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Due to a mistake during the manuscript source file upload,
a preprint version has been published. The final manuscript
version as accepted by the editor and the reviewers is now
available as a corrigendum. In the corrected version, several
passages were revised for readability and clarity about the
scope and goals of the paper. The key differences compared
to the published (wrong) paper are as follows: Figure 1 of
the corrigendum has been newly added. Figure 3 of the
published (wrong) version has been split into Figs. 4 and 5
in the corrigendum. Section 2.1 has been revised for clarity.
The discussion about results shown in Fig. 5 (Sect. 4.2)
has been elaborated. The discussion about results shown in
Fig. 8 (Sect. 4.5) has been elaborated. The summary and
conclusions have been elaborated.

Abstract. Soil moisture is a key variable in monitoring
climate and an important component of the hydrological,
carbon, and energy cycles. Satellite products ameliorate the
sparsity of field measurements but are inherently limited
to observing the near-surface layer, while water available
in the unobserved root-zone controls critical processes
like plant water uptake and evapotranspiration. A variety
of approaches exist for modelling root-zone soil moisture
(RZSM), including approximating it from surface layer
observations. While the number of available RZSM datasets
is growing, they usually do not contain estimates of their
uncertainty. In this paper we derive a long-term RZSM

dataset (2002-2020) from the Copernicus Climate Change
Service (C3S) surface soil moisture (SSM) COMBINED
product via the exponential filter (EF) method. We identify
the optimal value of the method’s model parameter 7', which
controls the level of smoothing and delaying applied to
the surface observations, by maximizing the correlation
of RZSM estimates with field measurements from the
International Soil Moisture Network (ISMN). Optimized
T -parameter values were calculated for four soil depth
layers (0—10, 10-40, 40-100, and 100-200 cm) and used to
calculate a global RZSM dataset. The quality of this dataset
is then globally evaluated against RZSM estimates of the
ERAS-Land reanalysis. Results of the product comparison
show satisfactory skill in all four layers, with the median
Pearson correlation ranging from 0.54 in the topmost to 0.28
in the deepest soil layer. Temporally dynamic product uncer-
tainties for each of the RZSM product layers are estimated
by applying standard uncertainty propagation to SSM input
data and by estimating structural uncertainties in the EF
method from ISMN ground reference measurements taken
at the surface and at varying depths. Uncertainty estimates
were found to exhibit both realistic absolute magnitudes
and temporal variations. The product described here is,
to the best of our knowledge, the first global, long-term,
uncertainty-characterized, and purely observation-based
product for RZSM estimates up to 2 m depth.
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1 Introduction

Soil moisture (SM) is an essential climate variable (ECV)
that is crucial for understanding and modelling the Earth’s
climate and an important control of hydrological, energy,
and carbon fluxes (GCOS, 2022; Dorigo et al., 2021a).
Global monitoring of SM is necessary for a variety of ap-
plications such as meteorological modelling (Albergel et al.,
2008); monitoring drought (Tobin et al., 2017); and mod-
elling groundwater recharge (Bouaziz et al., 2020), runoff,
and catchment response to storms (Brocca et al., 2010).

In situ SM measurements are considered to provide the
most accurate SM data but can differ greatly in measuring
equipment and usually lack estimates of their uncertainties
(Dorigo et al., 2011). Widely distributed SM field measure-
ments are available from centralized platforms such as the
International Soil Moisture Network (ISMN) (Dorigo et al.,
2021b). While being essential for satellite and model prod-
uct calibration and validation, in situ measurements lack the
spatial coverage necessary for large-scale applications, espe-
cially in the Global South (see Fig. Al; Dorigo et al., 2021a;
Mishra et al., 2020). Quasi-global SM information is avail-
able from modelled and satellite products, but their spatial
resolution is very coarse (usually tens to hundreds of square
kilometres) and usually insufficient to resolve the signifi-
cant spatio-temporal heterogeneity of SM, which poses chal-
lenges to large-scale monitoring (Brocca et al., 2010). Global
land surface model products provide gap-free and long-term
SM estimates at various depths and chosen time intervals
but are computationally expensive and may depend on many
auxiliary inputs that are not always available globally or with
sufficient quality or resolution (Mishra et al., 2020; Albergel
et al., 2008). In contrast, remote sensing retrievals are avail-
able only at satellite overpass times and are unreliable under
various conditions, including frozen ground, dense vegeta-
tion, and radio frequency interference (RFI) (Gruber et al.,
2019; Dorigo et al., 2017). Moreover, microwaves used for
SM retrieval mainly contain information on water content
in the surface layer, hampering their usability for studying
or modelling processes in the soil root zone. Root-zone soil
moisture (RZSM), often defined as the water present in the
top metre of the soil column (Mishra et al., 2020; Baldwin
et al., 2017; de Lange et al., 2008), is a component of the
Global Climate Observing System (GCOS) ECV portfolio
and a necessary variable for closing the water cycle (GCOS,
2016, 2022). RZSM also represents the water available for
plant water uptake and thus affects evapotranspiration rates
(Martens et al., 2017; Ford et al., 2014; Albergel et al., 2008)
and plays a critical role in agricultural productivity forecast-
ing (Wang et al., 2017) and drought monitoring (Vreugdenhil
et al., 2022; Tobin et al., 2017).

The existing link between SM dynamics in the surface
layer and the root zone (Albergel et al., 2008; Wang et al.,
2017; Ford et al., 2014; Sure and Dikshit, 2019) allows
for the estimation of RZSM from surface SM (SSM) ob-
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servations via a variety of hydrological models. These in-
clude relatively simple two-layer approaches approximating
RZSM as a function of SSM (Manfreda et al., 2014), com-
pound process-based models requiring sophisticated param-
eter calibration (Bouaziz et al., 2020), and immensely com-
plex and computationally expensive land surface models re-
quiring many auxiliary inputs (Mufioz Sabater et al., 2021;
Rodell et al., 2004). Satellite-based SSM observations can
also be assimilated into a land surface model to produce esti-
mates of RZSM with global coverage, as in the case of the
SMAP L4 RZSM product (Reichle et al., 2017a). An al-
ternative, less complex approach that approximates RZSM
solely from SSM estimates — and can thus be readily ap-
plied to satellite retrievals — is the so-called exponential fil-
ter (EF) method (Wagner et al., 1999; Albergel et al., 2008).
In essence, the EF method approximates conditions in the
root zone by smoothing and delaying SSM, which is gener-
ally characterized by greater fluctuations (Beck et al., 2009;
Mahmood and Hubbard, 2007). Even though the coupling
strength between the surface and root-zone layers decreases
with depth (Mahmood and Hubbard, 2007; Ford et al., 2014;
Mishra et al., 2020), and the skill of the method in predict-
ing RZSM has been demonstrated to deteriorate accordingly
(Paulik et al., 2014; Brocca et al., 2010; Sure and Dikshit,
2019), it is still widely used due to its relatively good per-
formance and independence of ancillary inputs as well as its
low computational cost and overall simplicity. However, the
EF method is susceptible to prolonged data gaps in SSM data
and thus requires an adequate number of input observations
within a time interval consistent with the temporal scale of
RZSM dynamics.

