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Highlights 9 

10 

• Regions of prevailing precipitation and dissolution are related to preferential flow patterns11 

• Large changes in non-Fickian transport parameters are observed while velocity variance12 

display modest variations13 

• Initial heterogeneity facilitates attaining asymptotic average solute velocity value14 

15 

 Abstract 16 

Our study investigates interplays between dissolution, precipitation, and transport processes 17 

taking place across randomly heterogeneous conductivity domains and the ensuing spatial 18 

distribution of preferential pathways. We do so by relying on a collection of computational analyses 19 

of reactive transport performed in two-dimensional systems where the (natural) logarithm of 20 

conductivity is characterized by various degrees of spatial heterogeneity. Our results document that 21 

precipitation and dissolution jointly take place in the system, the latter mainly occurring along 22 

preferential flowpaths associated with the conductivity field, the former being observed at locations 23 

close to and clearly separated from these. High conductivity values associated with the preferential 24 

flowpaths tend to further increase in time, giving rise to a self-sustained feedback between transport 25 

and reaction processes. The clear separation between regions where dissolution or precipitation takes 26 

place is imprinted onto the sample distributions of conductivity which tend to become visibly left 27 

skewed with time (with the appearance of a bimodal behavior at some times). The link between 28 

conductivity changes and reaction-driven processes promotes the emergence of non-Fickian effective 29 

transport features. The latter can be captured through a continuous time random walk model where 30 

solute travel times are approximated with a truncated power law probability distribution. The 31 

parameters of such a model shift towards values associated with increasingly high non-Fickian 32 

effective transport behavior as time progresses. 33 

1.Introduction34 

Diagnosis and characterization of the feedback between geochemical precipitation/dissolution 35 

reactions and solute transport processes in heterogeneous subsurface systems is key to a variety of 36 

environmental and Earth science scenarios (Rege & Fogler, 1989; Berkowitz et al., 2016). A critical 37 

challenge is the emergence of complex dependencies between physical and chemical processes taking 38 

place across aquifer bodies (Saripalli et al., 2001). Heterogeneity of these systems promotes diverse 39 

patterns of precipitation and/or dissolution that may imprint a variety of dynamic system responses, 40 

including, e.g., wormholing and oscillatory behaviors of system attributes such as porosity and 41 
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permeability (Edery et al., 2011; Garing et al., 2015; Golfier et al., 2002). Examples of practical 42 

applications in this context include geologic CO2 storage (e.g., Pawar et al., 2015; Noiriel & Daval, 43 

2017; Cabeza et al., 2020 and references therein), acid injection in production wells (e.g., Liu et al., 44 

2017 and references therein), and reactive transport of contaminants (e.g., Ceriotti et al., 2018; Dalla 45 

Libera et al., 2020 and references therein). 46 

Computational studies can assist the analysis of patterns of chemical transport across 47 

heterogeneous subsurface systems in the presence of precipitation/dissolution phenomena. While 48 

requiring an explicit description of the spatial heterogeneity of the system properties (Atchley et al., 49 

2014), routine application of numerical simulations in practical settings is hampered by (i) our limited 50 

knowledge of the system attributes, resulting in uncertainty affecting the parameterization of the 51 

underlying physical and chemical processes and their variability, and (ii) the computational costs 52 

required to properly quantify such uncertainties and their propagation onto environmental quantities 53 

of interest. In this context, we rely on an effective approach to characterize the evolution of key 54 

features of solute transport in the presence of rock-fluid interactions across a porous medium whose 55 

spatially heterogeneous conductivity field is interpreted according to a commonly employed 56 

stochastic framework. 57 

A critical element we tackle is related to the analysis of the dynamic feedback between reactive 58 

transport and spatially heterogenous distributions of porous media attributes such as hydraulic 59 

conductivity. Following prior studies, we start by recognizing that, even under geochemical 60 

equilibrium conditions, the spatial heterogeneity of system attributes typically imprints an uneven 61 

spatial distribution of regions where chemical reactions take place, local fluctuations of conductivity 62 

being key to this element (Edery, Porta, et al., 2016). Further to this, our conceptualization of the 63 

setting is grounded on the observation that rendering of transport features in geological formations 64 

through effective formulations typically requires embedding non-Fickian features. To this end, we 65 

rely on a continuous time random walk (CTRW) upscaled model where solute travel times are 66 

approximated with a truncated power law (TPL) probability density function (PDF), hereafter termed 67 

CTRW-TPL (Berkowitz et al., 2006). This effective modeling framework is particularly relevant 68 

because the emergence of non-Fickian transport features in heterogeneous formations has been 69 

observed at diverse scales of observation, including pore-, laboratory- and field-scale scenarios (e.g., 70 

Edery et al., 2011; Muljadi et al., 2018; Menke et al., 2018 and references therein). 71 

In line with our objective, we rest on the framework of analysis developed in (Edery et al., 72 

2014; Edery, Porta, et al., 2016), where an effective depiction of transport processes is parametrized 73 

as a function of the statistics of solute residence times in randomly heterogeneous conductivity fields. 74 

