Supplement of Hydrol. Earth Syst. Sci., 24, 4491–4501, 2020 https://doi.org/10.5194/hess-24-4491-2020-supplement © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

Novel Keeling-plot-based methods to estimate the isotopic composition of ambient water vapor

Yusen Yuan et al.

Correspondence to: Lixin Wang (wang.iupui@gmail.com) and Taisheng Du (dutaisheng@cau.edu.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Proposition. In the traditional linear Keeling plot system, denote $\delta_a=f(t)$, $\delta_v=g(t)$, $\delta_{ET}=h(t)$ and $C_a=I(t)>0$ as continuous functions of time. And for two definite moments t_1 and t_2 ($t_1< t_2$), $\delta_{a_1} \neq \delta_{a_2} \neq \delta_{v_1} \neq \delta_{v_2} \neq \delta_{ET_1} \neq \delta_{ET_2}$. The slopes of corresponding keeling plot curve are $k_1=C_{a_1}(\delta_{a_1}-\delta_{ET_1})$ and $k_2=C_{a_2}(\delta_{a_2}-\delta_{ET_2})$, respectively. Then we have that when $k_1k_2<0$, there exists $[t_1',t_2']\subset [t_1,t_2]$, such that $[min(f(t_1'),f(t_2')),max(f(t_1'),f(t_2'))]\subset [min(\delta_{v_1},\delta_{v_2}),max(\delta_{v_1},\delta_{v_2})]$.

Remark: To make a proof of the proposition, classical Intermediate Value Theorem (IVT) was used. It states that if f is a continuous function from the interval I = [a, b] to real number (R). Then $Version\ I$. if u is a number between f(a) and f(b), there is c in (a, b) such that f(c) = u. $Version\ II$. the image set f(I) is also an interval, and it contains [min(f(a), f(b)), max(f(a), f(b))]. While in this study, IVT was able to be explained as follows: if f is a continuous function from the interval $I = [t_1, t_2]$ to R with $min[f(t_1), f(t_2)] < \delta_v$ and $max[f(t_1), f(t_2)] > \delta_v$, then $Version\ I$ implies that there is $t' \in (t_1, t_2)$ such that $f(t') = \delta_v$. And $Version\ II$ implies that the image set f(I) is also an interval, and it contains $[min(f(t_1), f(t_2)), max(f(t_1), f(t_2))]$.

Proof. Since $k_1k_2 < 0$, we have $\delta_{a_1} < \delta_{v_1}$ and $\delta_{a_2} > \delta_{v_2}$, or $\delta_{a_1} > \delta_{v_1}$ and $\delta_{a_2} < \delta_{v_2}$. As a result, the cases $\delta_{a_1} < \delta_{v_1} < \delta_{a_2} < \delta_{v_2}$, $\delta_{v_1} < \delta_{a_1} < \delta_{v_2} < \delta_{a_2}$, $\delta_{v_2} < \delta_{a_2} < \delta_{v_1} < \delta_{a_1}$, $\delta_{a_2} < \delta_{v_2} < \delta_{a_1} < \delta_{v_1}$ and $[min(\delta_{v_1}, \delta_{v_2}), max(\delta_{v_1}, \delta_{v_2})] \cap [min(\delta_{a_1}, \delta_{a_2}), max(\delta_{a_1}, \delta_{a_2})] = \emptyset$ do not meet the precondition $k_1k_2 < 0$. There are only four cases below. We will prove the proposition in each of the four cases.

Case 1: $[min(\delta_{v_1}, \delta_{v_2}), max(\delta_{v_1}, \delta_{v_2})] \subset [min(\delta_{a_1}, \delta_{a_2}), max(\delta_{a_1}, \delta_{a_2})]$ (Fig. 1 a).