Regardless of the method used to derive RZSM estimates,
most products do not provide information about the magni-
tude of random errors such as the standard deviation of their
distribution, hereinafter referred to as uncertainties (Gru-
ber et al., 2020). Two approaches have been proposed to
characterize the time-variant quality of RZSM estimates de-
rived with the EF method. The first approach, reported in
Bauer Marschallinger (2018) and also utilized in this study,
is a quality flag that is derived from the number of valid SSM
estimates available within a specific time window preceding
a specific EF-based RZSM estimate. The second approach,
proposed by De Santis and Biondi (2018), uses the standard
law of uncertainty propagation (Taylor, 1997) in order to
characterize the random error variances of EF-based RZSM
estimates. This approach takes into account the uncertainties
in both the SSM input data and the EF model parameter but
does not consider the model structural uncertainty (Beven,
2005) in the EF method. The latter, due to the simplistic
nature of the EF method and the limited surface—root-zone
coupling, can also contribute significantly to the uncertainty
budget and thus must not be neglected when characterizing
product errors.

In this paper, we propose to estimate the model structural
uncertainty in the EF using in situ measurements of sur-
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Figure 1. A timeline of satellite missions utilized in the C3S v202012 dataset during the period 2001-2020. Passive sensors (radiometers)
are represented by red bars, while active sensors (scatterometers) are represented by blue.

face and root-zone SM from the ISMN. We then use these
estimates together with the law for the propagation of un-
certainties (similar to De Santis and Biondi, 2018) to pro-
duce a global, fully error-characterized RZSM dataset for
four soil layers (0-10, 10-40, 40-100, and 100-200 cm) be-
tween 2002 and 2020, taking C3S soil moisture as input
to the model. While other EF-based datasets exist (e.g. the
SMOS L4 product), they offer limited spatio-temporal cov-
erage and lack quantitative uncertainty information (Al Bitar
and Mahmoodi, 2020; Bauer-Marschallinger et al., 2018).
The focus and novelty of this paper lie in quantifying, rather
than reducing, the EF model’s known limitations by pro-
viding a methodology for comprehensive uncertainty esti-
mation for the EF method. Additionally, to the best of our
knowledge, this dataset is, as yet, the longest available solely
observation-based, error-characterized global RZSM prod-
uct.

2 Datasets and data pre-processing
2.1 C3S surface soil moisture

Global input satellite surface observations were obtained
from the Copernicus Climate Change Service (C3S) surface
soil moisture COMBINED product v202012, hereinafter re-
ferred to as C3S SSM. C3S SSM is a merged product that
combines satellite SSM retrievals from 4 active and 10 pas-
sive microwave sensors (see Fig. 1) into a daily global
dataset on a regular 0.25° grid, expressed in volumetric
units (m3 m~3) (C3S, 2020). Invalid retrievals due to frozen
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ground, dense vegetation, RFI, and other factors are masked
out. Although the C3S product provides SSM data from 1978
onward, their quality and spatio-temporal coverage have in-
creased significantly in more recent periods, when sensors
measuring in frequency domains better suitable for SSM re-
trieval became available. Therefore, only C3S SSM data for
the period 2001-2020 were used in this study. Note that data
from the first year of this period were used only as the model
adjustment period and not included in later analyses.

The uncertainty estimates provided for the merged SSM
retrievals in the C3S SSM product were computed by means
of triple collocation analysis (TCA). More specifically (sta-
tionary), uncertainties were estimated for each satellite sen-
sor separately and used to calculate the merging weights. Un-
certainties in the merged SSM estimates were then calculated
from the law for the propagation of uncertainties (i.e. pre-
dicting the uncertainty reduction due to the weighted averag-
ing, assuming that merging weights are correct; see Gruber
et al., 2017). Note that the distinctive life spans and spectral
bands of the satellite missions (e.g. C- and X-bands used by
AMSR-E and L-band used by SMOS and SMAP) can poten-
tially also lead to distinctive changes in the data quality of the
merged product via the differences in their sensitivity to pre-
cipitation or evaporation. These sudden changes in SSM and
uncertainty data are hereinafter referred to as systemic breaks
(Preimesberger et al., 2021). Although said breaks have a
marginal impact on the SSM signal itself due to the inter-
calibration of sensors, they are distinct in the uncertainty es-
timates. As more and newer sensors provide better retrievals,
mean uncertainty values typically decrease distinctively with
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every new satellite launch in more recent periods (Gruber
et al., 2017).

C3S data are readily available from the Copernicus Cli-
mate Data Store (CDS), and detailed information on the C3S
dataset and its underlying ESA CCI v5 merging algorithm
can be found in the relevant documentation (C3S, 2020;
Dorigo et al., 2021c).

2.2 Soil moisture field measurements

Field measurements for optimizing the model parameters of
the EF method and for estimating its uncertainties were ob-
tained from the International Soil Moisture Network (ISMN)
for the period 2002-2020 (Dorigo et al., 2021b). Only data
from sensors with a measuring depth < 200cm and inter-
nally flagged as reliable (Dorigo et al., 2013) were consid-
ered. Measuring depths of SM sensors placed vertically in
a depth range, e.g. 1040 cm, refer to their mean measuring
depth. Data from multiple sensors installed at the same loca-
tion and depth were averaged. ISMN data, typically available
as hourly readings, were aggregated to mean daily values to
match the temporal sampling of satellite observations. Fur-
thermore, we only used ISMN stations where at least 100
data points concurrent with C3S SSM retrievals were avail-
able. Notably, approximately 80 % of the selected ISMN time
series originate from North America and Europe (Fig. Al),
and the availability of data declines with depth.