A main element of this framework is that it yields a link between the CTRW-TPL formulation and 75 

the occurrence of preferential pathways that can be obtained from computational studies of transport 76 

in such conductivity fields (Edery et al., 2014). As a result, the methodology is conducive to an 77 

effective (or upscaled) representation of local features to identify signatures of non-Fickian transport 78 

and embed these in the representation of solute breakthrough curves (BTC) as a function of the 79 

underlying system properties (see also, e.g., Dentz et al., 2011; Edery et al., 2014). To illustrate the 80 

main features associated with the scenario of interest, we consider a Darcy-scale formulation of a 81 

reactive transport setup, where precipitation and/or dissolution of minerals are driven by the injection 82 

of an acid compound establishing local equilibrium with the resident fluid and a solid matrix of the 83 

host porous medium which is considered to be composed of calcite mineral. While the geochemical 84 

processes we consider are somehow streamlined with respect to a field-scale scenario, they embed 85 

the main elements characterizing the interplay between solute transport and rock-fluid interactions in 86 

Darcy-scale systems. Within this conceptual picture, our study aims at investigating (i) the interplay 87 
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between the reactive process and the ensuing spatial distribution of preferential pathways associated 88 

with spatially heterogeneous conductivities and (ii) the link between locally occurring reaction-driven 89 

phenomena and emerging non-Fickian effective transport features, as captured by the CTRW-TPL 90 

framework. 91 

2.Methodology 92 

2.1 Chemical model 93 

We simulate a reactive transport scenario where calcite (𝐶𝑎𝐶𝑂3 (𝑠), subscript (s) denoting solid 94 

mineral) can dissolve or precipitate locally in the presence of chemical equilibrium between dissolved 95 

carbonic acid (𝐻2𝐶𝑂3) and pH. The amount of dissolved 𝐻2𝐶𝑂3 as a function of pH (see Figure S1 96 

in the supplementary material) is then governed by equilibrium conditions, which is tantamount to 97 

assuming a locally instantaneous reaction (i.e., infinite local Damköhler number). The formulation 98 

describing the chemical reactions can then be streamlined as: 99 

𝐶𝑎𝐶𝑂3 (𝑠)
 

↔ 𝐶𝑎    
2+ +  𝐶𝑂3   

2−  (1a) 100 

𝐻2𝐶𝑂3 
 

↔  2𝐻 
+ +  𝐶𝑂3 

2−  (1b) 101 

according to which two protons 𝐻 
+ in (1b) react with 𝐶𝑂3

2− to produce 𝐻2𝐶𝑂3 that in turn drives 102 

dissolution of the host calcium carbonate solid matrix. In this context, and consistent with typical 103 

experimental practice, we consider the injected fluid and the porous medium to be associated with a 104 

source of 𝐻 
+ and an abundance of 𝐶𝑎   

2+, respectively. Thus, 𝐶𝑎   
2+ is not rate limiting and the spatial 105 

distribution of 𝐻 
+, as driven by transport and reaction, governs pH. The rate limiting reaction is then 106 

(1b), that is controlled by the available 𝐻 
+ (or pH), similar to observations associated with other 107 

studies (Singurindy & Berkowitz, 2004; Edery et al., 2011). The chemical reaction system (1a) and 108 

(1b) is here simplified (see, e.g., Krauskopf & Bird, 1967) through: 109 

𝑐𝑜
 

↔  2ℎ +  𝑐 (2) 110 

where 𝑐𝑜 denotes 𝐻2𝐶𝑂3, ℎ and c representing 𝐻 
+ and 𝐶𝑎𝐶𝑂3 (𝑠), respectively. 111 

2.2 Flow and transport modeling 112 

Our computational setting is intended to mimic a laboratory scale scenario where a 60 × 24 cm2 113 

two-dimensional flow cell is filled with a porous system formed by a 𝐶𝑎𝐶𝑂3 (𝑠) solid matrix. The 114 

system is initially fully saturated with water and an injection of low pH water takes place across the 115 

upstream side of the cell. To investigate the influence of the dissolution/precipitation reaction on 116 

solute transport, we consider a uniform in the mean groundwater flow, taking place within a two-117 

dimensional domain where the (natural) logarithm of conductivity, 𝑦 = ln (𝑘), is considered as a 118 

zero-mean, second-order stationary random field. The latter is further characterized by an isotropic, 119 

simple exponential, covariance function, with (normalized) correlation length l/L, L being the length 120 

of the domain along the main flow direction. Various degrees of heterogeneity of the system are 121 

analyzed upon considering values of log-conductivity variance 𝜎0
2 = [1, 3, 5], subscript 0 denoting 122 

that these values refer to the initially generated conductivity distributions (i.e., prior to the occurrence 123 

of reactions). The domain is discretized through 300×120 elements of uniform size Δ = 0.2 cm, 124 

yielding a field size of 60 × 24 cm2. Each field is synthetically generated through the widely tested 125 

sequential Gaussian simulator GCOSIM3D (Gómez-Hernández & Journel, 1993) and is characterized 126 

by l/L = 0.016. This yields a value of Δ/l = 0.2, which is deemed adequate to capture the local features 127 
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of the covariance of 𝑦 and their impact on the main statistics of the velocity field and travel times 128 

