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General Comments

The paper at hand derives families of analytic solutions for the incompressible Stokes
problem with constant viscosity for 2D (annulus) and 3D (thick spherical shell). In each
case a family of solutions is constructed for the case of a forcing term arising from a
smooth density perturbation and an infinitely thin (delta-function) perturbation.

Based on these solutions numerical simulations are performed using different stable
Finite Element pairs using the code Fluidity. The findings of these tests are discussed,
providing especially a detailed analysis of convergence behaviour for the delta-function
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case by means of Finite Element theory.

The reviewer wants to start by stating the he definitely enjoyed reading the paper. The
mathematical derivation is sound and interesting. The numerical tests demonstrate
the usefulness of the derived solutions for verfication of simulation software for global
convection models, i.e. the choice of valid algorithms for discretisation and numerical
solution of resulting linear systems as well as their correct implementation.

While the chosen model (incompressible, constant viscosity) is, naturally, not the most
interesting one from the geodynamics perspective, solutions for this case are still valu-
able, as they allow to verify correctness for this baseline scenario.

The reviewer also especially liked the enlightening discussion of the convergence in
the delta-function setting as this is a commonly used test scenario in publications in
the field.

The only point of criticism is the following. While a large number of references are given
for classical benchmarking studies that compare different codes against each other,
there are only two citations, Zhong (1993), Kramer (2012) given involving analytical
solutions. However, in recent years there have been several attempts to derive (semi)-
analytic solutions for the simple and more intricate settings in both cartesian as well as
cylindrical and spherical coordinates, see e.g. [BMP16,HMB20,PLP+14,Thi17], while
a manufactured solution in spherical coordinates (for a ridge-like model) is also given
in Burstedde (2013), cited in the paper. Thus, a brief explanation how the authors’
contribution fits into these various approaches would be appreciated.

Specific Comments

• Equation (65) for computing the relative error: You are working with two different
domains, Ω being the physical problem domain, and Ωh the computational do-
main for the finite element method. I assume that the computation of the error
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happens w.r.t. Ωh. In the isoparametric approach that does not make a signifi-
cant difference, but for the affine mapping approach, Figure 5, I guess it would
be better to make that distinction explicit.

• You treat the case of both boundaries being either zero-slip or free-slip. However,
aren’t many simulations run as a ’mixed’ case, i.e. with Dirichlet boundary con-
ditions for velocity (from plate reconstructions) on top and free-slip conditions at
the CMB? In that sense, would it make sense to add (maybe in an appendix) also
the coefficients for such a mixed case?

• p. 6, line 9 and equation (21): Shouldn’t this read R− < r′ < R+ instead of
R− ≤ r′ ≤ R+ and the piecewise ψ be formulated for the two parts R− < r′ and
r′ < R+ only? Just to be mathematically more precise?

• Equations (25) and (26): To me the transition from (25) to (26) seemed mathe-
matically quite involved, e.g. if one was to evaluate the integral in the right-hand
side of (25) one would get a zero. Maybe you could add some additional details
on this transition?

• p. 7, line 16: You are making use of the Mie representation of the velocity field.
The necessary condition for this to have the form (27) is that the velocity field is
solenoidal. For R3 this is equivalent to u being divergence-free. However, in the
case of the target domain, the thick spherical shell, the two properties are not the
same. You get that u is solenoidal from u being divergence-free and the fact the
you have no outflow in the boundary conditions you consider. You might want to
reformulate the sentence in this respect.

• If I have not missed it, you do not explicitely specify how r′ was chosen in you
numerical tests. I assume that this is an interface between layers of the mesh
already for the coarses mesh resolution used, isn’t it? Could you please add that
detail from completeness.
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Out of curiosity, would you expect to observe oscillations in the convergence
behaviour, if r′ was not a layer boundary on the meshes? I remember that in
dipole modelling (geoelectricity and EEG simulation) people sometimes resort to
special discretisation approaches for the δ-function, e.g. St. Venant’s principle, to
avoid such issues.