2.3 ERAS5-Land soil moisture

ERAS5-Land (ESL) is a multi-decadal climate reanalysis with
an extensive portfolio of land variables computed by the
assimilation of ERAS5 atmospheric variables into the H-
TESSEL land surface model (Muiioz Sabater et al., 2021).
Modelled SM data are available for four depth layers (0—
7, 7-28, 28-100, and 100-289cm) on a regular 0.1° grid
and are accessible via the Copernicus Climate Data Store
(CDS) (Muioz Sabater, 2019, 2021). We used ESL for a
product intercomparison with the RZSM product developed
in this study, carried out for the period 2002—-2020 within the
Quality Assurance for Soil Moisture framework (QA4SM;
https://qadsm.eu, last access: 28 August 2023), which auto-
matically resamples and matches observations of the com-
pared datasets and delivers a wide range of validation met-
rics.

3 Methods

3.1 Exponential filter

The EF method (Wagner et al., 1999) relies on a simple two-
layer water balance model where the only considered ex-
change between the surface layer and the reservoir below
it is infiltration. The method assumes that the fluxes from
the surface to the sub-surface layers are proportionate to the
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difference in SM content between both layers. In this study,
we utilize the recursive formulation of the method (Albergel
et al., 2008):

RZSM(t,) = RZSM(t,,_1) + Kpn - (SSM(tp) — RZSM(t,,_1)), (1)

where t, and t,_ denote timestamps (in days) of the current
and previous SSM observations, respectively. Conditions in
the root zone are approximated by a weighted combination
of the new input SSM observation and past model estimates,
with more recent estimates receiving higher weights on a
timescale defined by the method’s only parameter T (tempo-
ral length, typically in days). Weights are controlled by the
gain term K, which ranges from O to 1 and is calculated as
follows:

K, (2)

Kn = m—thy_1 °

Ky 1+e”

At initialization, when no preceding estimates are available,
the EF calculation is started with Ko =1 and RZSM(#g) =
SSM(rg).

Temporal variability in the root zone is generally smaller
than at the surface; hence the T value and its associated level
of smoothing applied to the SSM data increase with depth
(Wagner et al., 1999; Paulik et al., 2014; Wang et al., 2017,
Beck et al., 2009; Mahmood and Hubbard, 2007). The op-
timal T value (T,p, the value that leads to the best possi-
ble representation of RZSM at a certain location using the
EF) has been related to differences in utilized SSM sensors
(Bouaziz et al., 2020; Sure and Dikshit, 2019), SSM sam-
pling frequency (Brocca et al., 2010; Pellarin et al., 2006),
and land surface features (Albergel et al., 2008; de Lange
et al., 2008). In particular, T acts as a conglomerate proxy
for various environmental factors assumed to govern the in-
filtration process (e.g. soil texture, evapotranspiration, and
climate), but past research on the importance of the exact
driving factors is inconclusive and even contradictory (Wang
et al., 2017; Bouaziz et al., 2020). To optimize the T pa-
rameter, numerous control factors have been tested (Bouaziz
et al., 2020; Mishra et al., 2020; Stefan et al., 2021), and ever
more sophisticated methods have been employed, including
machine learning approaches (Grillakis et al., 2021). Other
limitations of the method include generally poorer perfor-
mance in arid zones and when soil texture is not homoge-
neous throughout the soil column (Yang et al., 2022; Ford
etal., 2014).

Due to the high spatio-temporal heterogeneity of SM
(Famiglietti et al., 2008) and its surface-root-zone coupling
— and hence the difficulty in properly estimating the T pa-
rameter accurately — an uncalibrated value of 7 =20 has
sometimes been used to describe all of the water content
in the first 100 cm of the soil column (Wagner et al., 1999;
de Lange et al., 2008). Results obtained by using a constant
value T = 20 were similar to those obtained with 7 values
calibrated for soil texture (de Lange et al., 2008). Limited

https://doi.org/10.5194/gmd-16-4957-2023


https://qa4sm.eu

A. Pasik et al.: C3S root-zone soil moisture uncertainty estimation 5

sensitivity of the EF to T due to different environmental
factors was also observed by other studies, which supports
choosing a single value for T,y to represent a particular depth
for large areas or even globally (Albergel et al., 2008; Brocca
et al., 2010, 2011; Grillakis et al., 2021). It is precisely such
limitations that we attempt to describe with the uncertainty
estimation scheme developed in this study and hence advance
the understanding of the EF method’s performance.

3.1.1 RZSM quality flags

Prolonged temporal data gaps will cause K to increase and
may cause the EF to put excessive weight on new SSM in-
put. In the extreme case, a very long data gap (whose duration
depends on the chosen T value) can reset the EF to the ini-
tial state of K, =1 and RZSM(r,,) = SSM(t,,) (see above).
We run a 1-year adjustment period (2001) for K to reach
an equilibrium state and utilize the EF quality flag (qflag)
described in Bauer Marschallinger (2018) to avoid such re-
initializations due to frequent and/or persistent data gaps.
The gflag is recursively calculated for each RZSM estimate
and reflects the availability of SSM input data in the preced-
ing time period.

In—th—1

1+qflag(t,_1)-e” 7 , ifSSMaty,
qflag(ty) = . %s available 3)
qflag(t,—1)-e” 7, if SSM at 1,,

is unavailable

The quality flag calculation is initialized with qflag(z,) =
1. A normalization factor of Z?O:Oe_% is used to express
the calculated flag values in percentages, with higher values
indicating a greater density of SSM data available for calcu-
lation. If the quality flag falls below a T-specific threshold,
RZSM estimates are masked out. The thresholds used here
have been interpolated from those empirically determined
by Bauer Marschallinger (2022) for a set of discrete 7 val-
ues (35 %, 40 %, 45 %, 50 %, 55 %, 60 %, 65 %, and 70 %
for the T values 2, 5, 10, 15, 20, 40, 60, and 100, respec-
tively). If input data are unavailable, but satisfactory data
density has been achieved in the preceding days, the latest
RZSM estimate is propagated forward until new input data
become available, or the quality flag drops below its respec-
tive threshold. In the latter case, the output value is masked
out. Importantly, even if new SSM input becomes available
to the EF after prolonged data gaps, RZSM estimates derived
from it remain masked until the qflag exceeds the aforemen-
tioned threshold again.

