussion  

3.1 Validation of satellite imagery using gauged data  

Validation of the satellite rain data using empirical precipitation data from the weather stations was done for the 

23 locations where gauge precipitation data were available (see Fig. 2 and Table A1). Interestingly, the spearman 

rank correlation between ground observed precipitation and satellite rain product datasets was significant 20 

(P<0.001) for all locations. The correlation coefficients were higher than 0.7, except for Colcha K [6] (brackets 

indicate the position of the station detailed in Table A1), that presented a significant (P<0.001) correlation of 0.66. 

Hence, the findings suggest that CHIRPS shows a significant positive relationship with empirical data. However, 

still the satellite datasets should be used with caution and its applicability for hydrological analysis applications 

tested. In addition, El Alto Aeropuerto [10], Oruro Aeropuerto [13], and Viacha [23] present the highest 25 

correlation coefficient with values higher than 0.9 (P<0.001). The datasets from the airports in Bolivia have higher 

data quality (e.g. Hunziker et al., 2018) and CHIRPS gives the best fits with the El Alto Aeropuerto [10] and 

Oruro Aeropuerto [13] for the statistical performance evaluation as described above, including the categorical 

tests mentioned. In summary, our results suggest a high degree of confidence in the CHIRPS performance 
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compared to empirical data using the Spearman correlation coefficient as a performance measure. The ME (bias) 

between satellite and gauged data showed a range from -15 to 15% for most of the stations (Fig. 3a), representing 

a very good fit (Moriasi et al., 2007;  Shrestha et al., 2017). However, the bias for Berenguela [4], Santiago de 

Machaca [20], and Viacha [23] was about 25%. Furthermore, the bias for Colcha K [6], Conchamarca [8], 

Hichucota [12], and San Juan Huancollo [17] was about -18%. The dataset for San Pablo de Lipez [18] had a bias 5 

of -29%. Previous studies indicate a bias from -25 to 25% representing a satisfactory fit (see Moriasi et al., 2007). 

Other studies have included a bias from -30 to 30% as satisfactory fit (see Shrestha et al., 2017). In conclusion, 

all datasets had acceptable bias. 

 

Fig. 3. (a) The relative mean error or bias (%) and (b) the Nash–Sutcliffe efficiency coefficient of the CHIRPS rain data 

compared with the gauged precipitation from September 1981 to August 2015. 
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The Nash–Sutcliffe efficiency coefficients (E) were larger than 0.5 for all stations except Berenguela [4] with a 

coefficient of 0.43 (Fig. 3b). As a consequence, the E coefficients showed that the mean square error is lower than 

the variance of the gauged data for all stations, including Berenguela. The E coefficients were larger than 0.75 for 

Achiri [1], Colcha K [6], El Alto Aeropuerto [10], Oruro Aeropuerto [13], Patacamaya [14], and Salla [15]. These 

datasets presented a very good fit between the CHIRPS and gauged precipitation, and the others also showed good 5 

fits, except for Berenguela [4] (see Moriasi et al., 2007). 

The categorical statistics were used for a precipitation event (larger than 0 mm/month). The results of the 

Probability of Detection (POD) measure showed a range from 0.92 to 1, indicating that the satellite rain product 

correctly estimates above 0.92 for the fraction of gauged precipitation events. Additionally, the False Alarm Ratio 

(FAR) showed values from 0 to 0.3 for most stations, except Colcha K [6] and Uyuni [22] that had a FAR of about 10 

0.5. Both stations are located in the southern Bolivian Altiplano, close to the Uyuni salt flat. CHIRPS generally 

overestimated rainfall with about 5 to 10 mm/month for both regions during the dry season (from April to 

October). Therefore, using a threshold of precipitation events larger than 10 mm/month resulted in a decrease of 

FAR to 0.2 and 0.3 for Colcha K [6] and Uyuni [22], respectively. Hence, in general the CHIRPS estimations 

presented a reasonably good fit compared to gauged data. The best fit was for the gauged datasets at the airports 15 

(El Alto Aeropuerto [10] and Oruro Aeropuerto [13]) that have better data quality, and consequently the validation 

showed better performance there. The datasets with a unsatisfactory fit included Colcha K [6] (with a correlation 

lower than 0.7) and Berenguela [4] (with an E lower than 0.5). The bias for San Pablo de Lipez [18] can be seen 

as acceptable depending of the ranking used. For the categorical analysis, all stations presented a good POD and 

FAR, except for Colcha K [6] and Uyuni [22] that tended to overestimate the precipitation during the dry season. 20 

In general, CHIRPS rainfall product properly estimated the actual conditions in the study area. However, for 

developing other hydrological studies we suggest to compare with the available gauged data before applying the 

CHIRPS datasets, in order to identify possible errors, and datasets with larger uncertainty or confidence.  