(Ababou et al., 1989; Riva et al., 2009). 129 

For each value of 𝜎0
2, 20 random realizations of 𝑦 are generated, each being then subject to a 130 

deterministic pressure drop (ΔH = 100cm) between the inlet (left) and the outlet (right) sides. The 131 

local distribution of fluid velocity is computed through 132 

𝛻 ⋅ 𝒒(𝒙) = 0; 𝒒(𝒙) = −𝑘(𝒙) ⋅ 𝛻ℎ(𝒙) (3) 133 

where 𝒒(𝒙) is the local Darcy flux, vector 𝒙 corresponding to spatial location. The local fluid velocity 134 

field is then obtained as 𝒗 = 𝒒/𝜃, a constant initial porosity θ = 0.4 being here considered for the 135 

porous medium. 136 

Solute transport is then simulated across each conductivity field by a particle tracking approach 137 

(Le Borgne et al., 2008). A number of 105 ℎ particles (see (2)), which is selected to represent a full 138 

pore volume at constant pH = 3.5, is divided by the domain length and multiplied by the mean velocity 139 

(𝐯̂ , as evaluated from (4) across the whole domain). A total amount of particles evaluated as 140 

𝐼𝑛𝑡𝑒𝑔𝑒𝑟(105/𝐿 ∙ Δ𝑡 ∙ 𝐯̂) is then injected into the system at regular time intervals (Δ𝑡 = 0.1 min). 141 

Particles injected at each Δ𝑡 are flux-weighted according to the conductivity distribution at the inlet. 142 

The particles representing a full pore volume correspond to 10.79 moles of 𝐻 
+, the same amount 143 

being injected across the simulation course to obtain a constant pH = 3.5 in the injected fluid, while 144 

absence of ℎ particles is taken to correspond to pH = 8. We then evaluate the pH value (or 𝐻 
+ molar 145 

mass) associated with each ℎ particle by dividing the total number of 𝐻 
+ moles required to obtain a 146 

pH = 3.5 (i.e., 10.79 mol of 𝐻 
+) by the pore volume (as represented by 105 ℎ particles). 147 

The upper and lower boundaries of the domain are reflective while the outlet boundary is 148 

absorbing. Transport is simulated through 149 

𝒅 = 𝒗[𝒙(𝑡𝑘)]δ𝑡 + 𝒅𝐷 (4) 150 

where d is particle displacement, x(tk) is the vector identifying spatial coordinates of particle location 151 

at time tk, v is fluid velocity at x(tk), δt = δs/v is the temporal displacement magnitude (v is the norm 152 

of v), and 𝒅𝐷 is the diffusive displacement. The latter is evaluated as dD = 3N[0,1]√2𝐷mδt, where 153 

N[0,1] represents a two-dimensional vector of random variables, whose entries are mutually 154 

independent and sampled from a Gaussian distribution with zero mean and unit variance, 𝐷m = 10-5 155 

cm2/min representing diffusion. The value of 𝛿𝑠 is selected to be an order of magnitude less than Δ, 156 

to accurately sample the velocity variability within a conductivity block. 157 

Coupling between particle evolution and the geochemical setup illustrated in Section 2.1 is 158 

achieved in two steps. First, we advance all particles according to the displacement mechanism 159 

described above. Second, we satisfy the equilibrium condition (2) by equilibrating both 𝑐𝑜 and ℎ 160 

within each cell, leading to precipitation or dissolution of a calcite mineral. The calcite volume to 161 

mole ratio is taken as 𝑀 = 37 
𝑐𝑚3

𝑚𝑜𝑙
 (Morse & Mackenzie, 1993) and the equilibrium between ℎ and 162 

𝑐𝑜 particles (according to (2)) leads to a local precipitation (or dissolution) of the solid. We update in 163 

time the spatial distribution of porosity assuming that it is characterized by a uniform change within 164 

each individual domain cell. We finally update conductivity through the Kozeny-Carman (KC) 165 

formulation 166 

𝑘(𝑎𝑟)𝑖𝑗 = 𝑘(𝑏𝑟)𝑖𝑗 ∙
𝜃(𝑎𝑟)𝑖𝑗

3

(1−𝜃(𝑎𝑟)𝑖𝑗)2 ∙
(1−𝜃(𝑏𝑟)𝑖𝑗)2

𝜃(𝑏𝑟)𝑖𝑗
3   (5) 167 
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where 𝑘(𝑎𝑟)𝑖𝑗 and 𝜃(𝑎𝑟)𝑖𝑗  are conductivity and porosity, respectively, after the reaction (𝑎𝑟) has 168 

taken place, while 𝑘(𝑏𝑟)𝑖𝑗 and 𝜃(𝑏𝑟)𝑖𝑗 are their counterparts before the reaction is observed, 169 

subscripts i and j being identifiers of a given cell. The process is repeated for each particle in each of 170 

the cells until an equilibrium between 𝑐𝑜 and ℎ is reached. We set an upper and a lower bound of 0.1 171 

and 0.9, respectively, for porosity, to avoid the occurrence of unphysical porosity values. Precipitation 172 

is treated numerically in a corresponding way. We numerically calculate the updated local head and 173 

fluid velocity distributions from (4) at time intervals of 10 Δt, to reduce constraints associated with 174 

computational costs. The computational cost of each realization is between 1~3 days (depending on 175 

the value of 𝜎0
2), upon relying on a 16 Xeon 2.6 Ghz processor with 64 GB RAM. 176 