3.1.2 T-parameter optimization

We optimize T for a particular depth of the soil column
by maximizing the correlation between the satellite-based
RZSM estimates and the in situ measurements (Paulik et al.,
2014; Grillakis et al., 2021). Satellite and in situ data are
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matched in space by means of the nearest-neighbour method.
The impact of the spatial mismatch error between the large
footprint of the satellite-based product and point-scale field
measurement is mitigated by excluding time series that ex-
hibit a correlation coefficient (Pearson’s r) lower than 0.5
(Grillakis et al., 2021) or that are not statistically significant
(p = 0.05).

EF calculations are repeated for T values of 1-100, and
Topt is selected for each of the available ISMN time series
based on the highest correlation coefficient. We then group
Topt values based on the measurement depth of the respec-
tive in situ sensor into four bins corresponding to the RZSM
target layers. These depth layers, chosen to be 0-10, 10-40,
40-100, and 100-200 cm, were defined to reflect those in
common model-based RZSM products (Rodell et al., 2004;
Mufioz Sabater et al., 2021). Finally, the median value of Topt
from each bin is chosen to compute a global RZSM product
from the C3S SSM dataset.

A cross-validation is carried out to verify that Top, values
were not over-fitted to the local ISMN site conditions. There-
fore, the sample set is randomly divided into five subsets of
equal size (per bin), and then each of the subsets was used
once to validate the method fit to the remaining four bins.

3.2 Uncertainty estimation
3.2.1 Baseline method

In De Santis and Biondi (2018), the standard law for the
propagation of uncertainties is applied to the EF method, as-
suming the errors in the SSM inputs and 7" parameter to be
normally distributed and uncorrelated. We use this approach
as a baseline for our analyses. The recursive formulation of
this baseline method is as follows:

IRZSM, \* ,
o (RZSM,)) = | AZ + 7 ) ° (1), 4
where
A2 = K202(SSM,) + (1 — K,)? A2, (5)
and
ORZSM, _ Ku G, (RZSM RZSM,,)
3T = T n n—1 n
g T ORZSM,_, ©
e - |»
Kn_i aT
with G,, defined as
=ty 1 t,—t,—1
G, = T G,_ — ). 7
L—e (,“+Kn_1 ! ) )

0 (RZSM) and o (T') denote the uncertainty in the RZSM es-
timates (in m> m—?) and the EF model parameter 7' (a unit
of time, in days), respectively. The equation is initialized as
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Ao =0 (SSMy), 0RZSMy/dT = 0, and Go = 0. Uncertain-
ties in the SSM input data are considered by the A term (in
m> m~3), which also takes into account the effect of possible
prolonged input data gaps dependent on the 7" value. The Ja-
cobian term dRZSM/AT assumes high values proportional
to the latest SSM input variability on a timescale related to
the T parameter (expressed as m> m—> over time). This is
reflected in significant changes in the RZSM value associ-
ated with wetting or drying of the soil. Finally, the term G
(dimensionless) weighs the contribution of change recorded
between the latest and penultimate RZSM estimates.

3.2.2 T-parameter uncertainty

De Santis and Biondi (2018) used an arbitrary value of o (T)
equal to 10 % of locally calibrated Top;. This is in line with
other studies on SM uncertainty propagation (Parinussa et al.,
2011; Pathe et al., 2009), who used this uncertainty per-
centage for parameters without well-defined accuracy. In our
study, we determine Ty values based on a limited number of
available in situ time series and apply these values to estimate
RZSM globally. Consequently, o (T) is likely to be greater
due to a variety of environmental conditions not accounted
for or underrepresented in the available in situ sample. We
therefore propose the median absolute deviation (MAD) of
Topt (Sect. 3.1.2) as a more appropriate proxy for o (7). In
this case, the MAD is preferred over the variance because
the sampling distribution of Tgp is both non-Gaussian and
bounded (Leys et al., 2013).

3.2.3 EF model structural uncertainty

Recall that the standard law for the propagation of uncer-
tainty (which is used in the baseline method) does not ac-
count for model structural uncertainty in the EF, which,
due to the simplistic nature of the method and the limited
surface-root-zone coupling, can account for a significant
portion of the overall uncertainty budget.

We propose to estimate model structural uncertainty
(0 (EF)) from in situ data using stations that operate sensors
both at the surface and in the root zone. At these stations,
we derive RZSM estimates from the SSM measurements us-
ing the EF method and then compare them to actual RZSM
station measurements. For this analysis, the T value was op-
timized for each station and depth individually to minimize
its influence on the estimation of ¢ (EF). This provides direct
estimates for o (EF) as

o (EF) = ubRMSD(RZSMEgr, RZSMismnN), 8)

where ubRMSD denotes the unbiased root-mean-square dif-
ference. Note that “unbiased”, in this case, refers not only
to a correction for bias in the mean (as is most commonly
done) but also to a correction for bias in variance, which
also constitutes an unintended systematic component in the
RMSE (Gupta et al., 2009). Only sites with measurements
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from more than a single depth and at least one sensor within
the surface layer (< 10 cm) were selected. Time series with
negative correlation between EF-based RZSM estimates and
in situ RZSM measurements were disregarded. As a result, a
total of 1509 in situ sites were considered. Note that the EF
model structural uncertainty computed at the point scale is
assumed to be representative of the coarse scale as well.

Finally, the EF structural uncertainties obtained from
Eq. (8) add to the propagated RZSM uncertainty budget
(Eq. 4) as

\/ L (ORZSM,\* , ,
o (RZSM,) = An—i—(a—T) oA (T) +02(EF).  (9)

4 Results and discussion

In this section, we first show results of the point-scale
T-parameter optimization. Next, we compare the gridded
RZSM product globally to ESL. We then discuss the esti-
mates for EF model structural uncertainties. Finally, we com-
pare our RZSM uncertainty estimates with those obtained
with the baseline method.

4.1 T-parameter optimization

After filtering out unreliable data (see Sect. 2.2), 3901 ISMN
time series from 67 different measuring depths between O
and 200 cm were available for the T-optimization process.
Figure 2 shows the distribution of T values binned into our
four chosen RZSM layers (0-10, 1040, 40-100, and 100-
200 cm). The median Ty values for these layers were 6, 15,
48, and 70d, increasing with soil depth as expected (Paulik
et al., 2014; Wang et al., 2017). These median Top values
were then used to compute RZSM globally.