Moving from rainfall to temperature, the inter-annual temperature at the 11 locations varied considerably between 

summer (DJFM) and winter (JJAS), including a larger variance for the minimum temperature (Fig. 1a). Regions 25 

close to the Lake Titicaca present lower inter-annual variability (Copacabana [9]). In contrast, Uyuni [22] showed 

larger inter-annual oscillations.  The mean monthly temperature from satellite data was compared with mean 

temperature gauged data. The LST underestimated the mean gauged temperature, and this error could be due to 

the high elevation and cloud coverage. The spearman correlation at the 11 stations displayed coefficients from 0.8 

to 0.9 (p=001). This permitted to correct the LST with linear regression. The regression results presented a range 30 
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of coefficient of determination from 0.7 to 0.9 for all stations, meaning that the variability of gauged temperature 

is reasonably well explained by the LST. The results of linear regression approaches were applied to define the 

adjusted LST, that is the raw LST times 0.88 plus 5.7 degrees Celsius. The adjusted LST and the mean gauged 

temperature data showed acceptable relative bias (±25%) and E (≥0.5) coefficients for all stations. The same linear 

equation regression approach was used to correct the datasets of LST for all the studied area.  5 

3.2 Regression of NDVI and climate variables  

The precipitation season is occurs mainly during the austral summer months (DJFM), and the vegetation 

development shows a lag with a maximum development around March and April (Fig 1). The NDVI (Fig 1b) 

shows a similar growing pattern as the crop phenology in the region, which starts in September and ends in April. 

Also, the maximum and minimum temperature vary during the year. The latter shows even larger variability, with 10 

higher temperatures during the austral summer. And this could lead to higher evapotranspiration that might 

decrease the water retained in the root zone. With this presumption, we analysed the relationship between NDVI 

and climate variables. In a first step, the relationship between the maximum NDVI during the major phenological 

development months (i.e. March-April) and the corresponding annual crop yield between 1981 and 2015 was 

defined. A total of 26 and 76 NDVI grids estimated properly the quinoa and potato yield, respectively (Fig. 4). 15 

These are locations were NDVI showed a good correspondence with quinoa and potato yield, a correlation equal 

or larger than 0.6 (spearman correlation, p = 0.05) was used as a threshold for acceptable performance. 

In a next step, stepwise linear regression models were tested using the selected NDVI grids and accumulated 

CHIRPS rainfall datasets at the same spatial location with a lag of two, three, and four months and which were 

found statistically significant at the 0.01 level. The coefficient of determination (R2) oscillated from 0.4 to 0.7 in 20 

both cases. Additionally, stepwise linear regression for NDVI as independent variable, and the accumulated 

precipitation and ADD as dependant variables was performed (Eq. 1). The results also showed statistical 

significance for all locations included in the study. The R2 oscillated from 0.5 to 0.8. It should be noted that the 

R2 is generally larger in the northern and central Bolivian Altiplano, where the total precipitation is also larger. 

These are strong indications that precipitation and temperature explains the variability of the crop yield, and the 25 

influence is more notable in the northern and central Bolivian Altiplano. Figure 4 shows the coefficient of 

determination resulting from stepwise regression between NDVI, and precipitation, and temperature with a four-

month lag. 
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Fig. 4. The circles show the spatial location where NDVI properly estimates the (a) quinoa and (b) potato yield. And the 

graduated colours show the coefficient of determination (R2) of the stepwise regression between NDVI as the predictand, and 

precipitation and temperature as the predictors with a lag of 4 months.  

 

The regression models with only precipitation as dependent variable showed a larger coefficient of determination 5 

for three and four-month lag. In northern and central Bolivian Altiplano (16 to19 ᵒLS) larger R2 was found with 

a three-month lag and in the southern Bolivian Altiplano (20 to 22ᵒ LS) with a fourth-month lag. The results are 

related to different sowing time and starting period of the rainy season in the areas. In the northern Bolivian 

Altiplano the rainy season extends longer in time than in the southern Altiplano, where the rainy season is mainly 

concentrated to the austral summer months (DJF, Fig A1). Regression with precipitation and temperature as 10 

dependent variables showed larger coefficients of determination for a four-month lag. The hours of sun required 

for crop development could be the explanation for these results. 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-403
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 27 March 2019
c© Author(s) 2019. CC BY 4.0 License.