• Sec. 3.4: The problem matrix representing the discretised Stokes system is sin-
gular independent of the type of boundary conditions due to the pressure only
being determined up to an additive constant, isn’t it? The free-slip conditions
enhance the kernel of the matrix significantly leading to higher numerical effort
(performing step (64) in each iteration seems required, while pressure needs only
be adapted following (62) once in the end); you might want to make that clearer
in line 15.

Suggestions

• p. 4, line 19 and p. 9, line 9: A reference for the biharmonic equation resp. its
solutions might be helpful for the general audience; it is not quite as common
knowledge as the harmonic equation and its solutions

• p. 4, line 14: You might consider changing ’top and bottom’ to ’inner and outer’
for the cylindrical domain

• p. 6, line 18: Shouldn’t the strip be defined as (r′ − ε, r′ + ε)× (0, 2π)?

• p. 9, line 3: The standard definition of the term domain in calculus is an open and
connected set, so connected domain sounds like a pleonasm ;-)

• p. 4, equation (19) and line 19: I must admit that as I reader I very much behave
like a one-pass-compiler, as soon as I encounter something I cannot follow I
stumble. For the sake of people like me you might consider moving that sentence
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which explains why there’s only a cos term in (19) up front. Also you might state
that you consciously neglect other harmonic functions (such as ln(r)), for similar
reasons as given in line 13.

• p. 1, line 2: IMHO ’within’ does not sound quite proper here?

• In your paper you are using the term ’natural’ boundary condition. If I understand
correctly, you mean ’inspired by nature’? I am asking as in classical FE analysis
there is that distinction between ’natural’ and ’essential’ boudnary conditions, so
I was at first glance a little confused. Maybe change it to ’physical’, if that still fully
expresses what you want to convey.

• p. 1, line 24: Aren’t 3D global mantle convection models being simulated routinely
today, and not only becoming more common? I mean, you site references from
the last 35 years ;-)

• equation (A7): Is there any specific motivation for defining the 2D polar curl in
this way? It seems to be just the negative of what one would obtain by constantly
extending a 2D field in z-direction and taking the z-component of the curl in 3D
cylindrical coordinates?

Questions out of curiosity

• I found your discussion of the reason for the reduced convergence rates in the δ-
function case with the P2−P1 Taylor-Hood element very interesting. As (68) only
contains the H1 semi-norm of u, is there an easy way to see from (70) why we
get a similar 2

3 order reduction in the H0 norm of velocity as we do for pressure?
Maybe I am missing some standard FE-analysis argument?

• Do you have any (speculative) idea why that convergence issue is not observed
when one only examines surface quantities?

C5

https://gmd.copernicus.org/preprints/
https://gmd.copernicus.org/preprints/gmd-2020-194/gmd-2020-194-RC1-print.pdf
https://gmd.copernicus.org/preprints/gmd-2020-194
http://creativecommons.org/licenses/by/3.0/


GMDD

Interactive
comment

Printer-friendly version

Discussion paper

• In your 3D test cases you always select two similar combinations of degree and
order (`,m), which is m = ` (sectoral) and m = `/2 (tesseral); I was a little
surprised that the errors seem to be fully identical for the two choices, because
the number and direction of nodal lines differs. Are the differences just too small
to be visible in the figures? Can you comment on that?

Technical Corrections

• equation (14): please check sign, I might have miscalculated, but I think it should
read Hn = + . . .

• p. 6, line 15: ’expect a continuity’→ ’expect continuity’

• p. 21, line 12: solution→ solution(s)

• equation (A3): ϕ̂ · ∇ϕ̂ =
1
r

∂r̂

∂ϕ
→ 1

r

∂ϕ̂

∂ϕ

• equation (A12): spurious + near end of equation

• reference Hernlund, Tackley, 2007: IMHO that should be 2008
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