A fivefold cross-validation was performed to verify the ro-
bustness of this approach. The variability in median 7o val-
ues per soil layer increases with depth but remains negligibly
small in all layers, with 6, 15-16, 47-50, and 67—72 for soil
layers 1-4, respectively (Fig. 3a). Subsequently, the five me-
dian Top; values derived from the training subsets were used
to estimate RZSM for the different layers of the respective
validation sets (Fig. 3c) and resulted in Pearson’s r of 0.64—
0.67, 0.64-0.65, 0.57-0.6, and 0.48-0.6 for soil layers 1-4,
respectively. When evaluating each training set directly, cor-
relations were 0.65-0.66, 0.65, 0.58-0.59, and 0.53-0.56 for
soil layers 1-4, respectively (Fig. 3b).

The little variability between the validation and training
sets suggests that Top; values are not over-fitted to ISMN site
conditions and can be used robustly in other regions as well.
Notably, the spread in median Top values increases with soil
depth, while the correlation scores decrease. This indicates
reduced reliability of the method in deeper soil layers, which
is in line with the assumption that the coupling between the
surface and root-zone SM decreases with depth. Note, how-
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Figure 2. Top values calibrated with 3901 in situ time series and
binned according to RZSM layers 1-4. Median values (represented
by orange lines) from each bin were used to compute a global
RZSM product. Median absolute deviations (MAD(7opt)) were
used to estimate RZSM uncertainties.

ever, that results for deeper layers are also affected by the
smaller sample sizes at greater depths.

4.2 Global RZSM product quality assessment

A global SM dataset spanning the period 2002-2020 was
computed using the EF method and T parameters optimized
at point scale with the approach described in Sect. 4.1. Fig-
ure 4a—e show correlation maps of each of the RZSM product
layers as well as the input C3S SSM dataset with ESL. The
spatial patterns observed in the C3S SSM data (Fig. 4a) are
strikingly similar to those in RZSM layer 1 (Fig. 4b), with
slight to moderate deterioration in performance over the high
latitudes (> 60° N). This is not surprising given that both
products differ only by a small degree of smoothing applied
to RZSM layer 1 and are compared to the same ESL layer
(07 cm). RZSM layers 2 and 3 (Fig. 4c—d) are compared
to ESL layers 7-28 and 28—100 cm, respectively, and largely
preserve good performance in regions where the input C3S
SSM product also performs well, i.e. in Europe (bar Scandi-
navia), the Caspian and Aral sea basins, the eastern United
States, India, Southeast Asia, South America, sub-Saharan
Africa, and Australia. At the same time, deterioration of per-
formance is observed at high latitudes and in arid environ-
ments such as the Sahara and the Arabian Peninsula, where
the reduced strength of coupling between the surface and
root-zone dynamics may hinder the EF performance (Yang
et al., 2022). The patterns of good and poor performance vis-
ible in RZSM layers 1-3 are not replicated in RZSM layer 4
(Fig. 4e), where the agreement with the reference ESL 100—

https://doi.org/10.5194/gmd-16-4957-2023

289 cm layer is spatially very heterogeneous and worse over-
all. The few regions where the good performance observed in
shallower layers is preserved include India, Southeast Asia,
and the eastern United States.

Figure 5 shows a comparison between all of the RZSM
product layers as well as the input C3S SSM dataset with
ESL. RZSM product layers agree best with the (approxi-
mately) matching ESL depth layers in all but one case. The
highest median Pearson correlations with the E5L reference
layers (0-7, 7-28, 28—-100, and 100-289 cm) were obtained
by C3S SSM (0.55), RZSM layer 1 (0.49), RZSM layer 3
(0.41), and RZSM layer 4 (0.28), respectively. Even though
C3S SSM correlates best with the ESL surface layer, the cor-
relation score for RZSM layer 1 (0-10cm) is only insignif-
icantly smaller (0.54). Similarly, the second ESL layer (7—
28 cm) best agrees with RZSM layer 1 (r = 0.49), but the
layer most congruent in depth (RZSM 2) is a close second
(r =0.47). In the remaining depth layers, correlations be-
tween C3S SSM and ESL are substantially lower than for the
RZSM product, which proves the ability of our EF approach
to approximate SM below the surface layer. While RZSM
layer 1 (0-10cm) shows the best agreement with ESL layer
2 (7-28 cm; r = 0.49) RZSM layer 2 (10-40 cm) correlates
only slightly less with that layer (r = 0.47).

The results are also consistent with the assumption of the
EF model that SM dynamics decrease with depth and that
Topt ought to increase accordingly, as was also found by other
studies (Wagner et al., 1999; Paulik et al., 2014; Wang et al.,
2017; Beck et al., 2009; Mahmood and Hubbard, 2007). At
the same time, the maximum correlation values decrease with
depth, confirming the diminishing coupling between the sur-
face and root-zone layers, as also found at the in situ station
level (Fig. 3) and demonstrated by others (Paulik et al., 2014;
Brocca et al., 2010; Sure and Dikshit, 2019). The perfor-
mance of our product is similar to that of other satellite-based
RZSM products found in other studies, especially when con-
sidering the same regions for assessment (Reichle et al.,
2017b; Xu et al., 2021). While the dataset presented here
does not outperform other existing RZSM products, it dis-
tinguishes itself as the only purely observation-based global
product covering such a long time period and the only EF-
based product that has uncertainty estimates provided with
it.

4.3 EF model structural uncertainty

Figure 6 shows estimates for the model structural uncertain-
ties (Sect. 3.2.3) obtained at all available in situ sites, binned
into the four RZSM product layers. Their median values (rep-
resented by orange lines and annotated) were used as esti-
mates for o (EF). Note that in situ measurement errors were
assumed to be negligible and thus did not influence ubRMSD
estimates, which likely causes model structural uncertain-
ties to be overestimated. Also, structural uncertainties are as-
sumed to be constant in time.

Corrigendum
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5-fold cross-validation of the model

(a) Spread in T,y Values (b) training sets (C) validation sets
8 8
701 )
8 0.651 @ ° 0.651 8 8
60
— 06 — 06 o o
501 . ;
8 = 8 - g
% 40 < £ ° °
5 20l
W3 S 0551 &1 5 0554
301 3 8 i3
o [%
0.5 0.5
201 8
8
10 0.45 1 0.45
o
RZSM1 RZSM2 RZSM3  RZSM4 RZSM1 RZSM2 RZSM3  RZSM4 RZSM1 RZSM2 RZSM3  RzZSM4

Figure 3. Cross-validation results showing the spread in Topt values (a) and agreement of the training (b) and validation (c) sets with in situ

data.