14 

 

3.3 Relationship between ENSO and crop yield  

After a reasonable relationship between NDVI and the satellite based climate datasets the next question to be 

tackled is relation to ENSO phases (as well as possible strategies to mitigate effects of these). As indicated, the 

relationship between ENSO and crop yield was analysed using two sample t-test and Wilcoxon Rank-Sum Tests 

for La Paz, Oruro, and Potosi (see Fig. 2c). To test the relationship, crop yield during neutral/moderate years was 5 

compared with crop yield during El Niño years (warm ENSO phase) (see Table A2). The results showed that 

quinoa yield during warm ENSO phase and neutral/moderate years presents a significant difference at 95% 

confidence level except for Oruro (Table A3). The yield during neutral/moderate years is higher with about 0.2 

t/ha compared to El Niño years. The quinoa yield production during El Niño years is lower than the mean yield 

for neutral/moderate years, except for Oruro during 1982-1983 (Fig. 5). This finding contradicts previous studies 10 

that reported large agricultural losses during 1982-1983 and 1997-1998 (Santos, 2006). On the other hand, the 

quinoa yield has constantly increased during the last years, mainly in Oruro. This could be explained by 

employment of advanced crop management strategies (e.g., selected crop varieties and application of agricultural 

innovations), as this region is one of the largest producer in Bolivia and the world (Ormachea and Ramirez, 2013). 

 

Fig 5. The boxplot of the (a) quinoa and (b) potato yield for normal and moderate years (Normal-M) for La Paz, Oruro, and 15 
Potosi. And the crop yield during strong El Nino years (markers). The mean of the crop yield during the normal and moderate 

years (dashed line). 
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Despite the quinoa’s high tolerance to environmental stress including droughts (Jacobsen et al., 2005;  Jacobsen 

et al., 2003), it generally showed larger losses during El Niño events than potato (Fig. 2). This may be due to the 

crop´s sensitivity for water stress during specific stages of the growing season, and the most sensitive stages are 

the emergence, flowering and grain development (see Geerts et al., 2009;  Geerts et al., 2008a). The risk for crop 

yield reduction could be reduced here with irrigation during the sensitive phases of the quinoa crop development. 5 

A strategy like deficit irrigation could be employed (Talebnejad and Sepaskhah, 2015;  Geerts et al., 2008b). 

Another strategy to mitigate the crop yield reduction is implementation of crop varieties more resistant to water 

stress (e.g. Sun et al., 2014). 

The t-test and Rank-Sum test results showed that potato yield during neutral/moderate and El Niño years is 

significantly different at 95% confidence level except for La Paz (Table A3). The results showed that production 10 

during neutral/moderate years is higher in Oruro and Potosi. All regions showed lowest potato yield during strong 

El Niño for 1982-1983, with a yield reduction of 40, 80, and 30%, as compared to mean yield during 

normal/moderate years in La Paz Oruro and Potosi, respectively. The yield reduction during other El Niño events 

seems to have a larger effect in Oruro. Besides El Niño events during 1982-1983, potato yield in La Paz showed 

lower vulnerability to this phenomenon. This could be explained by closeness to the Lake Titicaca and other water 15 

bodies that might be used as a water source during precipitation deficit. Similar strategies for drought mitigation 

(e.g., irrigation and resistant crop varieties) could be implemented in order to avoid large crop losses. However, 

knowing that a very strong El Niño could lead to large agricultural losses, insurance policy could be assigned to 

farmers in order to manage the risk before the occurrence of a drought event. For the implementation of any 

drought mitigation strategy, identification, evaluation, and monitoring of drought risk are crucial. What is 20 

important is our findings that ENSO must be taken explicitly into account in such considerations. 

4. Summary and conclusions  

We employed a satellite dataset product and tested it for accuracy as well as performance to similar (but with 

coarser resolution) datasets available for our region. Using these datasets, it was shown that during El Niño years 

the crop yield reduces considerably (Figure 5 Table A3), and as a consequence the socio-economic vulnerability 25 

of farmers, will likely increase during such periods. Furthermore, it was found that NDVI can be related to crop 

yield and therefore, NDVI could be used to target specific hot spots depending on NDVIs availability at a local 

scale. As a consequence, ENSO forecasts as well as possible magnitudes of crop deficits could be established 

which may be beneficial for emergency authorities, including identification of possible hotspots of crop deficits 
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during the growing season. Our approach can help to determine the magnitude of assistance needed for farmers 

at the local level but can also enable a pro-active approach to disaster risk management against droughts. This 

may include not only economic related instruments such as insurance but also risk reduction instruments such as 

irrigation and resistant crop varieties as discussed above. In fact, risk management based financing is gaining 

increasing attraction in real-world settings as it has several advantages. However, it should be acknowledged that 5 

large challenges still remain (French and Mechler, 2017).  