The updated conductivity field is extracted and stored at the above mentioned regular intervals 177 

of 10 Δ𝑡. Transport of a non-reactive solute pulse is then simulated across each of these updated fields 178 

to capture the temporal evolution of the key parameters driving effective transport (see Section 2.3). 179 

While noting that natural porous media can exhibit complex relationships between permeability and 180 

porosity (Luquot & Gouze, 2009), which may not always be interpreted through the KC model (6), 181 

we employ the latter formulation because it is considered as a reference model in the literature and 182 

can serve as a proxy for alternative improved parameterizations (Erol et al., 2017). 183 

2.3 Quantities of interest 184 

The workflow described in Section 2.2 enables one to extract computationally-based quantities 185 

employed to characterize the analyzed reactive transport setup. As stated in Section 2.2, we simulate 186 

a tracer test within the original fields as well as within those modified by precipitation/dissolution. 187 

Particles are displaced through the action of advection and diffusion following a pulse (flux-weighted) 188 

injection at the inlet. These non-reactive transport simulations are performed to assess base values of 189 

parameters characterizing solute transport (a) prior to starting the reactive transport simulation as well 190 

as (b) at specific times after reaction changed the field. The empirical PDF of particle waiting times 191 

is assessed from the corresponding histogram starting by evaluating particle waiting times within a 192 

given domain cell through the inverse of the particle velocity computed at each time step multiplied 193 

by the cell length and weighted by the number of particles visiting the cell. This PDF is then used to 194 

estimate the parameters of the TPL model 195 

𝜓(𝑡𝑤) =  
𝑛

𝑡1

exp (−𝑡/𝑡2)

(1+
𝑡

𝑡1
)

1+𝛽  (6) 196 

where 𝑡𝑤 is the waiting time of a particle within a given domain cell, 𝑡1, 𝑡2, and 𝛽 are model 197 

calibration parameters, which are estimated through a standard least square technique. Note that 198 

previous results have shown that the parameters obtained from (6) can be readily used to interpret 199 

breakthrough curves associated with non-reactive solutes (Edery et al., 2014). 200 

The velocity fields are examined upon computing the evolution of the velocity and conductivity 201 

fields statistics, as described in the following. Let us consider a discrete field of a generic quantity 𝑧𝑖𝑗 202 

evaluated in a given cell 𝑖𝑗. In the particle tracking numerical simulations we quantify 𝑛𝑖𝑗(𝑡) as the 203 

number of particles that have visited cell 𝑖𝑗 along the simulation up to a given time 𝑡. Thus, we 204 

evaluate two relative frequency (or empirical probability) distributions, i.e., 𝑓(𝑧𝑖𝑗) and 𝑓(𝑛𝑧𝑖𝑗), 205 

hereafter termed as unweighted and weighted distribution of the variable 𝑧𝑖𝑗, respectively. We define 206 

the weighted variable 𝑛𝑧𝑖𝑗(𝑡) =  𝑛𝑖𝑗(𝑡)𝑧𝑖𝑗/𝑛̅(𝑡), where 𝑛̅ is the average value of 𝑛𝑖𝑗. Note that the 207 

adopted weighting scheme corresponds to weighting 𝑧𝑖𝑗 by the solute mass distribution. Average 208 

values of the weighted and unweighted distributions (hereafter denoted as 𝑧̅ and 𝑛𝑧̅̅ ̅, respectively) can 209 
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then be evaluated. In the following we perform particle weighting in the non-reactive as well as in 210 

the reactive transport scenarios. Distribution weighting by reactive particles is indicated by 𝑛𝑅, 211 

meaning that weighting is performed based on the reactive transport simulations (i.e., considering ℎ 212 

and 𝑐𝑜 particles as explained above). The plain symbol 𝑛 indicates weighting by non-reactive 213 

particles, employed to simulate conservative tracer tests as detailed above. The variable 𝑧𝑖𝑗 is taken 214 

to correspond to either the cell log-conductivity 𝑦𝑖𝑗 or fluid velocity 𝑣𝑖𝑗 in the results illustrated in 215 

Section 3.  216 

3.Results 217 

We start our analyses by simulating transport of a non-reactive tracer across the generated 218 

heterogeneous conductivity domains. As log-conductivity variance increases, the range of 219 

conductivity values naturally increases, this being reflected in the distribution 𝑓(𝑦𝑖𝑗) (see, e.g., Figure 220 

1 a-c (blue circles)). The shape of weighted conductivity distributions, 𝑓(𝑛𝑦𝑖𝑗), differs from the one 221 

of 𝑓(𝑦𝑖𝑗), consistent with the observation that particles are chiefly channelled towards preferential 222 

flow pathways. The latter distributions tend to be shifted towards high conductivity values and are 223 

characterized by an enhanced mean conductivity value as compared against their generated 224 