As anticipated, an increase in o (EF) corresponds to the
growing distance between the surface and the root-zone mea-
surements, demonstrating the decreasing coupling strength
between both layers. Note that o (EF) shows significant vari-
ability within RZSM layers, which is likely, at least to some
degree, related to variations in local conditions. However,
as with the T -parameter optimization, we estimate structural
uncertainties based only on a limited number of in situ sta-
tions and therefore use the median to extrapolate globally.

4.4 RZSM uncertainty budget calculation

Figure 7 compares RZSM uncertainty estimates obtained
from the baseline method (De Santis and Biondi, 2018) with
those from the approach proposed here. Figure 7a shows a
time series of RZSM uncertainties from the baseline method
at an arbitrary location in Benin (9.875° N, 1.625°E). Fig-
ure 7b shows the effect of changing o (T') from 10 % of Top
to the median absolute deviation of Ty, which is an ampli-
fied temporal variability. Simultaneously, mean uncertainty
values increase and become closer to the magnitudes of the
input SSM dataset. Moreover, they no longer diminish with
increasing T values (i.e. depth), as is the case in the baseline
formulation. This is presumably more realistic since the pro-
gressive decoupling between the surface and deeper soil lay-
ers can be expected to cause uncertainties to increase rather
than to decrease.

Figure 7c shows the impact of accounting for ¢ (EF) in
the total uncertainty budget when using 10% of Ty, as
the T-parameter uncertainty (o (7")). Considering this term
substantially increases the magnitude of the propagated un-
certainties and leads them to increase with depth (as does
o (EF)). However, the uncertainties’ temporal variability is
reduced substantially as the effect of o (T") is overshadowed
by that of o (EF). Finally, Fig. 7d shows the combined effect
of using the MAD of T as its parameter noise o (T) and ac-
counting for model structural uncertainty o (EF). Compared
to the baseline (Fig. 7a), this yields an increased overall mag-

Corrigendum

nitude of the uncertainties; a more realistic increase in (tem-
poral average) uncertainties with depth; and an amplified
temporal variability in all layers during transitions between
dry and wet conditions (see Fig. 8). The latter effect is caused
by the simplistic nature of the model, which essentially oper-
ates as a smoother and therefore attenuates sudden variations
in the SSM signal, which in reality may be transmitted into
the deeper layers in a more significant manner. The reduced
accuracy of the EF method during soil wetting and drying
phases was also observed by others (Ford et al., 2014).

4.5 Assessment of uncertainty estimates

Similar to De Santis and Biondi (2018), we assess the use of
the proposed MAD estimates for o (7)) by computing Pear-
son’s r and root-mean-square differences (RMSDs) with re-
spect to in situ data before and after removing a fixed percent-
age of the data (5 %, 10 %, 15 %, and 20 %) with the highest
uncertainty estimates. In the case of effective correspondence
between high values of both the estimated RZSM uncertain-
ties and the observed RZSM deviations from reference in
situ measurements, it is expected that the skill metrics will
improve due to the masking. This hypothesized correspon-
dence holds well as long as the difference between in situ and
satellite-based RZSM values is mainly due to the random er-
rors in the latter. Note that this analysis is only sensitive to the
impact of using different values for az(T) ((Topt/ 10)2 ver-
sus MAD(Topt)z) since the estimated structural uncertainty
o (EF) is constant in time and therefore cannot change the
ranking of the total uncertainties.

Figure 8a and d indicate (in magenta shading) 20 % of
RZSM layer 2 data with the highest uncertainties masked
out in the experiment described above, based on uncertain-
ties estimated with the baseline (b) and our method (d), re-
spectively. Overall, despite the differences in magnitude and
amplitude, both our and the baseline method assign the high-
est uncertainty values to timestamps corresponding to signif-
icant soil wetting or drying events. However, with the base-
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Figure 4. Spatial correlation maps of the C3S SSM (a) and RZSM products (b—e) with ESL layer 0-7 (a-b), 7-28 (c), 28-100 (d), and
100-289 cm (e).
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Figure 5. Product intercomparison of the C3S SSM and RZSM products against ESL. SM.
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line method the average magnitude of SSM input uncertainty
appears to have a greater influence on the calculated RZSM
uncertainty estimates. This is most evident when compar-
ing values before and after the inclusion of Metop-A AS-
CAT into the C3S product in January 2007 (indicated by
the dashed vertical line in Fig. 8), which substantially im-
proved data quality thereafter. Specifically, the mean C3S
SSM uncertainty dropped from 0.029 to 0.018 m* m—3. Such
a clear shift is also visible in the uncertainty values propa-
gated with the baseline method (from 0.008 m® m—3 before
to 0.004 m® m~3 after the introduction of Metop-A ASCAT).
This causes the baseline method to predict that the major-
ity of the 20 % most uncertain SM values will occur in the
pre-ASCAT period. In contrast, in our approach, average un-
certainties remain stable (at 0.036m?> m—3) over the entire
time period. This suggests that the use of MAD(Topt)2 as
an estimate for 7' -parameter uncertainty reduces the sensitiv-
ity to systemic breaks, i.e. large variations between the un-
certainties in the C3S SSM input sensors, and improves the
method’s capability to predict day-to-day uncertainty varia-
tions. Lastly, after the introduction of ASCAT, both schemes
consistently assign higher uncertainties to timestamps char-
acterized by large SM changes. Taken together, while the use
of Topt/10 as the T-parameter uncertainty seems to yield re-
alistic estimates for uncertainty variations due to the use of
different C3S SSM input sensors, using MAD(T,p) as the
T -parameter uncertainty seems to better predict day-to-day
uncertainty variations in the RZSM estimates.

Figure 9 shows the results of the data removal experiment
described above, summarized for all considered ISMN sta-
tions. To compare the performance with and without the ef-
fect of C3S systemic breaks on the uncertainty values (see
above), results are shown for both the full product period
(2002-2020; Fig. 9a—d) and a sub-period without breaks, i.e.
from the inclusion of SMAP data onward (1 April 2015-
2020; Fig. 9e-h). In both cases, correlation coefficients ob-
tained for the complete time series were compared to those
obtained after removing 5 %, 10 %, 15 %, and 20 % of data
with the highest associated uncertainties.