The drought severity could be measured via time shifts from normal conditions of climatic parameters such as 

precipitation. As in our case, we not only elucidated shifts but also the difference in risk for El Niño and 

neutral/moderate years. However, one of the main challenges of drought risk analysis is data-scarcity, e.g., low 

density or unevenly distributed stations for hydro-meteorological data networks, poor data quality due to missing 10 

data, and restricted use of data between government agencies or other institutions. As it was shown here, ENSO 

warm phase related characteristics are especially important in the context of extreme drought events and should 

therefore be incorporated within early warning systems as standard practice. Despite these challenges for 

development of drought risk assessment, applications have been successful in the past. There are numerous cases 

in many countries and as in our case, particularly in the mid-latitudes where weather patterns are strongly 15 

influenced by ENSO. Monitoring and predicting ENSO can therefore significantly contribute to reduce the risk 

of disasters.  

This study is a first attempt to provide an agricultural drought risk assessment in relation to the ENSO phenomenon 

for the Bolivian Altiplano. Our study provided valuable information for drought risk reduction, primarily by 

finding information of hotspots where crop yield is more affected by droughts and how this can be clarified using 20 

satellite imagery. However, while an overall good fit between climate, ENSO, and crop yield variables was found, 

it is important to consider other variables, such as evapotranspiration and soil moisture to improve risk-based 

models. With such information also agricultural models could be set up and risk management plans with better 

accuracy determined. 

 25 
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APPENDIX 

Table A1. Spatial location of the studied weather stations where gauged precipitation data is available, the stations that also 

present temperature maximum and minimum data indicate T on the column of temperature.  

No Station name Region  Latitude Longitude Altitude Temperature 

[1] Achiri La Paz -17.21 -69.00 3880 T 

[2] Ancoraimes La Paz -15.90 -68.90 3882  

[3] Ayo Ayo La Paz -17.09 -68.01 3888 T 

[4] Berenguela La Paz -17.29 -69.21 4145  

[5] Calacoto La Paz -17.28 -68.64 3830 T 

[6] Colcha K Potosí -20.74 -67.66 3780  

[7] Collana La Paz -16.90 -68.28 3911 T 

[8] Conchamarca La Paz -17.38 -67.46 3965  

[9] Copacabana La Paz -16.17 -69.09 3870  

[10] El Alto Aeropuerto La Paz -16.51 -68.20 4034 T 

[11] El Belen La Paz -16.02 -68.70 3833  

[12] Hichucota La Paz -16.18 -68.38 4460  

[13] Oruro Aeropuerto Oruro -17.95 -67.08 3701 T 

[14] Patacamaya La Paz -17.24 -67.92 3793 T 

[15] Salla La Paz -17.19 -67.62 3500  

[16] San Jose Alto La Paz -17.70 -67.78 3746 T 

[17] San Juan Huancollo La Paz -16.58 -68.96 3829  

[18] San Pablo de Lipez Potosí -21.68 -66.61 4256  

[19] Santiago de Huata La Paz -16.05 -68.81 3845  

[20] Santiago de Machaca La Paz -17.07 -69.20 3883  

[21] Tiahuanacu La Paz -16.57 -68.68 3863 T 

[22] Uyuni Potosí -20.47 -66.83 3680 T 

[23] Viacha La Paz -16.66 -68.28 3850 T 

 

 

Table A2. The classification of strong El Niño (≥ 1.5 deg C), strong La Niña (≤ -1.5 dec C) and neutral/moderate (-1.4 to 1.4 5 
dec C) years for the period 1981 to 2015. 

Strong El Niño Neutral and moderate Strong La Niña 

1982-83 1981 1988-89 

1986-87 1984-1985 1998-99 

1987-88 1989-1990 2007-08 

1991-92 1992-1996 2010-11 

1997-98 2000-2006 
 

 2008-2009 
 

 2011-2014 
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Table A3. T-test and Wilcoxon rank sum test for quinoa and potato yield during El Niño years and neutral/moderate years.  If 

the hypothesis is equal to 1 it means that we rejected the null hypothesis at a confidence level of 95%. 

   T test 2 sample  Wilcoxon rank sum test 

   Hypothesis P value t-stat  Hypothesis P value z-stat 

 

Quinoa 

La Paz  1 ~0 4.2  1 0.01 3.0 

Oruro  0 0.13 1.6  1 0.05 2.0 

Potosi  1 ~0 3.4  1 0.04 2.5 

 

Potato 

La Paz  0 0.10 1.7  0 0.54 0.61 

Oruro  1 ~0 3.4  1 0.02 2.4 

Potosi  1 0.02 2.6  1 0.05 2.0 
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Figure A1. Boxplot of the total monthly precipitation in the Bolivian Altiplano at the northern Altiplano: (a) Copacabana [9], 

(b) El Alto Aeropuerto [10], central Altiplano: (c) Oruro Aeropuerto [13], (d) Patacamaya [14], and southern Altiplano (e) 

Colcha K [6], and (f) Uyuni [22].   
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