(unweighted) counterparts (see conductivity mean and weighted mean values in Table 1, and the 225 

results corresponding to the blue and red circles depicted in Figure 1 a-c). This shift is imprinted onto 226 

the probability density function (PDF) of the waiting times and onto its associated CTRW-TPL 227 

parameters (see Figure 2 a-c), consistent with prior studies (Edery et al., 2014; Edery, Geiger, et al., 228 

2016; Edery, 2020). We then simulate reactive transport across the collection of generated fields, 229 

allowing for precipitation (and/or dissolution) of calcite and assessing the evolution of the 230 

conductivity field according to the Kozeny-Carman formulation introduced in Section 2. 231 

Conductivity, head, and velocity fields, as well as particle visitations, 𝑛𝑖𝑗(𝑡), associated with species 232 

ℎ and 𝑐𝑜 are sampled across time. 233 

After 200 𝑡 have elapsed (corresponding to a total simulation time of 20 min, i.e., a full pore 234 

volume) a set of ℎ particles connecting the inlet to the outlet of the system is clearly visible (see 235 

Figure 3 a and b), these particles being non-uniformly distributed in space. Figure 3a and b depict a 236 

heat map of the ℎ particles distribution at time t = 20 min, clearly evidencing the emergence of regions 237 

of preferential flow (PF). We also note that the number of ℎ particles density (corresponding to 238 

concentration) tends to decrease with increasing distance from the inlet, these being replaced by 𝑐𝑜 239 

particles, consistent with the observation that they are consumed during the course of the reactive 240 

process which induces dissolution of the host solid matrix. The ℎ and 𝑐𝑜 particles attain equilibrium 241 

within cells away from the inlet. As such, reaction can only take place if a particle leaves (or enters) 242 

a cell under the action of advection and/or diffusion leading to a new equilibrium state. When 243 

examining the alteration of conductivities due to the dissolution/precipitation reaction, we note that 244 

dissolution (corresponding to an increase of permeability values) is primarily tied to the preferential 245 

flow pathways. Otherwise, precipitation is seen to take place in regions close (on average) to these 246 

pathways. The highest strength of precipitation is observed in the proximity of the preferential 247 

pathways, to then decrease with distance from these. 248 

Figures 3c and e depict the regions where conductivity has increased (due to dissolution) or 249 

decreased (due to precipitation), respectively. The ℎ particles invading the domain closely follow the 250 

PFs displaying a fingering pattern, leading to a corresponding dissolution pattern associated with 251 

locally increased conductivities. Since conductivity values along the PFs are typically higher (on 252 

average), dissolution is increasing these conductivities even further, giving rise to a self-sustained 253 
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enhancing mechanism. The concentration of ℎ particles reaches a local (i.e., within a given cell) 254 

equilibrium with the produced 𝑐𝑜 particles. Hence, dissolution will take place where transport induces 255 

shifts in concentration that need to be compensated by the dissolution/precipitation process to 256 

maintain local equilibrium. Such scenarios can be attained (i) by 𝑐𝑜 particles exiting the preferential 257 

flow pathways due to the action of diffusion (i.e., they leave locations where concentration of ℎ 258 

particles is large upon diffusing towards higher pH regions where they precipitate) or (ii) by ℎ 259 

particles traveling through the fast preferential paths and advancing through these. Figure 3g and h 260 

display regions with dominating dissolution or precipitation for cells outside and within the PFs, 261 

respectively. Here cells associated with PFs are identified upon relying on particle visitations 262 

following Edery et al. (2014). Dissolution dominates within the PFs (as indicated by the red cells in 263 

Figure 3h), because ℎ particles are injected through a flux-weighted boundary condition. On the other 264 

hand, the produced 𝑐𝑜 particles do not precipitate at locations corresponding to the high ℎ 265 

concentration residing in the PFs. These may precipitate away from these regions, where they 266 

experience low concentrations of ℎ particles. Thus, we observe a reduction of conductivity taking 267 

place in regions adjacent to the PFs (Figure 3b and g). In summary, our computational results 268 

document an increase of conductivity along the preferential pathways jointly with a conductivity 269 

reduction within regions close to these and along directions approximately normal to them. 270 

Changes of conductivity values ensuing precipitation/dissolution are clearly visible by the 271 

broadening of the unweighted log-conductivity distribution 𝑓(𝑦𝑖𝑗), see Figure 1d-f, and Figure 1g-i 272 

(blue circles), evaluated at times t = 10 and t = 20 min, respectively. The reaction dynamics leads to 273 

a conductivity field characterized by a slightly increased average value, given that our computational 274 

analyses entail the injection of an acid fluid into the system (see Table 1 for details). Detailed 275 

inspection of Figure 1d and f reveals that precipitation takes place across a slightly larger area than 276 

dissolution, i.e. values of the frequency distribution 𝑓(𝑦𝑖𝑗) associated with low conductivities tend to 277 

increase at a larger rate rather than those corresponding to high conductivities (the left tail of the 278 

distributions becomes heavier than the right tail with the progress of reaction). The 279 

weighted (𝑓(𝑛𝑦𝑖𝑗)) and unweighted (𝑓(𝑦𝑖𝑗)) distributions (red and blue circles in Figure 1d-f, and 280 