In the case of the full product period (Fig. 9a—d), us-
ing o (T') = Topt/10 as the T-parameter uncertainty seems to
yield more consistent improvements in correlation with the
in situ reference after removing a percentage of the most un-
certain data, than using o (T") = MAD(Top). This is true for
all four soil layers. Masking out more uncertain data indi-
cated by either method consistently improves agreement with
in situ reference data in the first two product layers. This
improvement increases the more data are masked out, as is
expected. In the absence of such breaks (Fig. 9e-h) RZSM
uncertainty variations seem to be better predicted when us-
ing o (T) = MAD(Ty) as the T-parameter uncertainty in
almost all cases. Notably, in layers 3 and 4, data removal ac-
cording to either method degraded the agreement with field
measurements.
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Figure 6. The ubRMSD between propagated RZSM from in situ
SSM using the EF model and measurements of RZSM at the same
location and the same depth, calculated at 1509 different sites. The
median ubRMSD value for each bin (represented by orange lines
and annotated) represents o (EF) for the respective Topt.

At greater depths, the contribution of the model structural
uncertainty to the total uncertainty budget has been shown to
increase. In the circumstances where the EF model appears
to be inadequate, for example, due to poor coupling between
the root zone in consideration and the surface layer, it can be
assumed that the model structural uncertainty is so predomi-
nant as to make the temporal patters of the other uncertainty
components marginal in practice. However, in circumstances
where the magnitude of the real uncertainty is such so as to
make the EF-based RZSM so unreliable, the lack of ability
to reproduce the temporal variations of the estimated uncer-
tainty becomes less relevant.

In summary, the propagation of C3S SSM input uncertain-
ties yields accurate predictions of temporal uncertainty vari-
ations in RZSM estimates obtained with the EF method for
the first two layers (0—-10 and 1040 cm). This is no longer
the case for deeper layers (40-100 and 100-200 cm). Note,
however, that the RZSM estimates in these layers themselves
still exhibit reasonable skill when evaluated against ESL (see
Fig. 5).

5 Summary and conclusions
In this study, we computed root-zone soil moisture (RZSM)
globally in four depth layers (0-10, 10—40, 40-100, and 100-

200 cm) from merged satellite surface soil moisture (SSM)
retrievals of the Copernicus Climate Change Service (C3S)

https://doi.org/10.5194/gmd-16-4957-2023
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Figure 7. Evaluation of the impact of changes to the baseline method illustrated using an example 2020 time series from 9.875° N, 1.625° E.
C3S SSM uncertainties were propagated with the baseline scheme in (a), while (b) and (¢) show the individual impacts of increasing the
noise of T from 10 % of Topt to MAD(Topt) and adding the term 0‘2(EF), respectively. Combined effects of both changes are shown in (d).
The dashed grey line indicates the uncertainty level defined by GCOS (2022) as an accuracy goal for RZSM products.
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Figure 9. Correlations with in situ measurements (y axis) before and after removing a fixed percentage of data with the highest uncertainty

(x axis) for the period 2002-2020 (a—d) and 2015-2020 (e-h). Uncertainties were calculated using either o (T') =

o (T) = MAD(Topt) (orchid colour).

COMBINED product v202012 using the exponential filter
(EF) method. The EF model parameter T has been optimized
at point scale by maximizing the correlation with globally
distributed in situ SM measurements from the International
Soil Moisture Network (ISMN). The medians of the opti-
mized T values at each layer have been used to compute
the global product. A global product intercomparison with
ERAS5-Land (ESL) reanalysis SM data has shown a satisfac-
tory level of agreement in all layers (global median correla-
tions of the four above-mentioned product layers against ESL
reference layers 0-7, 7-28, 28-100, and 100-289 cm were
0.54,0.47, 0.41, and 0.28, respectively).

Uncertainties in the RZSM estimates obtained with the EF
method were calculated using the law for the propagation
of uncertainties. Uncertainties in the input SSM data were
available in the C3S product and have been calculated by the
data producers using triple collocation analysis (TCA). We
tested the use of the median absolute deviation of optimized
T parameters at the available ISMN locations (MAD(Tt))
as a proxy for T-parameter noise. Results obtained using
MAD(Topt) in uncertainty propagation were compared with
results obtained using 10 % of the optimized T parameter it-
self (Tope/10), as done in earlier studies. While the use of
Topt/10 as the T-parameter uncertainty seems to yield re-
alistic estimates for uncertainty variations due to the use
of different C3S SSM input sensors, using MAD(Tqpt) as

Corrigendum

Topt/10 (olive colour) or

the T-parameter uncertainty seems to better predict day-to-
day uncertainty variations in the RZSM estimates. A higher
value assumed by o (T') (in this case MAD(7p¢)) places more
weight on short-term significant variations in RZSM values
(accounted for by the Jacobian term 0RZSM/9T) and over-
shadows the contribution of the input uncertainties (A) to the
overall uncertainty budget. This approach results in higher-
uncertainty outputs paralleling significant changes in RZSM
signal (e.g. soil wetting/drying events) and is generally better
suited to describe day-to-day uncertainty variations. Mean-
while, a lower value of o (T") (here Topi/10) favours the im-
pact of the input uncertainties and appears to be more skil-
ful in detecting sudden shifts in the magnitude of the input
uncertainties due to C3S SSM sensor changes. While both
the significant variations in RZSM values and the magnitude
shifts in the input uncertainties are crucial elements of the
overall uncertainty budget, there appears to be a trade-off in
favouring the impact of one or the other based on the value
assumed by o (7).

Even though propagating SSM input and model parameter
uncertainties yields credible predictions of temporal uncer-
tainty variations, absolute uncertainty magnitudes appear un-
realistically small (below 0.01 m® m~3). This is because the
propagation of uncertainty only accounts for uncertainties in
the data and parameters input to the EF method, but not for
limitations of the EF method itself (e.g. the progressive in-
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ability of the method to model deeper-layer RZSM due to
vanishing surface-root-zone coupling). We proposed to es-
timate these EF model structural uncertainties as the unbi-
ased root-mean-square differences between RZSM estimates
for each of our four product depth layers obtained by apply-
ing the EF method to in situ SSM measurements and actual
in situ RZSM measurements taken at the same location and
depth. This was done at all available ISMN sites, and the
median of these estimates was used as a global proxy for
EF structural uncertainty for each of the four product depth
layers, respectively. Combined, propagated SSM input and
model parameter uncertainties and EF structural uncertain-
ties were considered to yield realistic estimates of the total
RZSM product uncertainty budget in all layers (global mean
uncertainties in the four product layers are 0.031, 0.035, 0.04,
and 0.04 m? m_3). Note, however, that a quantitative valida-
tion of uncertainty magnitudes is still pending due to the lack
of reliable uncertainty reference data on a global scale and for
different RZSM depth layers.