According to IVT *Version I*, there exists $t_1 \in [t_1, t_2]$, such that $f(t_1') = \delta_{v_1}$; similarly, there exists $t_2 \in [t_1, t_2]$, such that $f(t_2') = \delta_{v_2}$. Based on IVT *Version II*, there exists $\begin{bmatrix} t_1, t_2 \end{bmatrix} \subset [t_1, t_2]$, such that $[min(f(t_1'), f(t_2')), max(f(t_1'), f(t_2'))] = [min(\delta_{v_1}, \delta_{v_2}), max(\delta_{v_1}, \delta_{v_2})]$. Case 2: $[min(\delta_{a_1}, \delta_{a_2}), max(\delta_{a_1}, \delta_{a_2})] \subset [min(\delta_{v_1}, \delta_{v_2}), max(\delta_{v_1}, \delta_{v_2})]$ (Fig. 1 b). According to IVT *Version I*, there exists $t_1 \in [t_1, t_2]$, such that $f(t_1') = \delta_{a_1}$; similarly, there exists $t_2 \in [t_1, t_2]$, such that $f(t_2') = \delta_{a_2}$. Based on IVT *Version II*, there exists $t_1 \in [t_1, t_2] \subset [t_1, t_2]$.

exists $t_{2} \in [t_{1}, t_{2}]$, such that $f(t_{2}') = \delta_{a_{2}}$. Based on IVT *Version II*, there exists $[t_{1}, t_{2}]$ $[t_{1}, t_{2}]$, such that $[min(f(t_{1}'), f(t_{2}')), max(f(t_{1}'), f(t_{2}'))] = [min(\delta_{a_{1}}, \delta_{a_{2}}), max(\delta_{a_{1}}, \delta_{a_{2}})] \subset [min(\delta_{v_{1}}, \delta_{v_{2}}), max(\delta_{v_{1}}, \delta_{v_{2}})].$

Case 3: $\delta_{v_2} < \delta_{a_1} < \delta_{v_1} < \delta_{a_2}$, or $\delta_{a_2} < \delta_{v_1} < \delta_{a_1} < \delta_{v_2}$ (Fig. 1 c and Fig. 1 d).

According to IVT Version I, there exists $t_2 \in [t_1, t_2]$, such that $f(t_2') = \delta_{v_1}$. Given case (2), when $[\min(\delta_{a_1}, \delta_{v_1}), \max(\delta_{a_1}, \delta_{v_1})] \subset [\min(\delta_{v_1}, \delta_{v_2}), \max(\delta_{v_1}, \delta_{v_2})]$, there exists $\begin{bmatrix} t_1, t_2 \end{bmatrix} \subset \begin{bmatrix} t_1, t_2 \end{bmatrix} \subset [t_1, t_2]$, such that $[\min(f(t_1'), f(t_2')), \max(f(t_1'), f(t_2'))] \subset [\min(\delta_{a_1}, \delta_{v_1}), \max(\delta_{a_1}, \delta_{v_1})] \subset [\min(\delta_{v_1}, \delta_{v_2}), \max(\delta_{v_1}, \delta_{v_2})]$. Case 4: $\delta_{v_1} < \delta_{a_2} < \delta_{v_2} < \delta_{a_1}$, or $\delta_{a_1} < \delta_{v_2} < \delta_{a_2} < \delta_{v_1}$ (Fig. 1 e and Fig.1 f). According to IVT Version I, there exists $t_1 \in [t_1, t_2]$, such that $f(t_1') = \delta_{v_2}$. Based on case (2), when $[\min(\delta_{a_2}, \delta_{v_2}), \max(\delta_{a_2}, \delta_{v_2})] \subset [\min(\delta_{v_1}, \delta_{v_2}), \max(\delta_{v_1}, \delta_{v_2})]$, there exists $[t_1, t_2] \subset [t_1, t_2]$, such that $[\min(f(t_1'), f(t_2')), \max(f(t_1'), f(t_2'))] \subset [\min(\delta_{a_2}, \delta_{v_2}), \max(\delta_{a_2}, \delta_{v_2})] \subset [\min(\delta_{v_1}, \delta_{v_2}), \max(\delta_{v_1}, \delta_{v_2})]$. Thus the proposition is true for all four possible scenarios, which make the estimation of δ_a theoretically feasibly when $k_1k_2 < 0$ and δ_{v_1} and δ_{v_2} adequately close. Actual δ_a between t_1 and t_2 can be ensured in the interval $[\min(\delta_{v_1}, \delta_{v_2}), \max(\delta_{v_1}, \delta_{v_2})]$.

reveals.