Figure 1g-i at time t = 10 and t = 20 min, respectively) are visibly broadening, being associated with 281 

an average conductivity which is higher than the one of the originally generated conductivity domains 282 

(see Table 1). As stated above, dissolution is focused along the preferential pathways, which comprise 283 

an area of limited extent with respect to the whole field.  284 

The above documented mechanism and its signature on the weighted and unweighted 285 

conductivity frequency distributions are sensitive to the initial log-conductivity variance, 𝜎0
2. When 286 

considering both distributions 𝑓(𝑦𝑖𝑗) and 𝑓(𝑛𝑦𝑖𝑗), associated with the case 𝜎0
2 = 1, the distributions 287 

variance are seen to increase in time, as compared to the values attained at the beginning of the 288 

simulation (i.e., prior to reaction; see Figure 1a to d and g, and Table 1). Otherwise, as the initial 289 

heterogeneity increases (see, e.g., 𝜎0
2 = 3,5) mean and variance associated with the weighted and 290 

unweighted conductivity distributions display only minor changes (approximately 10%) across the 291 

temporal window considered. The conductivity fields characterized by the lowest 𝜎0
2 value are 292 

associated with preferential pathways that are not starkly recognizable when analyzed under non-293 

reactive transport conditions. These channels become more clearly distinguishable as reactions induce 294 

an increase of the conductivities along the PFs. At the same time, precipitation causes a decrease of 295 

the conductivity outside the PF. This leads to an increased importance of the left tail of 𝑓(𝑦𝑖𝑗), 296 

corresponding to an increase of low conductivity values (see Figure 1, left middle and bottom rows). 297 
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With reference to the highest conductivity variance analyzed, the reaction patterns for the 298 

precipitation and dissolution lead to a smaller relative change between conductivity frequency 299 

distributions evaluated prior and after the reaction. Relative changes between the unweighted and 300 

weighted conductivity frequency distributions (including the ensuing mean and variance listed in 301 

Table 1) evaluated before and after the reaction are less pronounced as the variance of the generated 302 

conductivity field increases (see Figure 1 middle and right columns and Table 1). This is related to 303 

the observation that, as log-conductivity variance increases, preferential pathways in the originally 304 

generated field become markedly more distinct. Thus, relative differences between unweighted and 305 

weighted conductivity histograms are seen to diminish in time because the flow field is already 306 

organized according to well-identified pathways and tends to preserve its initial pattern (Figure 1d-f, 307 

and Figure 1g-i at time t = 10 and t = 20 min, respectively). Note that low order statistics (i.e., mean 308 

and variance) of velocity and conductivity display only a minute evolution with the progress of 309 

reaction, in spite of the relevant changes exhibited by the tails of the frequency distributions (see 310 

Figure 1) for all considered values of 𝜎0
2, the latter feature being relevant when addressing non-311 

Fickian transport, as further discussed below.  312 

As stated in Section 2.2, the conductivity fields altered through precipitation/dissolution and 313 

extracted at regular time intervals of 10 Δ𝑡 are subject to non-reactive transport analyses and the 314 

ensuing evolution of the parameters of the TPL model (6) is analyzed. Key results of these analyses 315 

are listed in Table 1 with reference to the original (unaltered) conductivity fields and at the final 316 

simulation time (i.e., at time t = 200 𝑡). Analysis of the results associated with transport across the 317 

log-conductivity field characterized by the smallest original variance (i.e., 𝜎0
2 = 1) and listed in Table 318 

1 indicates that the changes of the sample log-conductivity PDF induced by the progress of the 319 

reaction are reflected by the parameters of the TPL model (6). These transition from estimated values 320 

corresponding to an effective Fickian transport regime (corresponding to 𝛽 = 2, see also Figure 2a) 321 

to values denoting a highly non-Fickian effective transport setting, manifested by the widening of the 322 

support of the waiting time PDF 𝜓(𝑡𝑤) (see also Figure 2d and 2g, for results obtained at t = 10 and 323 

20 min, respectively). Effective transport in the domain with the highest variance (i.e., 𝜎0
2 = 5; see 324 

Table 1) is characterized by estimated TPL parameters corresponding to a non-Fickian signature also 325 

prior to the occurrence of precipitation/dissolution (Figure 2c). Such a signature is then further 326 

enhanced after reaction has altered the conductivity field, yet displaying a less marked evolution of 327 

the shape of the 𝜓(𝑡𝑤) as compared to the case 𝜎0
2 = 1 (see also Figure 2f and i for t = 10 and 20 min, 328 

respectively). 329 

The observed temporal changes in conductivity and the ensuing local dynamics of transport 330 

pattern yield global variations in the reaction rate. Consistent with prior studies and the imposed 331 

boundary conditions, the mean velocity associated with the originally generated conductivity domains 332 

increases with 𝜎0
2. As the reaction progresses and the conductivity fields change, the increased area 333 

subject to dissolution leads to a slight increase of the mean velocity for all of the 𝜎0
2 analyzed. To 334 

analyze the influence of the preferential flow on the velocity that is affecting particle transport, we 335 

consider the average value 𝑛𝑅𝑣̅̅ ̅̅ ̅, evaluated upon considering weighting by the number of reactive 336 

particles, 𝑛𝑅, visiting each cell (where the term reactive particles denotes both ℎ and 𝑐𝑜 particles 337 

employed in the context of the reactive transport simulations). The weighted average velocity displays 338 

an initial increase over time due to the increase of conductivity within the preferential pathways. 339 