The EF parameter uncertainty was estimated on a global
scale and can be expected to differ for smaller scales, es-
pecially where the variability in environmental conditions is
lower. Similarly, estimates of the EF model structural uncer-
tainty are likely to differ on local to regional scales. Also, the
structural uncertainty in the EF, here assumed to be constant
in time, could in fact vary on a sub-seasonal scale given the
phenomena that regulate the process of water transfer in the
soil. Moreover, random errors in the in situ measurements
were assumed to be negligible and were not accounted for in
estimating the structural uncertainty in the model. Nonethe-
less, it is plausible that the EF structural uncertainty is much
greater than the random uncertainty in the in situ sensors. Es-
timates of the random uncertainty in the in situ sensors could
allow for a more accurate estimation of the EF structural un-
certainty in the future.

https://doi.org/10.5194/gmd-16-4957-2023

Further insights could also be gained by evaluating the be-
haviour of the proposed method in propagating uncertainties
in different SSM input data, e.g. single-sensor products with-
out systemic breaks and non-static input SSM uncertainties
obtained by means other than TCA. Nonetheless, this study
is an important step towards understanding and describing
the uncertainties in EF-based RZSM products.
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Table A1l. ISMN networks used in this study. A list of all available ISMN networks can be found at https://ismn.earth/en/networks/, last

access: 28 August 2023.

Network Time series used ~ Time series used for EF Reference
for T-parameter model structural
optimization uncertainty estimation

AMMA-CATCH 31 27  Mougin et al. (2009), Cappelaere et al. (2009),
de Rosnay et al. (2009), Lebel et al. (2009),
Galle et al. (2015)

ARM 90 113 Cook (2016a), Cook (2016b), Cook (2018)

AWDN 112 148 -

BIEBRZA_S-1 15 18  Musial et al. (2016)

BNZ-LTER 7 22 Van Cleve et al. (2015)

CALABRIA 12 —  Broccaetal. (2011)

CAMPANIA 1 — Broccaetal. (2011)

COSMOS 65 2 Zredaet al. (2008), Zreda et al. (2012)

CTP-SMTMN 147 167  Yang et al. (2013)

DAHRA 4 4 Tagesson et al. (2015)

FLUXNET-AMERIFLUX 22 16 -

FMI 16 37 Ikonen et al. (2016), Ikonen et al. (2018)

FR_Aqui 28 23 Al-Yaari et al. (2018), Wigneron et al. (2018)

GROW 118 —  Xaver et al. (2020), Zappa et al. (2019), Zappa
et al. (2020)

GTK - 24 -

HiWATER_EHWSN - 1 Kangetal. (2014), Jin et al. (2014)

HOAL 90 97  Bloschl et al. (2016), Vreugdenhil et al. (2013)

HOBE 64 60 Jensen and Refsgaard (2018), Bircher et al.
(2012)

HSC_SEOLMACHEON 1 - -

HYDROL-NET_PERUGIA 4 6 Flammini et al. (2018a), Flammini et al.
(2018b), Morbidelli et al. (2011), Morbidelli
et al. (2014), Morbidelli et al. (2017)

ICN - 24 Hollinger and Isard (1994)

IIT_KANPUR - 3 -

IMA_CAN1 9 — Biddoccu et al. (2016), Raffelli et al. (2017),
Capello et al. (2019)

IPE 1 — Alday et al. (2020)

iRON 5 16 Osenga et al. (2019), Osenga et al. (2021)

KIHS_CMC 54 38 -

KIHS_SMC 51 32 -

LAB-net 2 1 Mattar et al. (2014), Mattar et al. (2016)

MAQU 53 62  Suetal. (2011), Dente et al. (2012)

MOL-RAO 9 10 Beyrich and Adam (2007)

MySMNet 15 11  Kang et al. (2019)

NAQU 5 31 Suetal. (2011), Dente et al. (2012)

NGARI 5 84  Suetal. (2011), Dente et al. (2012)

NVE - 10 -
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Network Time series used  Time series used for EF  Reference
for T-parameter model structural
optimization uncertainty estimation

ORACLE 24 32 -

OZNET 101 105  Young et al. (2008), Smith et al. (2012)

PBO_H20 115 —  Larson et al. (2008)

PTSMN 80 60 Hajdu et al. (2019)

REMEDHUS 22 —  Gonzdlez-Zamora et al. (2019)

RISMA 51 62  Canisius (2011), L’'Heureux (2011), Ojo et al.
(2015)

RSMN 13 - -

SASMAS 27 13 Riudiger et al. (2007)

SCAN 575 806  Schaefer et al. (2007)

SKKU 56 42 Nguyen et al. (2017)

SMN-SDR 76 127 Zhao et al. (2020), Zheng et al. (2022)

SMOSMANIA 79 66  Calvet et al. (2007), Albergel et al. (2008), Cal-
vet et al. (2016)

SNOTEL 788 942  Leavesley et al. (2008)

SOILSCAPE 385 247  Moghaddam et al. (2010), Moghaddam et al.
(2016), Shuman et al. (2010)

SWEX_POLAND 6 17  Marczewski et al. (2010)

TAHMO 68 10 -

TERENO 14 10 Zacharias et al. (2011),
Bogena et al. (2012), Bogena et al. (2018), Bo-
gena (2016)

UDC_SMOS 16 11 Loew et al. (2009), Schlenz et al. (2012)

UMBRIA 37 28 Brocca et al. (2008), Brocca et al. (2009),
Brocca et al. (2011)

UMSUOL 4 6 -

USCRN 309 358 Belletal. (2013)

USDA-ARS 4 —  Jackson et al. (2010)

VAS 1 - -

VDS 12 8§ -

WEGENERNET 1 —  Kirchengast et al. (2014), Fuchsberger et al.
(2021)

WSMN 1 —  Petropoulos and McCalmont (2017)
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Figure A1l. Location map of the ISMN in situ stations used in this study and listed in Table A1.

Code and data availability. The Python package used in the com-
putation of the root-zone soil moisture data and their as-
sociated uncertainties from surface soil moisture observations
by means of an exponential filter can be accessed here:
https://doi.org/10.5281/zenodo.7534919 (Adeaem et al., 2023).

The global root-zone soil moisture data produced and utilized
in this study are available for the period 2002-2020 as daily im-
age files in netCDF4 format: https://doi.org/10.48436/9gsg6-nn854
(Pasik and Preimesberger, 2023).
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