When considering the relative change across the whole simulation time, values of the temporal 340 

increase of 𝑛𝑅𝑣̅̅ ̅̅ ̅ are similar across the three heterogeneity levels examined, i.e., they are seemingly 341 

independent of 𝜎0
2. However, results in Figure 4a also reveal that the average velocity 𝑛𝑅𝑣̅̅ ̅̅ ̅ displays 342 

distinct temporal histories depending on 𝜎0
2. In particular, the value of 𝑛𝑅𝑣̅̅ ̅̅ ̅ tends to attain an 343 
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asymptotic value at time 𝑡 ≈ 7 min for 𝜎0
2 = 5, while showing a sustained increasing trend for 𝜎0

2 =344 

1. This result suggests that the feedback between reaction and flow patterns reaches an asymptotic 345 

condition faster in systems characterized by higher heterogeneity. 346 

The temporal evolution of the velocity fields due to the precipitation/dissolution reaction and 347 

the resulting conductivity changes lead to time-dependent reaction pattern and reaction rates. The 348 

Damköhler number is infinite on a local scale in our computational analyses, because the reaction is 349 

instantaneous. When considering the entire system, transport processes induce a net overall reaction 350 

rate that can be quantified as the sum of the total conductivity changes across time 351 

(𝑆𝑢𝑚(|∆𝑘𝑖𝑗|) [
𝑐𝑚

𝑠𝑒𝑐
]). The latter incorporates both positive and negative changes of hydraulic 352 

conductivity and therefore quantifies the overall intensity of precipitation and dissolution processes 353 

in the domain. The quantity 𝑆𝑢𝑚(|∆𝑘𝑖𝑗|) is evaluated across all realizations for each of the 𝜎0
2 values 354 

considered and is depicted in Figure 4b as a function of time. These results indicate that the overall 355 

reaction rate increases in time with a similar rate for all considered values of 𝜎0
2(figure 4b) at early 356 

times. The observed increase is consistent with the initially advancing of the reaction front across the 357 

domain. We observe that the reactive processes magnitude is proportional to 𝜎0
2. For low initial levels 358 

of heterogeneity, conductivity values along the preferential pathways are closer to the average field 359 

conductivity than what can be observed for the highly heterogeneous domains. As such, the portion 360 

of the domain where precipitation or dissolution can take place increases at a rate proportional to 𝜎0
2. 361 

As the reaction front reaches the domain outlet, the dissolving front found in the PF leaves the domain. 362 

Hence, the global variation in conductivity (which is proportional to the magnitude of reactive 363 

processes) tends towards an asymptotic value, corresponding to the diffusion-controlled solute 364 

exchange along a direction transverse to the preferential pathways (see Figure 3). In agreement with 365 

results shown in Figure 4a, this transition towards an asymptotic regime takes place earlier for larger 366 

values of 𝜎0
2, while a smaller initial heterogeneity implies a longer transient period. 367 

4.Conclusions  368 

Our computational study tackles the quantitative characterization of the feedbacks between 369 

precipitation and dissolution reaction dynamics taking place in randomly heterogenous conductivity 370 

fields associated with various degrees of spatial heterogeneity. Our results are based on numerical 371 

simulations and may be used to inform upscaling approaches to capture the pre-asymptotic and 372 

asymptotic dynamics of reactive transport in heterogeneous systems through simplified models. 373 

Our work leads to the following key conclusions. 374 

• Joint occurrence of precipitation and dissolution is tightly coupled with the existence of 375 

preferential flow pathways. Conductivity increase due to the dissolution reaction along such 376 

paths leads to enhance particle migration along these. The dominance of preexisting 377 

preferential flow regions on the (reactive) transport pattern across the field is therefore further 378 

reenforced and self-sustained across time. At the same time, diffusion promotes displacement 379 

of particles, leading to precipitation (and hence a progressive reduction over time of local 380 

conductivities) at locations in the proximity of these. 381 

• Reactive processes yield an increase over time of the range of conductivity values across the 382 

domain, eventually leading to a widening of the support of solute waiting times and 383 

conductivity distributions. The clear separation between regions where dissolution or 384 

precipitation takes place is reflected in sample distributions of conductivity which tend to 385 

become visibly left skewed with time, a feature which is associated with precipitation taking 386 
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place in low conductivity cells located in the proximity of existing preferential flow 387 

pathways. 388 

• Solute mass weighted conductivity and velocity distributions are at the basis of our 389 

characterization of the parameters of a TPL model and enable us to capture effective 390 

(upscaled) non-Fickian transport behaviors. With the progress of precipitation/dissolution 391 

reactions, transport shifts towards an increasingly acute non-Fickian effective behavior (see 392 

Figure 2 and Table 1). The latter is then seen as a direct outcome of the documented feedbacks 393 

between transport and reactions taking place in heterogeneous porous media. The evolution 394 

of transport parameters towards a pronounced non-Fickian behavior is associated with only 395 

minor changes of the mean and variance of log-conductivity values. This result is consistent 396 

with the conceptual picture that the tails of flux and hydraulic conductivity distributions carry 397 

critical information to characterize transport while displaying only a minor effect on low 398 

order statistics associated with these quantities. Our results suggest that this feature must be 399 

acknowledged to properly characterize transport in the presence of precipitation/dissolution. 400 

• We observe the emergence of an asymptotic regime in highly heterogeneous systems, where 401 

the (averaged) solute velocity attains a constant value even in the presence of reaction. This 402 

suggests the occurrence of an equilibrium state between reactive processes and transport 403 

under the flow conditions analyzed. This regime is attained because the effects of locally 404 

occurring precipitation and dissolution balance each other at the overall scale of the system, 405 

so that the ensuing (ensemble-averaged) solute velocity remains unaffected. The time 406 

required to attain such an asymptotic state increases with decreasing initial heterogeneity of 407 

the conductivity field, thus suggesting that pre-asymptotic behaviors may be more relevant 408 

in initially homogeneous systems. 409 

 410 

    411 

 Table 1. Values of mean and variance of unweighted and weighted log-conductivity distributions and estimated parameters of the 412 
effected TPL model obtained through calibration of (6) against the computed distributions of particle waiting times in the domain 413 
cells. Results are listed for the three values of the initial log-conductivity variance (𝜎0

2) and are obtained from non-reactive transport 414 
simulations performed across conductivity fields resulting from reactive transport simulations at selected times. 415 

 416 

 417 

 418 

 419 

 𝜎0
2 = 1 𝜎0

2 = 3 𝜎0
2 = 5 

t [min] 0 10 20 0 10 20 0 10 20 

𝑦̅ 0.15 0.16 0.17 0.45 0.46 0.46 0.66 0.67 0.69 

𝑛𝑦̅̅̅̅  0.32 0.33 0.35 0.83 0.84 0.86 1.2 1.19 1.21 

𝜎2(𝑦𝑖𝑗) 0.97 1.2 1.37 2.8 3.1 3.26 4.6 4.96 5.11 

𝜎2(𝑛𝑦𝑖𝑗) 0.99 1.21 1.41 2.8 3.07 3.21 4.6 4.85 5 

β 2 1.4 1.05 1.7 1.2 0.95 1.4 0.8 0.6 

t1 0.1 0.09 0.06 0.1 0.07 0.03 0.08 0.03 0.01 

Log10 (t2) 1 2.5 2.8 1.5 2.2 2.9 1.6 2.5 3 
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 Figure 1. Relative frequency distributions 𝑓(𝑦𝑖𝑗) (blue circles) and 𝑓(𝑛𝑦𝑖𝑗) (red circles) for a tracer test performed on the 420 
conductivty field prior to reaction and those associated with reactive simulation times of 10 and 20 minutes. Results correspond to 421 
𝜎0

2  = 1,3,5 (left, middle and right columns, respectively) and to t = (a-c) 0, (d-f) 10, and (g-i) 20 min. Mean and variance of these 422 
distributions are listed in Table 1. 423 

 424 
Figure 2. Sample and modeled probability density function 𝜓(𝑡𝑤) of particle waiting times for a tracer test performed on the 425 
conductivty field prior to reaction those associated with reactive simulation times of 10 and 20 minutes. Results correspond to 𝜎0

2  =426 
1, 3, 5 (left, middle and right columns, respectively) and t = (a-c) 0, (d-f) 10 min, and (g-i) 20 min. Values of TPL parameters 427 
estimated by calibrating model (6) on the sample distributions are listed in Table 1.  428 
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 429 

 430 
Figure 3. Heat map representing (a,b) 𝐿𝑜𝑔10(𝑛𝑅𝑖𝑗), i.e., the number of ℎ particles visiting each cell for 𝜎0

2  = 1 𝑎𝑛𝑑 5, respectively, 431 
and (c-f) relative change in hydraulic conductivity at time t = 20 min with respect to the initially generated values for 𝜎0

2  = 1 (c and 432 
e) and 𝜎0

2  = 5 (d andf). Panels c and d display positive changes in conductivity with respect to the initial field, while panels e and f 433 
display negative changes in conductivity, both positive and negative changes being represented in log-scale.  Results correspond to a 434 
selected realizaton of the the log-conductivity fields. The highlighted box illustrates the separation between regions where 435 
precipitation or dissolution take place.  Panels g and h display cells associated with a net increase (green) and decrease (red) of 436 
conductivity for cells outside (g) or within the PF (h), for 𝜎0

2  = 1. 437 

 438 
 439 

 440 

 441 

Figure 4. Temporal evolution of (a) the weighted mean velocity 𝑛𝑅𝑣̅̅ ̅̅ ̅ (open symbols) and (b) the sum of all conductivity changes over 442 
1 minut . Results correspond to 𝜎0

2  = 1 (circles), 3 (squares), and 5 (diamond). Please, check all symbols along the axes are defined 443 
exactly with the same terminology in the text, ok? 444 

 445 
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